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KOSZUL HOMOLOGY AND LIE ALGEBRAS WITH
APPLICATION TO GENERIC FORMS AND POINTS

R. FRÖBERG and C. LÖFWAL

(communicated by Larry Lambe)

Abstract
We study the Koszul dual for general superalgebras, and

apply it to the Koszul homology of a graded algebra. We show
that a part of the Koszul homology algebra is related to the
homotopy Lie algebra by means of Koszul duality. This is used
to study the ”Minimal Resolution Conjecture” and the ”Ideal
Generating Conjecture” for sets of generic points in projective
space, and for quotients of the polynomial ring (or exterior
algebra) modulo generic quadratic forms.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

Consider s generic points in projective space Pn
k . The Hilbert series of the

corresponding coordinate ring A = S/I = k[x0, . . . , xn]/I is known to be
∑

i>0 min(
(n+i

i

)

, s)zi [Ge-Or 81]. The Koszul homology of A, H = TorS(A, k),
is known to satisfy Hi,j = 0 if j 6= d + i − 1, d + i for a certain d (depending on
n and s), but there are a lot of unanswered questions. The Minimal Resolution
Conjecture (MRC) states that for all i and all j, Hi,j = 0 or Hi+1,j = 0, and the
special case that this is true for i = 1 is called the Ideal Generating Conjecture
(IGC). The MRC has recently been disproved [Ei-Po 99], while IGC is still open.
In this paper we will introduce a new approach to study these problems, namely
through the “homotopy Lie algebra”, gA, of A.

The MRC may be reformulated in terms of gA. In fact, there are certain numbers
m and t (depending on n and s) such that if d > 2 then MRC holds if and only if
dimk gm+1,m+d−1

A = t and gm+2,m+d
A = 0. When d = 2 the situation is a bit more

complicated. Let ηA be the “diagonal” Lie algebra of gA; i.e., ηi
A = gi,i

A and let
L = ⊕i>2ηi

A and finally Qi = (L/[L,L])i. Then if d = 2, MRC holds if and only if
dimk Qm+1 = t and Qm+2 = 0.

Even if the case d > 2 is easier, we do not know any application of it. However
in the case when d = 2, the Lie algebra ηA is explicitly given as the free Lie algebra
on n+1 odd variables modulo the ideal generated by the squares of s generic linear
forms. We have used a Mathematica program called “liedim” and its C-version
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“cbas” to compute the space Q above for some values of n and s. In this way we
have been able to prove MRC and IGC in some new cases.

We have also studied ideals generated by generic quadratic forms in polynomial
rings and exterior algebras and ideals generated by generic quadratic Lie elements
in free Lie algebras.

The paper is organized as follows. In Section 2 the Koszul dual is defined for
general superalgebras, in particular for graded commutative algebras. This will be
applied to the Koszul homology algebra, which has generators of both even and odd
degrees. In Section 3 the homotopy Lie algebra is introduced for graded commutative
algebras through minimal models and in Section 4 a theorem is proved which relates
parts of the Koszul homology algebra and the homotopy Lie algebra by means of
Koszul duality. In fact, since we are dealing with superalgebras, our theorem may
also be applied to quotients of exterior algebras (or to quotients of tensor products
of exterior algebras and polynomial algebras). However, in the exterior algebra case,
TorS(A, k) is in general infinite-dimensional and the corresponding Lie algebra is
an “ordinary” Lie algebra (non-super).

In Section 5 we introduce the MRC and IGC conjectures and apply the theorem
in Section 4 in order to reformulate the conjectures in terms of the Lie algebra L
associated to A. We also prove a “monotonicity” property, which implies that if
counterexamples to MRC exists for a given n, then there has to be counterexamples
for special values of s. For IGC this holds for at most two values of s for each n. In
Section 6 we present some theorems about MRC and IGC obtained by computations
and by the theory from the previous section. The computations are presented in
Section 11.

In Section 7 we study rings of the form k[x1, . . . , xn]/(f1, . . . , fr), where f1, . . . , fr
are generic quadratic forms. We prove that the ring is Koszul if and only if r 6 n
or r >

(n+1
2

)

−n2/4. The corresponding result for Lie algebras is also obtained. We
study the series of Lie algebras obtained from generic quadratic algebras or defined
by generic quadratic Lie relations. We make some conjectures and prove them in
some special cases. In Section 8 we state a conjecture about the Lie algebra for the
coordinate ring of a set of generic points, and we prove it in some cases. In Section
9 we study the Poincaré series for these coordinate rings. In Section 10 finally,
we study the quotient of exterior algebras with generic quadratic forms and their
corresponding (ordinary) Lie algebras. In particular we study the exterior algebra
in 5 variables modulo 2 or 3 generic quadratic forms. The Hilbert series turned out
to be not the ones which were expected.

2. The Koszul dual

We will consider Z2 × N-graded (or Z2 × N × N-graded) associative algebras or
Lie algebras over a field k of characteristic different from two. The Z2-grading (also
called the “parity”) of an element x is denoted |x| and we ususally talk about “even”
and “odd” elements corresponding to whether |x| = 0 or |x| = 1. This grading
makes our algebras “superalgebras”, and it is this grading that determines the sign
when two elements in a formula are interchanged; e.g., the graded commutator is
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defined as [a, b] = ab − (−1)|a||b|ba and the graded Jacobi identity is [[a, b], c] =
[a, [b, c]] + (−1)|b||c|[[a, c], b]. The additional N-gradings are called “weights” and
they have no effect on signs in formulas.

The Koszul dual A! of a Z2×N-graded connected k-algebra A = k⊕A1⊕A2⊕· · ·
is again a Z2×N-graded connected k-algebra and may be defined as the subalgebra
of ExtA(k, k) generated by the elements of homological degree and weight equal to
one. The algebra A is called a Koszul algebra if A! = ExtA(k, k). The Koszul dual
may be computed using the cobar construction (T((sA+)∗), d), cf [Ad 60]. Here
A+ is the set of elements of positive weight, which is considered to be concentrated
in homological degree zero, T stands for “tensor algebra” and s is the suspension
functor, which changes parity and raises the homological degree by one, while the
weight is left unchanged by s. The differential d is the derivation which extends the
map

(sA+)∗ s→ A∗+
m∗

→ (A+ ⊗A+)∗
(φA+ )−1

→ (sA+)∗ ⊗ (sA+)∗ ,

where m: A+⊗A+ → A+ is multiplication and φA+ is a natural isomorphism φV

applied to V = A+. It is defined as follows. Let V be a Z2×N-graded vector space,
then φV : (sV )∗ ⊗ (sV )∗ → (V ⊗ V )∗ is defined by φ(f ⊗ g) = (f ⊗ g) ◦ (s ⊗ s) for
f, g ∈ (sV )∗. Following the strict sign rule, this means that the following holds for
a, b ∈ V .

(φ(f ⊗ g))(a⊗ b) = (−1)|a|+|g||sa|f(sa)g(sb) =

(−1)|a|+|f ||g|f(sa)g(sb) = −(−1)|sa||b|f(sa)g(sb) .

It is easy to prove (cf [Pr 70], [Lö 86]) that

A! = T((sA1)∗)/〈d((sA2)∗)〉 .

Here A! only depends on the “1-2-algebra of A”,

T(A1)/〈ker(A1 ⊗A1 → A2)〉 ,

which in fact is equal to (A!)!.
This gives the following description of the Koszul dual. Let V be a Z2-graded

finite-dimensional (or locally finite-dimensional Z2 ×N-graded) vector space and R
a homogeneous subspace of V ⊗ V . Then

(T(V )/〈R〉)! = T((sV )∗)/〈φ−1
V R⊥〉 ,

where s is the parity switcher, R⊥ = {f ∈ (V ⊗ V )∗; f(R) = 0} and φV : (sV )∗ ⊗
(sV )∗ → (V ⊗V )∗ is the isomorphism defined above. In coordinates this means the
following (we have changed the formulas by a global −1). If {x, y, . . .} is a basis for
V and {X, Y, . . .} is a basis for (sV )∗ dual to {sx, sy, . . .}, then an element X ⊗ Y
is considered to operate on a basis element a⊗ b by the rule (X ⊗ Y )(a⊗ b) = 0 if
a 6= x or b 6= y, (X ⊗X)(x⊗ x) = 1 and

(X ⊗ Y )(x⊗ y) =
{

−1 if x is even and y is odd
1 otherwise.
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Observe that this somewhat strange rule follows from the fact that the suspension
s has to pass x before Y passes sx.

Example 2.1. Let |x| = 0, |y| = 1. Then

(k〈x, y〉/〈xy − yx, y2〉)! = k〈X, Y 〉/〈XY − Y X,X2〉 ,

where |X| = 1, |Y | = 0.

This example is in accordance with the known fact that the Ext-algebra of a free
graded commutative algebra is free graded commutative with a parity switch (cf.
[Ma 88] 3.10) . See Proposition 2.2 below.

For a Z2-graded vector space V , let [V, V ]F denote the subspace of V ⊗ V gen-
erated by the graded commutators. The subscript F refers to the fact that [V, V ]F
is contained in F(V ), the free Lie algebra on V , considered as the Lie subalgebra
generated by V in the free associative algebra T(V ). Then U(F(V )) = T(V ), where
U stands for “universal enveloping algebra”. The free graded commutative algebra
on V , denoted

∧

(V ), is defined as T(V )/〈[V, V ]F 〉. Now V ∧ V = (V ⊗ V )/[V, V ]F
and hence (V ∧ V )∗ may (and will) be identified with ([V, V ]F )⊥ ⊂ (V ⊗ V )∗.

Proposition 2.2. Let V be a Z2×N-graded locally finite-dimensional vector space
and let s be the parity switcher. Let R be a subspace of V ⊗V which contains [V, V ]F
and let R = R/[V, V ]F . Consider the map φV = φ: (sV )∗⊗(sV )∗ → (V ⊗V )∗ defined
(as above) by φ(f ⊗ g)(a⊗ b) = (−1)|a|+|g||sa|f(sa)g(sb). Then

(i)φ[(sV )∗, (sV )∗]F = ([V, V ]F )⊥

(ii)(
∧

(V )/〈R〉)! ∼= U(F((sV )∗)/〈φ−1R⊥〉)

(iii)(
∧

(V ))! ∼=
∧

((sV )∗)

(iv)R
∗ ∼= [(sV )∗, (sV )∗]F/φ−1R⊥ .

Proof. (i). Let f, g ∈ (sV )∗ and a, b ∈ V . Then

φ(f ⊗ g)(a⊗ b− (−1)|a||b|b⊗ a) =

(−1)|a||b|+|b|+1f(sa)g(sb)− (−1)|a|+1f(sb)g(sa) and

φ(g ⊗ f)(a⊗ b− (−1)|a||b|b⊗ a) =
(−1)|f ||g|+|a|g(sa)f(sb)− (−1)|f ||g|+|a||b|+|b|g(sb)f(sa) .

Hence φ(f ⊗ g) − (−1)|f ||g|φ(g ⊗ f) is zero on a ⊗ b − (−1)|a||b|b ⊗ a and hence
φ[(sV )∗, (sV )∗]F ⊂ ([V, V ]F )⊥. The other inclusion follows by dimension reasons.

(ii). This follows directly from (i) and the description of the Koszul dual above,
since

∧

(V )/〈R〉 ∼= T(V )/〈R〉 and

T((sV )∗)/〈φ−1R⊥〉 ∼= U
(

F((sV )∗)/〈φ−1R⊥〉
)

,

which is true since, φ−1R⊥ ⊂ φ−1([V, V ]F )⊥ = [(sV )∗, (sV )∗]F .

(iii). This follows from (i) and (ii) with R = [V, V ]F .
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(iv). Using (i) we get

R
∗

= (R/[V, V ]F )∗ ∼= ([V, V ]F )⊥/R⊥ ∼=
φ−1([V, V ]F )⊥/φ−1R⊥ = [(sV )∗, (sV )∗]F/φ−1R⊥ .

In general, for an augmented k-algebra A, the subalgebra of ExtA(k, k) generated
by Ext1A(k, k) has relations of degree greater than two. However the relations of
degree two may be described explicitly.

Proposition 2.3. Let A be an augmented k-algebra with augmentation ideal I and
let gr(A) = k ⊕ I/I2 ⊕ I2/I3 ⊕ · · · be the graded associated k-algebra. Then the
1-2-algebra of ExtA(k, k) is isomorphic to the Koszul dual of gr(A); i.e.,

(ExtA(k, k)!)! ∼= (gr(A))! .

Proof. All we need is to consider the beginning of the cobar construction, (sI)∗ d→
(sI)∗ ⊗ (sI)∗, where d is defined as above. We have Ext1A(k, k) = (sI2)⊥. Hence

ker
(

Ext1A(k, k)⊗ Ext1A(k, k) → Ext2A(k, k)
)

= im(d) ∩
(

(sI2)⊥ ⊗ (sI2)⊥
)

.

With φ and m as above we have φ(im(d)) = (ker(m))⊥ and

φ
(

(sI2)⊥ ⊗ (sI2)⊥
)

= (I2 ⊗ I + I ⊗ I2)⊥ .

Hence

φ ker
(

Ext1A(k, k)⊗ Ext1A(k, k) → Ext2A(k, k)
)

=
(

I2 ⊗ I + I ⊗ I2 + ker(m)
)⊥

which equals (m−1(I3))⊥, since m(I2⊗ I) = I3. Thus the 1-2-algebra of ExtA(k, k)
is isomorphic to T((sI2)⊥)/〈φ−1(m−1(I3))⊥〉.

On the other hand

(gr(A))! = T((sI/I2)∗)/〈φ−1
I/I2(ker(I/I2 ⊗ I/I2 → I2/I3))⊥〉

Looking at (I/I2 ⊗ I/I2)∗ as a subspace of (I ⊗ I)∗, the space
(

ker(I/I2 ⊗ I/I2 → I2/I3)
)⊥

will be identified with (m−1(I3))⊥. Hence

(gr(A))! ∼= T((sI2)⊥)/〈φ−1
I (m−1(I3))⊥〉 .

We end this section with a proposition which, combined with Proposition 2.3,
will be used in Section 4.

Proposition 2.4. Let L be a Z2 × N+-graded Lie algebra, locally finite-dimensio-
nal over k. Let gr(L) denote the graded associated Lie algebra with respect to the
filtration L ⊃ [L,L] ⊃ [L, [L,L] ⊃ · · · and let gr(U(L)) denote the graded associated
algebra with respect to the filtration obtained from powers of the augmentation ideal.
Then gr(U(L)) and U(gr(L)) are naturally isomorphic as graded algebras.



Homology, Homotopy and Applications, vol. 4(2), 2002 232

Proof. There is a natural map of Lie algebras from gr(L) to the Lie algebra asso-
ciated to the algebra gr(U(L)) and hence there is induced a natural map of graded
algebras U(gr(L)) → gr(U(L)). This map is surjective, since both algebras are gen-
erated by L/[L,L] (depending on the assumption that L has a positive grading).
Since, by assumption, both algebras are locally finite-dimensional, it follows that
the map is an isomorphism, since the algebras have the same Hilbert series.

3. The homotopy Lie algebra

Let V be a Z2 ×N+-graded vector space over k with basis {x1, . . . , xn}. We will
also denote the free graded commutative algebra on V ,

∧

(V ), by k[x1, . . . , xn]. It is
the free graded associative algebra k〈x1, . . . , xn〉 modulo the graded commutators
xixj − (−1)|xi||xj |xjxi. Sometimes V will be infinite-dimensional, but always finite-
dimensional in each weight.

We will consider k-algebras A = S/I, where S = k[x1, . . . , xn] and I is a homo-
geneous ideal with respect to both parity and weight. To such a k-algebra A, we
will define a Z2 × N+ × N+-graded Lie algebra gA – the homotopy Lie algebra of
A. It may be defined by the property U(gA) = ExtA(k, k), but we will give a more
explicit definition (and more suitable for our purposes) using the minimal model of
A (cf [Lö 94]).

The minimal model of A is a differential algebra (
∧

V, d), where V is a Z2×N×
N+-graded vector space and where the first degree is the parity, the second degree
is the homological degree and the third degree is the weight. The differential d is a
derivation which changes parity, lowers the homological degree by one and preserves
weight. Moreover d maps V to

∧>2 V = V ∧ V + V ∧ V ∧ V + · · ·. The component
of d mapping V to V ∧ V is called d2 (its extension as a derivation also satisfies
d2
2 = 0).

The ring A is considered as a differential algebra with zero differential and con-
centrated in homological degree zero. There is a surjective map ε: (

∧

V, d) → A
preserving all degrees and inducing an isomorphism in homology. This means that
Hi(

∧

V, d) = 0 for homological degrees i > 0 and if A = k[x1, . . . , xn]/I then V in
homological degree zero has a basis X1, . . . , Xn, ε(Xi) = xi and ε(im(d)) = I. The
construction of (

∧

V, d) is a straightforward procedure of killing cycles in a minimal
way (see [Lö 94] for more details).

The Lie algebra gA is defined by (sV )∗ as a vector space, where s changes parity,
raises homological degree by one and preserves weight. The Lie product on (sV )∗

is in principle defined as the dual of d2. More precisely, it is defined as a map
[(sV )∗, (sV )∗]F → (sV )∗ in the following way (cf. Proposition 2.2),

[(sV )∗, (sV )∗]F
φ→ ([V, V ]F )⊥ = (V ∧ V )∗

d∗2→ V ∗ s−1

→ (sV )∗ .

This map preserves all degrees and it may be checked that it satisfies the graded
Jacobi identity. In coordinates the Lie product may be given as follows (cf [Av 84],
[Ha 92]).

Suppose {x, y, z, . . .} is an ordered basis for V and let {X,Y, Z, . . .} denote the
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basis for (sV )∗ dual to {sx, sy, sz, . . .}. If d2x =
∑

y6z cxyzyz then,

[Z, Y ] = −
∑

x(−1)|y|cxyzX if y < z

(Y )2 = −
∑

x cxyyX if Y is odd.

Inside gA there is the Lie subalgebra ηA generated by g1,1
A (homological degree =

weight = 1). It is proved in [Lö 94] that ηA coincides with the diagonal subalgebra
⊕∞p>1g

p,p
A and it is proved in [Pr 70], [Lö 86] that U(ηA) = A!.

Definition 3.1. Let gA be the homotopy Lie algebra of A and ηA the Lie subalgebra
of gA generated by g1,1

A . The Lie algebra L = (ηA)>2 = [ηA, ηA] is called the “Lie
algebra associated to A”. It has two degrees, a parity and a weight (> 2).

Let L be the Lie algebra associated to A and let gr(L) denote the graded associ-
ated Lie algebra obtained from the lower central series L ⊃ [L,L] ⊃ [L, [L,L]] ⊃ · · ·;
i.e.,

gr(L) = (gr(L))1 ⊕ (gr(L))2 ⊕ · · · = L/[L,L]⊕ [L,L]/[L, [L,L]]⊕ · · · .

Each (gr(L))i has an induced grading from L, (gr(L))i = ⊕j(gr(L))j
i . The following

theorem relates gr(L) to TorS(A, k), which is the homology of the Koszul complex
of A if xi is even for all i. The theorem may be seen as a study of an edge in
Avramov’s spectral sequence ([Av 74]), which has as E2-term TorTorS(A,k)(k, k)
and which converges to U(g>2

A )∗. At this point we want to thank J.-E. Roos, who
conjectured part one of the theorem below and encouraged us to supply a proof.

4. The Koszul homology in terms of the homotopy
Lie algebra

Theorem 4.1. Let A = S/I = k[x1, . . . , xn]/I, where I ⊂ (x1, . . . , xn)2, be a
Z2 × N-graded connected k-algebra, commutative in the graded sense by the first
degree, which is called the “parity”; the second degree is called the “weight”. Let
H = ⊕Hi,j = ⊕TorS

i,j(A, k) (here i is the homological degree and j is the weight),
which is considered as a graded algebra in the following way; H = k⊕H(1)⊕H(2)⊕· · ·,
where H(i) = ⊕jHj−i,j . Furthermore parity and weight in A defines a bigrading
on each H(i) (which is compatible with the multiplication in H). Let L be the Lie
algebra associated to A and gr(L) the graded associated Lie algebra with respect to
the lower central series. Then gr(L) has, besides a parity, two gradings, gr(L) =
⊕i>1,j>2(gr(L))j

i (see above). The following natural isomorphisms hold, where in
(ii) the operator s just changes the parity.

(i)The 1-2-algebra of H is isomorphic to the Koszul dual of U(gr(L));

i.e., (H !)! ∼= (U(gr(L)))!

(ii)H(1)
∼= s(L/[L,L])∗

(iii)ker(H(1) ∧H(1) → H(2)) ∼= ([L,L]/[L, [L, L]])∗
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(iv)If A is Koszul, then H ∼= ExtU(L)(k, k) as algebras, in particular

Hj−i,j = H(i),j
∼= (Exti

U(L)(k, k))j .

Corollary 4.2. With notation as in the theorem, suppose xi is even for all i. Then

(i)Lj = [L,L]j for j > n + 2

(ii)If A is Koszul, then gldim(U(L)) < ∞ .

Corollary 4.3. With notation as in the theorem, we have

(i)dimk(H1,2)even = dimk(L2)odd

(ii)dimk(H1,2)odd = dimk(L2)even

(iii)dimk H2,3 = dimk L3

(iv)dimk H3,4 = dimk L4/[L2, L2]

(v)dimk(ker(H1,2 ∧H1,2 → H2,4)) = dimk[L2, L2]

(vi)dimk(ker(H1,2 ⊗H2,3 → H3,5))even = dimk([L2, L3])even

(vii)dimk(ker(H1,2 ⊗H2,3 → H3,5))odd = dimk([L2, L3])odd

(viii)dimk ker (H2,3 ∧H2,3 ⊕H1,2 ⊗H3,4 → H4,6) =

dimk
(

[L3, L3] + [L2, L4]
)

/[L2, [L2, L2]] .

Remark 4.4. It has been known since long that dimk H2,3 = dimk L3 and this was
the starting point for our study of generic points and it is mainly this fact we will
use in the applications of the theorem.

Proof of Theorem 4.1. We will give three different proofs. Even if the second one
is short, we have included the other two, since we believe the methods used there
are interesting in themselves. The first two use the minimal model of A. The third
uses the cobar construction of (the dual of) the Koszul complex and the perturba-
tion theory developed by Gugenheim, Stasheff, Lambe and others [Gu-La-St 91],
[Hu-Ka 91], [Jo-La 00].
First proof. Let (

∧

(V ), d) be a minimal model of A as described above. In particular
this is a free resolution of A as a module over S ∼=

∧

(V0). Hence TorS(A, k) may
be computed as the homology of

∧

(V ) ⊗S k =
∧

(V>1) with the induced differen-
tial d. Due to the minimality of (

∧

(V ), d) and the fact that the generators in S
have positive weight, we may conclude that the weight is always greater than the
homological degree. Let W be the subspace of V>1 defined by elements of minimal
possible weight; i.e., W = ⊕i>1Vi,i+1. Then L = (sW )∗. By degree reasons, the
differential d maps W to W ∧W and we will call this map d2. Hence (

∧

(W ), d2) is
a subcomplex of (

∧

(V>1), d) and moreover (d)−1(W ∧W ) = W . Put W (1) = ker(d2)
and W (2) = d−1

2 (W (1) ∧W (1)). Then W (1) ⊂ W (2) ⊂ W . We have

H(1) = W (1)

ker(H(1) ∧H(1) → H(2)) = d2(W (2)) .

Claim.

(sW (1))⊥ = [L, L]
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(sW (2))⊥ = [L, [L,L]]

Once this is proved, we get (sH(1))∗ = (sW (1))∗ = (sW )∗/(sW (1))⊥ = L/[L, L]
which proves (ii). We also get (sW (2))∗ = L/[L, [L,L]]. Let d22 denote the restriction
of d2 to W (2), then d22:W (2) → W (1)∧W (1). By the above ker(H(1)∧H(1) → H(2)) =
im(d22). To prove (i) we have to prove that φ−1(im(d22))⊥ is equal to the kernel of

[L/[L, L], L/[L,L]]F → [L, L]/[L, [L,L]] .

But this is given as the kernel of the composition of the following maps.

[(sW (1))∗, (sW (1))∗]F
φ→ (W (1) ∧W (1))∗

d∗22→ (W (2))∗ → (sW (2))∗

Since the first and the last map are isomorphisms, this kernel is φ−1 ker(d∗22) =
φ−1(im(d22))⊥ which proves (i).

Now (iii) follows from Proposition 2.2 (iv).
If A is Koszul then W = V>1 and hence (

∧

(V>1), d) is the same as (
∧

(W ), d2),
which is the (generalized) standard Chevalley-Eilenberg complex (cf [Ch-Ei 48])
to compute the cohomology of the Lie algebra (sW )∗ (here the “wedge-degree”
is the cohomological degree and the second degree of W is the weight). Hence
H = H((

∧

(W ), d2)) = ExtU(L)(k, k) which proves (iv).
Proof of Claim.

We have that [L,L] is the image of the map

[(sW )∗, (sW )∗]F
φ→ (W ∧W )∗

d∗2→ W ∗ → (sW )∗ .

Hence [L,L] = s−1(im(d∗2)) = s−1(ker(d2))⊥ = (sW (1))⊥.
To prove the second claim, we have to prove that the map above maps the

subspace [(sW )∗, (sW (1))⊥]F onto (sW (2))⊥. We will do this in two steps

1.φ([(sW )∗, (sW (1))⊥]F ) = (W (1) ∧W (1))⊥

2.d∗2((W
(1) ∧W (1))⊥) = (W (2))⊥ .

To prove 1., we first observe the following general fact. Suppose B → C is a sur-
jective map with kernel D. Then T(B)/〈D〉 ∼= T(C) (use right exactness of the
tensor product, diagram chasing and induction). Hence also F(B)/〈D〉 ∼= F(C).
In particular ker([B, B]F(B) → [C, C]F(C)) = [B, D]F(B). Now since φ is a natural
isomorphism, φ induces an isomorphism

ker
{

[(sW )∗, (sW )∗]F → [(sW (1))∗, (sW (1))∗]F
}

→

ker
{

(W ∧W )∗ → (W (1) ∧W (1))∗
}

.

By the general fact above, the first kernel is [(sW )∗, (sW (1))⊥]F . Since the second
kernel is (W (1) ∧W (1))⊥, the first statement is proved. The second statement is a
direct consequence of the following general fact (which is easily proven). Suppose
f : B → C is a map of vector spaces and let D be a subspace of C. Then f∗(D⊥) =
(f−1(D))⊥.
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Second proof.
We will use the same constructions and notations as in the first proof. Even if

A is not Koszul, we may argue in the same way as in the proof of (iv) above to
conclude that H(

∧

(W ), d2) = ExtU(L)(k, k). Since (
∧

(W ), d2) is a subcomplex of
(
∧

(V>1), d) we get a map of algebras ExtU(L)(k, k) → H. We will study this map
in low degrees and prove that the 1-2-algebra of ExtU(L)(k, k) is isomorphic to the
1-2-algebra of H. This, combined with Proposition 2.3 and Proposition 2.4, proves
(i). Then (ii) follows from (i) and (iii) and (iv) are proved as before.

Obviously we have Ext1U(L)(k, k) = W (1) = H(1).
Since (d)−1(W ∧W ) = W , we have

im(d2) ∩ (W (1) ∧W (1)) = im(d) ∩ (W (1) ∧W (1)) .

Hence,

(Ext1U(L)(k, k))2 = W (1) ∧W (1)/im(d2) ∩ (W (1) ∧W (1))

= W (1) ∧W (1)/im(d) ∩ (W (1) ∧W (1)) = (H(1))2 .

It follows that

ker
{

Ext1U(L)(k, k)⊗ Ext1U(L)(k, k) → (Ext1U(L)(k, k))2
}

=

ker
{

H(1) ⊗H(1) → (H(1))2
}

and hence the 1-2-algebra of ExtU(L)(k, k) is equal to the 1-2-algebra of H.
Third proof.

Let (K, d) be the Koszul complex of A with respect to (x1, . . . , xn); i.e., (K, d) =
A[sx1, . . . , sxn; d(sxi) = xi] (we could also have used (

∧

(V>1), d) from above).
Then (K, d) is a differential graded algebra (a DGA) and
H(K, d) = H. Since k is a field, H is a strong deformation retract of (K, d) (an SDR);
i.e., there are maps f : (K, d) → (H, 0) and∇: (H, 0) → (K, d) such that f∇ = id and
∇f is homotopic to id. From this it is possible to define an SDR (T((sK+)∗), dK) →
(T((sH+)∗), 0), where dK is the tensor extension of the differential on K. Now, the
multiplication on K+ defines a differential d2 on T((sK+)∗) in the same way as in
Section 2; i.e., as the composition

(sK+)∗ → K∗
+ → (K+ ⊗K+)∗

φ−1

→ (sK+)∗ ⊗ (sK+)∗

and (T((sK+)∗), dK +d2) is the cobar construction on K∗. Thinking of dK +d2 as a
perturbation of dK , one may use the perturbation lemma to obtain a differential d on
T((sH+)∗), such that (T((sH+)∗), d) is an SDR of (T((sK+)∗), dK + d2). Moreover
d is a derivation (see [Jo-La 00] ). But the cohomology of the cobar construction
on K∗ is Ext(K,d)(k, k) and this is U(g>2

A ) ([Av 74]).
Hence we have a DGA, (T((sH+)∗), d), with cohomology U(g>2

A ), which is ap-
proximated by (T((sH+)∗), d2) = ExtH(k, k). This is the “SDR-version” of Avra-
mov’s spectral sequence. (Compare this with the model (

∧

(V>1), d) above, which
has homology H, approximated by H(

∧

(V>1), d2) = ExtU(g>2
A )(k, k).)

Put V i,j = (sHi−1,j)∗ for i > 1 and put V = ⊕V i,j . Then d is determined by
the value of d on V , d = d2 + d3 + · · ·, where dn:V → V ⊗n, d2 is (in principal) the
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dual of the multiplication on H and the higher dn are duals of Massey products. We
have V i,j = 0 if i > j and hence the elements of V i,i are cycles. The cohomology of
(T(V ), d) in degree (i, i) is U(L)i and hence

U(L)i = V i,i ⊕ (V ⊗ V )i,i/boundaries⊕ (V ⊗ V ⊗ V )i,i/boundaries⊕ · · ·

This decomposition corresponds to the filtration of U(L) with respect to powers of
I = U(L)+. This is so, because all elements of (V ⊗ V ⊗ · · · ⊗ V )i,i/boundaries are
products of elements from V j,j . In particular, I/I2 = ⊕iV i,i = (sH(1))∗, I2/I3 =
⊕i(V ⊗ V/d2(V ))i,i and

ker
(

I/I2 ⊗ I/I2 → I2/I3) = im(d2) = φ−1 (

ker(H(1) ⊗H(1) → H(2))
)⊥

.

Hence the 1-2-algebra of H is isomorphic to the Koszul dual of gr(U(L)). Thus,
using Proposition 2.4, we get (i) and (ii); (iii) follows as before.

Suppose A is Koszul. Then (T(V ), d) has cohomology only on the diagonal. Con-
sider j − i as the homological degree of T(V )i,j . We have a map (T(V ), d) →
(U(L), 0) (where U(L) is considered to be concentrated in homological degree zero),
which induces an isomorphism in homology.

Hence (T(V ), d) is a minimal (free associative) model of U(L). Such a model may
always be constructed for any Z2×N-graded connected k-algebra B. This is similar
to the construction of models (

∧

(V ), d) of commutative algebras described above,
but now the space (sV )∗ is the algebra Ext+B(k, k) and the dual of d2 (with the
usual sign corrections) is the dual of the Yoneda product. Hence in our case we get
ExtU(L)(k, k) ∼= H, which proves (iv).

Problem 4.5. Suppose A is generated by A1. Is the converse of (iv) in Theorem
4.1 true? Or, perhaps weaker, if the double Poincaré series of U(L), PU(L)(x, y), is
equal to H(1/x, xy), is it then true that A is Koszul?
Observe that the equality PU(L)(x, y) = H(1/x, xy) implies the equality
A(z) ·A!(−z) = 1.

Added in proof: This problem has now been partially solved by Leonid Positselski
(personal communication).

5. The coordinate ring of generic points – IGC and MRC

If X = {P1, . . . , Ps} is a set of points in Pn
k , we denote the coordinate ring

of X, k[X0, . . . , Xn]/I(X), by AX . It is well-known [Ge-Or 81] that the Hilbert
series of AX satisfies AX(z) 6

∑

i>0 min(
(n+i

i

)

, s)zi. There is equality on an open
non-empty set in (Pn

k )s, and in case of equality the points are said to be in generic
position. A point P = (c0 : · · · : cn) ∈ Pn

k is called generic if the ci’s are algebraically
independent over the prime field of k. A set of mutually generic points is of course
in generic position. We will in the sequel always assume that our sets of points are
generic. We may also assume that s > n+1, since otherwise the points lie in Pn−1

k .

Definition 5.1. Given n and s > n + 1, let d > 2 as a function of n and s be
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defined by
(

n + d− 1
d− 1

)

6 s <
(

n + d
d

)

.

It is well-known that

TorS
i,j(AX , k) = 0 if j 6= i + d− 1, i + d

(here and in the sequel S will always denote k[X0, . . . , Xn]). In particular the mini-
mal generators for the ideal IX are of degrees d and d+1. Also, it is well-known that
if s =

(n+d−1
d−1

)

, then TorS
i,j(AX , k) = 0 if j 6= i + d− 1 (AX has a linear resolution

over S).
It has been conjectured that the map ((IX)d)n+1 → (IX)d+1, defined by

(f0, . . . , fn) 7→
∑n

i=0 Xifi, is either injective or surjective. This is called the Ideal
Generating Conjecture (IGC). It is equivalent to the fact that

TorS
1,d+1(AX , k) = 0 or TorS

2,d+1(AX , k) = 0 .

The generalization that for all i,

TorS
i,d+i(AX , k) = 0 or TorS

i+1,d+i(AX , k) = 0

is called the Minimal Resolution Conjecture (MRC).
The MRC is proved for P 2 [Ge-Ma 84]; for P 3 [Ba-Ge 86]; for P 4 [Wa 95],

[La 97]; for Pn, n+1 6 s 6 n+4 [Ge-Lo 89], [Ca-Ro-Va 91]; for Pn, s =
(n+2

2

)

−
n [Lo 93]; for Pn, n 6 9, s 6 50 except (n, s) = (6, 11), (7, 12), (8, 13) [Be-Kr 94];
and for Pn, s > 6n3 log n [Hi-Si 96]. There has some time been computational
evidence for some counterexamples by Schreyer, later [Bo 94], and [Be-Kr 94],
and now there is shown to exist, for each n > 6, n 6= 9, one s which gives a
counterexample to MRC [Ei-Po 99]. In [Ge-Gr-Ro 86, Theorems 4.7 and 5.8] IGC
is proved in several cases, e.g. for s 6 1 + n + n2/4 and for

(n+2
2

)

− n 6 s <
(n+2

2

)

.
In [Co-Tr-Va 97] it is proved that AX is even Koszul if s 6 1 + n + n2/4.

We will now state some well-known and frequently used facts about the Hilbert
series of AX . Let hn,s

i,j = dimk TorS
i,j(AX , k), hn,s

i,j = hi,j when n and s are considered
to be fixed and H(x, y) =

∑

hi,jxiyj .

Proposition 5.2. For any given n and s we have

(i)AX(z) =
d−1
∑

j=0

(

n + j
j

)

zj +
szd

1− z

(ii)(1− z)n+1AX(z) = 1 +
n

∑

j=0

(−1)j+1
(

n
j

){(

n + d
d

)

d
d + j

− s
}

zd+j

(iii)(1− z)n+1AX(z) = H(−1, z)

(iv)hj+1,d+j − hj,d+j =
(

n
j

){(

n + d
d

)

d
d + j

− s
}

, 0 6 j 6 n .
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Proof. We give for convenience a short proof of (ii). It is enough to prove the
identity

(1− z)n+1
d−1
∑

j=0

(

n + j
j

)

zj = 1 +
n

∑

j=0

(−1)j+1
(

n
j

)(

n + d
d

)

d
d + j

zd+j .

This can easily be done by proving that both sides have the same derivative. Here is
another way to deduce the identity without knowing the right hand side beforehand.
Call the left hand side p(z). It is a polynomial of degree n+d, divisible by (1−z)n+1,
and it may also be written as

1− (1− z)n+1
∞
∑

j=d

(

n + j
j

)

zj ,

which shows that p(z) − 1 is divisible (as a polynomial) by zd. It follows that
p′(z) is divisible by zd−1 and by (1− z)n and hence there is a constant c such that
p′(z) = czd−1(1− z)n = c

∑n
j=0(−1)j

(n
j

)

zj+d−1. Intergrating this one gets

p(z) = 1 + c
n

∑

j=0

(−1)j
(

n
j

)

1
d + j

zj+d .

But the highest coefficient in p(z) is (−1)n+1
(n+d−1

d−1

)

and hence c(−1)n 1
d+n =

(−1)n+1
(n+d−1

d−1

)

, which gives c = −d
(n+d

d

)

.

Definition 5.3. Let n and s be given and d defined by Definition 5.1. Then m, as
a function of n and s, is defined as the least integer such that

(

n + d
d

)

d
d + m

− s 6 0

and t, as a function of n and s, is defined by

t =
(

n
m− 1

) {(

n + d
d

)

d
d + m− 1

− s
}

.

It is easy to see that if TorS
i,d+i−1(AX , k) = 0, we have TorS

j,d+j−1(AX , k) = 0 for
all j > i, and if TorS

i,d+i(AX , k) = 0, we have TorS
j,d+j(AX , k) = 0 for all j 6 i. From

this and Proposition 5.2 the following well-known proposition is easily deduced.

Proposition 5.4. For any given n and s the following are equivalent.

(i)MRC holds

(ii)hj−1,j+d−1 = hj+1,j+d = 0 for some j

(iii)hm−1,m+d−1 = hm+1,m+d = 0

(iv)hj,j+d−1 =
(

n
j − 1

){(

n + d
d

)

d
d + j − 1

− s
}

and

hj+1,j+d = 0 for some j

(v)hm,m+d−1 = t and hm+1,m+d = 0
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From Proposition 5.2 the following well-known characterization of IGC immedi-
ately follows.

Proposition 5.5. For any given n and s, IGC holds if and only if

h2,d+1 = max(n
{(

n + d
d

)

d
d + 1

− s
}

, 0) .

It is possible to interprete MRC and IGC in terms of the homotopy Lie algebra
of AX (if d > 2) or the Lie algebra associated to AX (if d = 2).

Theorem 5.6. Let X be a set of s generic points in Pn
k and let AX be the coordinate

ring of X. Let g be the homotopy Lie algebra of AX and let L be the Lie algebra
associated to AX (see Definition 3.1). Let d, m and t be the numbers defined from
n and s by Definition 5.1 and 5.3. Then, if d > 2, we have the following

(i)MRC holds ⇐⇒ dimk gm+1,m+d−1 = t and gm+2,m+d = 0

(ii)IGC holds ⇐⇒ dimk g3,d+1 = max(n
{(

n + d
d

)

d
d + 1

− s
}

, 0)

If d = 2, we have the following

(iii)MRC holds ⇐⇒ dimk(L/[L,L])m+1 = t and (L/[L,L])m+2 = 0

(iv)IGC holds ⇐⇒ dimk L3 = max(n
{

(n + 2)(n + 1)
3

− s
}

, 0)

Proof. Suppose first that d > 2. In the third proof of theorem 4.1 it was proved
that U(g>2

A ) is the cohomology of (T(V ), d), where V ij = (sHi−1,j)∗ for i > 1 (and
zero otherwise). Moreover the image of the differential is contained in ⊕n>2V ⊗n.
In our case, we have that V ij = 0 if j − i 6= d− 2, d− 1. The differential maps V ij

to T(V )i+1,j . Hence, if this is nonzero, d − 2 or d − 3 must be a sum of at least
two numbers each of which is d− 1 or d− 2. This is impossible if d > 2. Hence the
differential is zero and U(g>2

A ) ∼= T(V ). In particular gi+1,i+d−1
A

∼= (Hi,i+d−1)∗ and
gi+1,i+d

A
∼= (Hi,i+d)∗. Now the statements (i) and (ii) follow from Proposition 5.4

(v) and Proposition 5.5.
Suppose that d = 2. The statements (iii) and (iv) follow from the same propo-

sitions as above and Theorem 4.1 (ii).

The next theorem shows how the numbers hi,j are changed when the number of
points is increased. For a given d, hi,i+d increases with s, while hi+1,i+d decreases.
Moreover the rate of change is bounded by

(n
i

)

.

Theorem 5.7. Let AX be the coordinate ring of a set X of s generic points in Pn
k

and let hn,s
i,j = dimk TorS

i,j(AX , k). Then for any i, we have

hn,s′

i,i+d 6 hn,s
i,i+d 6 hn,s′

i,i+d +
(

n
i

)

(s− s′) and

hn,s
i+1,i+d 6 hn,s′

i+1,i+d 6 hn,s
i+1,i+d +

(

n
i

)

(s− s′)
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whenever s and s′ define the same d; i.e., whenever
(n+d−1

d−1

)

6 s′ 6 s 6
(n+d

d

)

.

Proof. Let Y = {P1, . . . , Ps} be a set of s generic points and let X = Y \ {Ps}.
After a coordinate change we may assume that Ps = (1 : 0 : · · · : 0). Let K = IX/IY

be the kernel of the natural map AY → AX . We get K(z) = AY (z) − AX(z) =
zd/(1− z), so Kr is one-dimensional in each degree r > d. Let fd + IY ∈ K, where
fd /∈ IY is homogeneous of degree d; i.e., fd(Pj) = 0 for j = 1, . . . , s − 1 and
fd(Ps) 6= 0. Then (Xifd)(Pj) = 0 for all j and i = 1, . . . , n, and hence Xifd ∈ IY
for i = 1, . . . , n. Moreover (Xr

0fd)(Pj) = 0 for j = 1, . . . , s − 1, and (Xr
0fd)(Ps) =

fd(Ps) 6= 0 for every r > 0. Thus Kr+d is generated by Xr
0fd + IY . It follows

that K is generated by fd as an S-module and that K ∼= S/(X1, . . . , Xn)[−d].
We now consider the long exact TorS

∗,i+d(∗, k)-sequence of 0 −→ K −→ AY −→
AX −→ 0. Since K ∼= S/(X1, . . . , Xn)[−d], we have TorS

j,i+d(K, k) = 0 if j 6= i and

TorS
i,i+d(K, k) = k(n

i), and we get an exact sequence

0 −→ TorS
i+1,i+d(AY , k) −→ TorS

i+1,i+d(AX , k) −→ TorS
i,i+d(K, k) −→

TorS
i,i+d(AY , k) −→ TorS

i,i+d(AX , k) −→ 0.

The rightmost part of this sequence gives hn,s−1
i,i+d 6 hn,s

i,i+d 6 hn,s−1
i,i+d +

(n
i

)

, and
the leftmost part gives hn,s

i+1,i+d 6 hn,s−1
i+1,i+d 6 hn,s

i+1,i+d +
(n

i

)

. The statement now
follows by induction.

Suppose that MRC holds for s′ and s′′ points in Pn
k . Then, using the previous

theorem, we may in some cases conclude that MRC also holds for all s between s′

and s′′.

Theorem 5.8. Suppose MRC holds for s′ and s′′ points in Pn
k , where for some

d > 2 and some j, 1 6 j 6 n,
(

n + d
d

)

d
d + j

6 s′ < s′′ 6

(

n + d
d

)

d
d + j − 1

.

Then MRC holds for any s points in Pn
k , where s′ 6 s 6 s′′.

Proof. By Theorem 5.4, we have hj+1,j+d = 0 for s′ points (m = j for s′). Hence,
by Theorem 5.7, hj+1,j+d = 0 is true also for s points. Also by Theorem 5.4, we
have hj−1,j+d−1 = 0 for s′′ points. This is true if s′′ <

(n+d
d

) d
d+j−1 , since then

m = j for s′′. If s′′ =
(n+d

d

) d
d+j−1 , then by Proposition 5.2 for s′′ points, hj,d+j−1−

hj−1,d+j−1 = 0 and since MRC holds we must have hj,d+j−1 = hj−1,d+j−1 = 0.
Hence, by Theorem 5.7, hj−1,j+d−1 = 0 is true also for s points. Hence for s points
we have hj+1,j+d = hj−1,j+d−1 = 0, and hence MRC holds for s points.

Corollary 5.9. In order to prove MRC for s in the interval
(n+d−1

d−1

)

6 s <
(n+d

d

)

,
it is enough to prove MRC for sj = d

(n+d
d

) d
d+j e, j = 1, . . . , n − 1, and for s′j =

b
(n+d

d

) d
d+j c . In order to prove IGC in the same interval, it is enough to prove IGC

for s = s1 and s = s′1.
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Until now the results in this section hold for any d. However, from now on, we
will specialize to the case d = 2. Using Theorem 5.8 and a result by Anna Lorenzini
we can prove MRC in the interval [

(n+2
2

)

−n,
(n+2

2

)

] for all n. This also follows from
the results in [Ge-Gr-Ro 86].

Corollary 5.10. If
(n+2

2

)

− n 6 s 6
(n+2

2

)

then MRC holds.

Proof. MRC is proved in [Lo 93] for s =
(n+2

2

)

− n. Since MRC also holds for
s =

(n+2
2

)

and
(n+2

2

) 2
3 6

(n+2
2

)

− n 6
(n+2

2

)

the statement follows from Theorem
5.8.

The following theorem will be useful in the next section, where we present results
of calculations in the Lie algebra associated to AX .

Theorem 5.11. Let X be a set of s generic points in Pn
k and let L be the Lie algebra

associated to the coordinate ring of X (see Definition 3.1). Suppose s <
(n+2

2

)

. We
then have

(i) L3 = 0 ⇒ MRC (and hence also IGC) holds
for s′ points in Pn

k , where s 6 s′ 6
(n+2

2

)

(ii) dimk L3 = n
{

(n+2)(n+1)
3 − s

}

⇒ IGC holds
for s′ points in Pn

k , where s′ 6 s

(iii) dimk L3 = n
{

(n+2)(n+1)
3 − s

}

and L4 = [L2, L2] ⇒ MRC holds

Proof. Suppose L3 = 0. By Corollary 4.3 (iii), we get h2,3 = 0. Since also h0,2 = 0,
MRC holds for s points by Proposition 5.4 (ii). Now MRC also holds for s′′ =

(n+2
2

)

points. Hence, (i) follows from Theorem 5.8.

Suppose dimk L3 = n
{

(n+2)(n+1)
3 − s

}

. Then, by Proposition 5.2 (iv) (d = 2

and j = 1), we get h2,3 − h1,3 = dimk L3. But dimk L3 = h2,3 and hence h1,3 = 0.
By Theorem 5.7, h1,3 = 0 is true for any s′ points in Pn

k , where n + 1 6 s′ 6 s and
hence (ii) follows.

The last statement follows, since as above h1,3 = 0 and, by Corollary 4.3 (iv),
h3,4 = 0. Now use Proposition 5.4 (ii).

6. Results of calculations
We note that MRC is proved for s <

(n+2
2

)

if n < 9, except for (n, s) =
(6, 11), (7, 12), (8, 13), and also for s 6 50 if n = 9, [Be-Kr 94]. Thus we treat
only the case n > 9.

Theorem 6.1. For n 6 20 and (n+1)(n+2)/3 6 s < (n+1)(n+2)/2 MRC holds.

Proof. Since s < (n + 1)(n + 2)/2 we have d = 2. From the table in Section 11 we
get that L3 = 0 for n 6 20 and s = d(n + 1)(n + 2)/3e. Hence the result follows
from Theorem 5.11 (i).
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Theorem 6.2. If n 6 20 and s < (n + 1)(n + 2)/2, IGC holds.

Proof. If s > (n + 2)(n + 1)/3 the conclusion follows from the previous theorem.

From the table in Section 11 we get that dimk L3 = n
{

(n+2)(n+1)
3 − s

}

for s =

b(n + 1)(n + 2)/3c. Hence the result follows from Theorem 5.9.

Definition 6.3.

l3 = d(n + 1)(n + 2)/3e

l4 =
⌈

n2 + n + 1/2− 1
2

√

2n4 − 2n2 + 1
⌉

l5 =
⌈

n2/2 + n + 1− 1
10

√

5n4 + 20
⌉

We conjecture that if s > li, then Li = 0, i = 3, 4, 5, cf. Conjecture 8.1. From the
table in Section 11, it follows that the conjecture is true for L3 if n 6 20, for L4, if
n 6 17, and for L5 if n 6 11. We can use the result for L4 to extend the interval
where we can prove MRC.

Theorem 6.4. If n 6 17 and l4 6 s 6
(n+2

2

)

then MRC holds.

Proof. From the table in Section 11 we get that L4 = 0 for s = l4. Hence by Theorem
5.7 it is true also for s > l4. Corollary 4.3 gives h3,4 = 0 for s > l4. Since we have

proved that dimk L3 = n
{

(n+2)(n+1)
3 − s

}

for s = b(n+1)(n+2)/3c, it follows that
h1,3 = 0 for that many points and then, by Theorem 5.7, it follows that h1,3 = 0
for s 6 (n + 1)(n + 2)/3. Hence h1,3 = h3,4 = 0 for l4 6 s 6 (n + 1)(n + 2)/3 and
hence MRC holds in this interval. But by Theorem 6.1, MRC holds in the interval
l3 6 s 6

(n+2
2

)

.

Using Theorem 5.6 (iii), we can show MRC in a few more cases.

Theorem 6.5. MRC is true if
a) n = 9 and d = 2 (i.e., s < 55).
b) (n, s) = (10, 39), (10, 40), (11, 47), and (12, 55).

Proof. For n = 9 and s 6 50, MRC is proved in [Be-Kr 94]. For 50 < s < 55 we
have proved that L3 = 0 (see Section 11) and hence MRC holds by Theorem 5.11.
For the cases in b) we have used the Mathematica program “liedim” to show that
[L2, L2] = L4. Then, since dimk L3 = t, the statement follows from Theorem 5.6.
(In fact, the case (10, 40) may be derived from (10, 39) and (10, 43) using Theorem
5.8.)

It is natural to conjecture that

TorS
r,s(AX , k) ∧ TorS

t,u(AX , k) → TorS
r+t,s+u(AX , k)

is either injective or surjective. We can prove this in some special cases.
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Theorem 6.6. Let AX be the coordinate ring of s generic points in Pn
k and let

S = k[x0, . . . , xn]. If n 6 17 and s > l4 the multiplication

TorS
1,2(AX , k) ∧ TorS

1,2(AX , k) → TorS
2,4(AX , k)

is injective.

Proof. We have shown that L4 = 0 in this interval (see Section 11). Thus Corol-
lary 4.3 (v) gives that the multiplication is injective.

Theorem 6.7. Let AX be the coordinate ring of s generic points in Pn
k and let

S = k[x0, . . . , xn]. For (n, s) =

(3, 6), (5, 13), (6, 17), (6, 18), (7, 21), (7, 22), (8, 26), (8, 27), (9, 32), (9, 33),

(10, 39), (10, 40), (11, 47), (12, 55)

the multiplication

TorS
1,2(AX , k) ∧ TorS

1,2(AX , k) → TorS
2,4(AX , k)

is surjective.

Proof. For these pairs of (n, s), we have that TorS
i,∗(AX , k) for i 6 3 have the

expected dimensions for MRC ([Be-Kr 94] and Theorem 6.5). By Corollary 4.3 (v),
the kernel of the multiplication map in the theorem has dimension dimk[L2, L2], and
by Corollary 4.3 (iv), h3,4 = dimk L4/[L2, L2]. Since MRC holds, we know h1,2, h2,4,
and h3,4. From Section 11 we know dimk L4 for all pairs (n, s) in the theorem. Thus
the statement follows by computing dimensions. E.g., if n = 6 and s = 17 we have
that h1,2 = dimk L2 = 11 and hence dimk(TorS

1,2(AX , k)∧TorS
1,2(AX , k)) = 55. Also,

h3,4 = 0 since MRC holds and m = 2, and, by Proposition 5.2 (iv), we get h2,4 = 45.
Hence by Corollary 4.3 (iv), L4 = [L2, L2], and from the table, dimk L4 = 10. Hence
the map is surjective, since the kernel is 10-dimensional by Corollary 4.3 (v).

We can check the conjecture about the multiplication in a few more cases. If
s = n + 2, it is easy to see that AX is Gorenstein. By reasons of degree, the only
possible nonsurjective multiplication is Tori ∧ Torn−i → Torn. This is surjective,
since AX is Gorenstein.

In P 3 the multiplication is injective or surjective for any choice of degrees and
number of points. If s > 7 this follows from Theorem 6.6. If s = 5, AX is Gorenstein.
If s = 4 the resolution is linear and the multiplication trivial. For the remaining
case s = 6, the multiplication

TorS
1,2(AX , k) ∧ TorS

1,2(AX , k) → TorS
2,4(AX , k)

is surjective by Theorem 6.7. That the multiplication

TorS
1,2(AX , k)⊗ TorS

2,3(AX , k) → TorS
3,5(AX , k)

is surjective follows in a similar way as in the proof of Theorem 6.7 by determining
dimk L5 (cf. Section 11).
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7. Ideals generated by generic quadratic forms

We call a quadratic form
∑

16i6j6n cijxixj in k[x1, . . . , xn] generic if {cij} is
algebraically independent over the prime field of k (the variables xi are considered
to be even). We will now consider ideals (f1, . . . , ft) in k[x1, . . . , xn], where fk =
∑

16i6j6n c(k)
ij xixj and {c(k)

ij } is algebraically independent over the prime field of
k. For simplicity we say that such an ideal is generated by t generic quadratic
forms. We will determine for which n and t we have that k[x1, . . . , xn]/I is a Koszul
algebra if I is generated by t quadratic generic forms. We will identify an ideal
(g1, . . . , gt) generated by linearly independent quadratic elements (and thus the
quadratic algebra k[x1, . . . , xn]/(g1, . . . , gt)) with a point in Grass(

(n+1
2

)

, t). One
part of the following theorem is proved in [Co-Tr-Va 97].

Theorem 7.1. Let A = k[x1, . . . , xn]/(g1, . . . , gt) be a quadratic algebra, where
the variables xi are considered to be even. If t 6 n there is an open non-empty
subset of Grass(

(n+1
2

)

, t) on which A is Koszul. If t > n2/4 + n/2 there is a non-
empty countable intersection of open sets in Grass(

(n+1
2

)

, t) on which A is Koszul.
If n < t < n2/4 + n/2, then A is not Koszul on an open non-empty subset of
Grass(

(n+1
2

)

, t). In particular, if A = k[x1, . . . , xn]/I, where I is generated by t
generic quadratic forms, then A is Koszul if and only if t 6 n or t > n2/4 + n/2.

Proof. If t 6 n, then almost all A are complete intersections, and complete inter-
sections are Koszul, cf. [Fr-Lö 91].

Now let t > n2/4 + n/2. Consider the rings A with t fixed as points in G =
Grass(

(n+1
2

)

, t). The subset of G corresponding to rings A with A3 = 0 is open. For
such A, the Bar complex of k over A is based on the vector space A1 ⊕ A2, which
has the fixed dimension n +

(n+1
2

)

− t, and the differential is expressed by means of
the multiplication in A. Hence, it is an open condition that the homology is zero in
a certain bidegree (i, j), and hence A3 = 0 and TorA

i,j(k, k) = 0 is an open condition
for fixed (i, j). That A is Koszul, i.e., TorA

i,j(k, k) = 0 if i 6= j, is therefore true on
an intersection of open sets. It suffices to show that this intersection is non-empty.
If A = k[x1, . . . , xa]/(x1, . . . , xa)2 ⊗ k[x1, . . . , xb]/(x1, . . . , xb)2, with a = dn/2e and
b = bn/2c, we have an example of a Koszul algebra in case t = dn2/4 + n/2e,
[Fr 75]. If t is larger we could just divide by some more quadratic monomials.

Now let n < t 6
(n+2

3

)

/n. Then, by [Ho-La 87], there is a non-empty subset of
G with {xigj} linearly independent, where I = (g1, . . . , gt). By Corollary 4.3 (iii),
this gives L3 = 0. If A were Koszul, then U(ηA) is equal to ExtA(k, k). Then A
would be a complete intersection by [Gu 71], a contradiction since t > n.

Finally let
(n+2

3

)

/n 6 t < n2/4 + n/2. Then, by [Ho-La 87], A3 = 0 on a non-
empty open subset of G. If A is Koszul, then A!(z) = 1/(1− nz + (

(n+1
2

)

− t)z2) =
1/((1−nz/2)2+(n2/4+n/2−t)z2). Hence A!(z) has no pole on the real axis. But then
the coefficients in A!(z) are not all non-negative, since a series with non-negative
coefficients has a singularity on the positive real axis if its radius of convergence is
finite.

Remark 7.2. It follows from the theorem above that the “smallest” algebra defined
by generic quadratic forms which is not Koszul is obtained by choosing n = 4 and
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t = 5. This was in fact the first example of a non-Koszul quadratic algebra found
by Christer Lech 1975.

To state some conjectures about the coordinate ring of generic quadratic forms,
we need a concept from non-commutative graded algebras.

Let B be an N-graded associative algebra and {y1, . . . , yr} a set of homogeneous
elements in B of degrees d1, . . . , dr, respectively. Then

B/(y1, . . . , yr)(z) > B(z)/(1 + (zd1 + · · ·+ zdr)B(z))

and the set is called strongly free in B if there is equality, [An 82]. Any subset of
a strongly free set is strongly free. If {y1, . . . , yr} is a strongly free set of quadratic
elements in the free associative algebra k〈X1, . . . , Xn〉, we get

k〈X1, . . . , Xn〉/(y1, . . . , yr)(z) = 1/(1− nz + rz2) .

Such an algebra will be called a non-commutative c.i. (complete intersection). They
play much the same rôle for non-commutative algebras as complete intersections do
for commutative algebras. E.g., the algebra
B = k〈X1, . . . , Xn〉/(y1, . . . , yr) is a non-commutative c.i. if and only if
k〈X1, . . . , Xn, Y1, . . . Yr; dXi = 0, dYi = yi〉 is a minimal model of B (cf. end of
proof of Theorem 4.1). It follows that B is a non-commutative c.i. if and only if
gldim(B) 6 2, and hence a non-commutative c.i. is Koszul. Also, for a quadratic
algebra A, A! is a non-commutative c.i. if and only if A is Koszul and A3 = 0.

We will now consider ideals (h1, . . . , hr) in k〈X1, . . . , Xn〉, where the variables
Xi are odd and where hk =

∑

16i6j6n d(k)
ij [Xi, Xj ] and [Xi, Xj ] = XiXj + XjXi.

Such an element is called a Hopf element and the corresponding quotient algebra a
quadratic Hopf algebra. We will identify an ideal (h1, . . . , hr) generated by linearly
independent quadratic Hopf elements (and thus also the quadratic Hopf algebra
k〈X1, . . . , Xn〉/(h1, . . . , hr)) with a point in Grass(

(n+1
2

)

, r). As before we will say
that the ideal (h1, . . . , hr) is generated by r generic quadratic Hopf elements if the
coefficients {d(k)

ij } is algebraically independent over the prime field of k.
There is a well-known duality between Grassmanians yielding the following propo-

sition.

Proposition 7.3. The correspondence A ↔ A! defines an isomorphism of projective
manifolds between Grass(

(n+1
2

)

, t) and Grass(
(n+1

2

)

,
(n+1

2

)

− t)

Proof. The relations in A! are obtained from those in A by solving a system of linear
equations. By Cramer’s rule the solutions may be expressed as rational functions
and locally the same determinant may be used in the denominators.

Now the dual version of Theorem 7.1 directly follows.

Theorem 7.4. Let B = k〈X1, . . . , Xn〉/(h1, . . . , hr) be a quadratic Hopf algebra,
where the variables Xi are considered to be odd. If r 6 n2/4 there is a countable
intersection of open sets in Grass(

(n+1
2

)

, r) on which B is Koszul. If r >
(n
2

)

there
is an open non-empty subset of Grass(

(n+1
2

)

, r) on which B is Koszul. If n2/4 <
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r <
(n
2

)

, then A is not Koszul on an open non-empty subset of Grass(
(n+1

2

)

, r). In
particular, if B = k〈X1, . . . , Xn〉/J , where J is generated by r generic quadratic
Hopf elements, then B is Koszul if and only if r 6 n2/4 or r >

(n
2

)

and B is a
non-commutative c.i. if and only if r 6 n2/4.

Proof. To get the statement about the Koszul property, we just use Theorem 7.1
and Proposition 7.3, observing that

(n+1
2

)

−n2/4−n/2 = n2/4 and
(n+1

2

)

−n =
(n
2

)

.
The last statement (proved in [An 82]) follows from the remark above that B is a
non-commutative c.i. if and only if B! is Koszul and B!

3 = 0, which by the proof of
Theorem 7.1 is true iff

(n+1
2

)

−r > (n+2)(n+1)/6 and also
(n+1

2

)

−r > n2/4+n/2
or

(n+1
2

)

− r 6 n. But for n > 2 we have n 6 (n + 2)(n + 1)/6 6 n2/4 + n/2.

Conjecture 7.5. Let A = k[x1, . . . , xn]/I, where the variables xi are even and
where I is generated by quadratic generic elements. Then either A! is a non-commu-
tative c.i. or ηA is nilpotent, where A! = U(ηA).

For a formal power series
∑

i>0 aizi we let (
∑

i>0 aizi)+ =
∑

i>0 bizi, where
bi = ai if aj > 0 for all j 6 i, and bi = 0 otherwise. A formal power series p(z)
with integer coefficients and constant term 1 may be written in the form p(z) =
∏∞

k=1(1 + z2k−1)e2k−1/(1 − z2k)e2k . We denote by Log(p(z)) the series
∑

i>1 eizi.
Recall that, for a graded algebra A, we have U(ηA) = A!, so ηA(z) = Log(A!(z)).

We now make the conjecture more precise.

Conjecture 7.6. Let A = k[x1, . . . , xn]/I, where the variables xi are even and
where I is generated by

(n+1
2

)

−r quadratic generic forms. Then ηA(z) = (Log(1/(1−
nz + rz2)))+.

Theorem 7.7. Conjecture 7.6 is true in the following cases
a) If A is Koszul.
b) If n 6 8.
c) If r > (n2 − 1)/3 and n 6 20.
d) If r > n2 − 1/2− 1

2

√
2n4 − 2n2 + 1 and n 6 17.

e) If r > n2/2− 1
10

√
5n4 + 20 and n 6 10.

f) If (n, r) = (9, 22).

Proof. a) According to Theorem 7.1, A is Koszul if and only if r >
(n
2

)

or r 6 n2/4.
In the first case we know that A is a complete intersection, so ηA(z) = nz+(

(n+1
2

)

−
r)z2. A simple calculation shows that (Log(1/(1−nz+rz2)))+ = nz+(

(n+1
2

)

−r)z2

if and only if r > (n2 − 1)/3. Since
(n
2

)

> (n2 − 1)/3, the result follows in the
first case. In the second case, A! is a non-commutative c.i. (since A is Koszul and
A3 = 0) and hence A!(z) = 1/(1− nz + rz2). It follows that ηA(z) = Log(A!(z)) =
Log(1/(1−nz+rz2)). Hence also ηA(z) = (Log(1/(1−nz+rz2)))+, since (ηA)i = 0
for some i implies that (ηA)j = 0 for all j > i .

b) We show how the result follows for n = 8. Then A is Koszul if
(9
2

)

− r = t >
82/4 + 8/2 = 20; i.e., if A has at least 20 quadratic relations. If A has t quadratic
relations, then A! has r =

(9
2

)

− t = 36 − t quadratic relations, so A!(z) > 1/(1 −
8z + rz2) and hence ηA(z) > (Log(1/(1− 8z + rz2)))+. To see that there is equality
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generically when t < 20, it is sufficient to produce one example. Let A = AX/y,
where AX is the coordinate ring of s points in P 8, and y is a linear nonzerodivisor in
AX . Then AX and A have

(10
2

)

−s = 45−s quadratic relations. Thus we can use our
calculations for 26 or more points in P 8. For 26 to 30 points we verify the conjecture
directly from the table in Section 11. Now s > 30 is equivalent to t 6 15 and to r >
21. If n = 8 we get (n2−1)/3 = 21, so (Log(1/(1−nz+rz2))+ = nz+(

(n+1
2

)

−r)z2,
cf. the proof of a). But from the table we get that (ηĀ)3 = 0 for s = 30 and hence
this is true also for s > 30. Hence ηĀ = nz+(

(n+1
2

)

−r)z2 = (Log(1/(1−nz+rz2))+
and we have proved the conjecture for all t when n = 8. If n < 8 the proof is similar.

c) We shall prove the statement for t 6
(n+1

2

)

− (n2 − 1)/3 = (n2 + 3n + 2)/6
relations. As before it suffices to find one example. We get such an example from s
points in Pn if

(n+2
2

)

− s 6 (n2 + 3n + 2)/6; i.e., if s > (n2 + 3n + 2)/3. We refer to
Theorem 8.2 a). Observe that r = s− n− 1.

d) We shall prove the statement for t 6
(n+1

2

)

− (n2− 1/2− 1
2

√
2n4 − 2n2 + 1) =

(n+1−n2)/2+ 1
2

√
2n4 − 2n2 + 1 relations. As before it suffices to find one example.

We get such an example from s points in Pn if
(n+2

2

)

− s 6 (n + 1 − n2)/2 +√
2n4 − 2n2 + 1; i.e., if s > n2 + n + 1

2 + 1
2

√
2n4 − 2n2 + 1. We refer to Theorem

8.2 b).
e) As in d) it suffices to consider s > n2

2 + n + 1 − 1
10

√
5n4 + 20 points in Pn.

We refer to Theorem 8.2 c).
f) Here we can refer to 8.2 d); i.e., 32 points in P 9.

We can also give some partial results.

Theorem 7.8. If A is as in Conjecture 7.6, we have
a) ηA(z) ≡ (Log(1/(1− nz + rz2)))+ (mod z6) if n 6 10.
b) ηA(z) ≡ (Log(1/(1− nz + rz2)))+ (mod z5) if n 6 17.
c) ηA(z) ≡ (Log(1/(1− nz + rz2)))+ (mod z4) if n 6 20.
d) ηA(z) ≡ (Log(1/(1− nz + rz2)))+ (mod z3).

Proof. We use the same method as in the preceeding proof.

We end this section by reformulating the conjectures above in terms of Hopf
algebras.

Conjecture 7.9. Let B = k〈X1, . . . , Xn〉/J , where the variables Xi are odd and
where J is generated by quadratic generic Hopf elements. Then either B is a non-
commutative c.i. or η is nilpotent, where B = U(η).

Conjecture 7.10. Let B = k〈X1, . . . , Xn〉/J , where the variables Xi are odd and
where J is generated by r quadratic generic Hopf elements. Then η(z) = (Log(1/(1−
nz + rz2)))+, where B = U(η).

Using Proposition 7.3 it is easy to see that these new conjectures are equivalent to
their commutative versions above. In fact, it is obvious that the old conjectures im-
ply the new ones, since if B is a quadratic Hopf algebra which is a non-commutative
c.i., or its underlying Lie algebra is nilpotent, or it has the minimal possible Hilbert
series, then the same is true for the generic case.
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Suppose that Conjecture 7.9 is true and consider quadratic commutative algebras
A defined by t relations. Since A! is a non-commutative c.i. if and only if A is
Koszul and A3 = 0, it follows from the proof of Theorem 7.1, that the set on
which A! is a non-commutative c.i. is an intersection of countably many open sets
in Grass(

(n+1
2

)

, t). Also (using Proposition 7.3), the set on which ηA is nilpotent
is an open set in Grass(

(n+1
2

)

, t). One of these sets must be non-empty, since if
B is the generic Hopf algebra defined by

(n+1
2

)

− t quadratic Hopf elements, then
B! is a member of one of the sets by Conjecture 7.9. But then also the quadratic
commutative algebra defined by t generic relations is a member of the corresponding
set.

Suppose now that Conjecture 7.10 is true. Then for each r, there is a quadratic
commutative algebra A defined by

(n+1
2

)

−r relations, such that ηA(z) is the correct
series. But since this is the minimal possible series, it follows from Proposition 7.3
that the set of A in Grass(

(n+1
2

)

,
(n+1

2

)

−r) such that ηA(z) has the right value is an
intersection of open sets. Since this set is non-empty it contains the generic algebra
A.

8. Generic points again

Now let us consider the coordinate ring A of s generic points in Pn
k . Let A = A/y

where y is a linear nonzerodivisor. If n + 1 6 s <
(n+2

2

)

then A(z) = 1 + nz + (s−
n − 1)z2. This is the series you get if you divide a polynomial ring in n variables
with

(n+2
2

)

− s generic quadratic forms, where s 6 (n+2)(n+1)/3 (see the proof of

Theorem 7.1). Let A! = U(ηA) and A
!
= U(ηĀ). It is natural to conjecture that for

any n + 1 6 s <
(n+2

2

)

, ηĀ behaves as the free Lie algebra on n generators divided
by s − n − 1 generic quadratic Lie elements. Hence by Conjecture 7.10, we should
have that ηĀ(z) = (Log(1/(1−nz+(s−n−1)z2)))+. But since A(z) = (1+z)A

!
(z)

we should have ηA(z) = (Log((1+z)/(1−nz +(s−n−1)z2)))+. Hence it is natural
to make the following conjecture.

Conjecture 8.1. Let A be the coordinate ring for s generic points in Pn
k , where

n + 1 6 s <
(n+2

2

)

. Let A! = U(ηA) and L = η>2
A . Then

ηA(z) = (n + 1)z + L(z) = (Log((1 + z)/(1− nz + (s− n− 1)z2)))+.

In particular
dimk L3 = max((n3 − n)/3− (s− n− 1)n, 0).
dimk L4 = max((n4 − n2)/4− (s− n− 1)n2 +

(s−n
2

)

, 0).
dimk L5 = max(n5/5 + n4 + 2n3 + 2n2 + 4n/5− s(n3 + 2n2 + 2n) + ns2, 0).
Hence we conjecture that
L3 = 0 if and only if s > l3.
L4 = 0 if and only if s > l4.
L5 = 0 if and only if s > l5.
(For the definition of l3, l4 and l5, see Definition 6.3.)

Theorem 8.2. Conjecture 8.1 is true in the following cases:
a) If l3 6 s <

(n+2
2

)

and n 6 20.
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b) If l4 6 s <
(n+2

2

)

and n 6 17.
c) If l5 6 s <

(n+2
2

)

and n 6 10.
d) If s 6 1 + n + n2/4.
e) If n 6 8.
f) If (n, s) = (9, 32).

Remark. The LHS in b) is approximately 0.293n2 and the LHS in c) is approx-
imately 0.276n2 for large n.

To prove the theorem we need a lemma.

Lemma 8.3. If Li = 0 for some set of s points in Pn, then Li = 0 for t generic
points if t > s.

Proof. If s squares generate Li, then also t generic squares do, if t > s.

We need a variation of the concept of strongly free sets. We define a set of
quadratic elements {y1, . . . , yt} in k〈X1, . . . , Xn〉 to be d-strongly free if

k〈X1, . . . , Xn〉/(y1, . . . , yt)(z) ≡ 1/(1− nz + tz2) (mod zd+1) .

Lemma 8.4. Any subset of a d-strongly free set is d-strongly free.

Proof. This follows from the corresponding proof in [An 82].

Proof of Theorem 8.2. We have shown that L3 = 0 for s = l3 random points if n 6
20 (see the table in Section 11). Then Lemma 8.3 gives a). For t = b(n+1)(n+2)/3c
random points we have shown that dimk L3 = −nt + 2

(n+2
3

)

if n 6 20 (see the
table). This gives that the t random squares generating I⊥X is a 3-strongly free
set. Then of course t truly generic squares constitute a 3-strongly free set, and
Lemma 8.4 shows that s 6 t generic squares are 3-strongly free, hence η(z) ≡
(Log((1 + z)/(1− nz + (s− n− 1)z2)))+ (mod z4) if n 6 20. We have also shown
that L4 = 0 if s = dl4e if n 6 17. Hence L4 = 0 if s > l4 and n 6 17 by Lemma 8.3.
Then L(z) ≡ (Log((1 + z)/(1− nz + (s− n− 1)z2)))+ (mod z5) if n 6 17 and b)
is proved. c) is proved similarly. In [Co-Tr-Va 97] it is proved that AX is Koszul
if s 6 1 + n + n2/4. This gives that (AX)!(z) = 1/(1 − nz + (s − n − 1)z2), so d)
follows. For e) and f) see the table.

9. Poincaré series of generic points

In this section we study the Poincaré series of the coordinate ring AX ; that is,
PAX (x, y) =

∑

dimk TorAX
i,j (k, k)xiyj . Here, we allow any s, not only s <

(n+2
2

)

. In
fact, the case s >

(n+2
2

)

will be the easy one.

Conjecture 9.1. The Poincaré series PAX (x, y) is rational, where AX is the co-
ordinate ring of a set X of s generic points in Pn

k .
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Theorem 9.2. Conjecture 9.1 is true in the following cases.
a) If s >

(n+2
2

)

.
b) If Conjecture 8.1 is true.

Proof. In case a) we may argue as in the proof of Theorem 5.6 to conclude that
PAX (x, y) = (1 − x)n+1/(1 − x(H(x, y) − 1)), where H(x, y) is the series of the
homology of the Koszul complex (AX is Golod).

In case b) we use the fact that, if A = AX/f where f is some linear nonzerodivisor
, then PA(x, y) is rational if and only if U(L)(x, y) is rational, where L is the Lie
algebra associated to A, [Lö 86]. If Conjecture 8.1 is true, then either L is nilpotent
(and hence U(L)(z) is rational) or U(L)(z) = 1

(1+z)n(1−nz+(s−n−1)z2)

10. Generic forms in the exterior algebra
If f1, . . . , ft are generic quadratic forms in k[x1, . . . , xn], k a field of

characteristic 0, there is a well-known conjecture for the Hilbert series of An,t =
k[x1, . . . , xn]/(f1, . . . , ft), namely that An,t(z) = ((1− z2)t/(1− z)n)+. This conjec-
ture is proved in many cases, and no counterexamples are known. When calculating
examples of ideals generated by quadratic forms with the expected generic Hilbert
series, experience seems to indicate that one does not have to choose all forms at
random. In fact, it seems that one can almost always choose the first n forms to
be the squares of the variables. This made us look at the problem of Hilbert se-
ries of generic forms in the exterior algebra. It turns out that the answer to the
question in the exterior algebra, which is analogous to the Hochster-Laksov result
for polynomial rings, is not what we expected. Although dimk ∧3(V ) = 10 if V is
5-dimensional, two generic forms of degree 2 do not generate ∧3(V ).

Theorem 10.1. Consider the exterior algebra E over a vector space with basis
{e1, . . . , e5} (over any field). Let f1 = c1e1∧e2+c2e1∧e3+c3e1∧e4+c4e1∧e5+c5e2∧
e3+c6e2∧e4+c7e2∧e5+c8e3∧e4+c9e3∧e5+c10e4∧e5 and f2 = c11e1∧e2+c12e1∧e1+
c13e1∧e4+c14e1∧e5+c15e2∧e3+c16e2∧e4+c17e2∧e5+c18e3∧e4+c19e3∧e5+c20e4∧e5

be two forms in E. Then {e1∧f1, . . . , e5∧f1, e1∧f2, . . . , e5∧f2} is linearly dependent.

Proof. It suffices to prove the theorem for generic forms (so we can suppose that
the ci’s are algebraically independent over the prime field of k). In fact,

(−c3c1c12c20−c3c1c18c14+c3c1c19c13+c16c3c2c14−c16c12c4+c3c2c11c20+c12c3c17+
c18c4c11 − c19c3c11 + c13c4c15 − c13c3c2c17 − c3c15c14,

c3c1c16c19 − c3c1c15c20 − c3c1c18c17 − c16c7c12 + c16c5c14 + c5c11c20 + c6c17c12 +
c18c7c11 + c13c15c7 − c5c13c17 − c15c6c14 − c6c11c19,
−c9c12c16 + c3c2c19c16 + c9c11c18 + c9c13c15 + c20c12c5 − c20c3c2c15 + c12c8c17 −

c11c8c19 − c3c2c18c17 + c18c5c14 − c5c19c13 − c8c14c15,
−c16c12c10 + c16c3c19 − c8c14c16 + c12c6c20 + c6c14c18 + c8c17c13 − c3c20c15 +

c18c11c10 − c8c11c20 − c13c6c19 + c13c15c10 − c3c18c17,
−c16c14c9 + c16c4c19 − c9c11c20 + c9c17c13 + c20c7c12 − c20c4c15 − c10c17c12 +

c11c10c19 − c7c19c13 − c4c18c17 + c7c18c14 + c14c15c10,
−c3c1c13c9 + c3c1c12c10 + c3c1c8c14 + c3c9c11 + c6c4c12 − c12c3c7 − c3c2c10c11 −

c8c11c4 − c5c13c4 + c13c3c2c7 − c6c3c2c14 + c3c5c14,
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−c3c1c9c16 + c3c1c15c10 + c3c1c8c17 − c16c5c4 + c3c2c7c16 + c9c6c11 − c5c11c10 +
c6c15c4 − c8c7c11 − c3c2c6c17 − c15c7c3 + c3c5c17,
−c3c1c18c9+c3c1c8c19+c9c12c6−c3c9c15−c12c10c5−c8c12c7−c5c18c4+c8c15c4+

c3c2c18c7 − c6c3c2c19 + c5c3c19 + c3c2c10c15,
c3c1c20c8−c3c1c18c10−c3c9c16+c16c8c4+c3c2c10c16+c13c9c6+c5c20c3−c3c2c6c20−

c18c6c4 − c13c5c10 − c8c7c13 + c18c7c3,
c3c1c9c20−c3c1c10c19−c9c3c17+c9c14c6−c7c3c2c20+c5c4c20+c4c8c17−c5c10c14−

c14c8c7 + c3c2c17c10 + c7c3c19 − c4c6c19)
is a relation.

Notice that this also gives a proof of the fact that the ideal (x2
1, . . . , x

2
5) in

S = k[x1, . . . , x5] can not be extended in any way with two quadratic forms to an
ideal I with the expected generic Hilbert series S/I(z) = 1+5z+8z2, if char(k) = 2.
It would be natural to make a conjecture about the Hilbert series of the exterior
algebra modulo generic forms, similar to the one in the commutative case. The ex-
pected series for the exterior algebra in n variables modulo t generic quadratic forms
would be A(z) = ((1 + z)n(1− z2)t)+. However, the example above shows that this
is not true and there are more “probable” counterexamples given in [Gu-Sn 00],
where the Hilbert series of exterior algebras modulo generic forms are discussed.

If A is an exterior algebra modulo an ideal generated by quadratic forms, then
A! = U(ηA), where ηA is an ordinary Lie algebra; i.e., all generators are even. If
the defining ideal of A is generated by

(n
2

)

− r quadratic forms, then ηA is a free
Lie algebra on n generators modulo an ideal generated by r quadratic elements.
Recall, that if U(ηA) = A!, then ηA(z) = log(A!(z)), where log(A!(z)) =

∑

i>1 eizi

if A!(z) =
∏∞

i=1 1/((1− zi)ei .
One could ask when a quotient of an exterior algebra on n generators modulo t

generic quadratic forms is Koszul. A natural guess, based on the results in Section
7, is that this is true if and only if t >

(n
2

)

− n2/4 or t = 0. We can prove this in
one direction in the same way as in the proof of Theorem 7.1. The other direction
is harder, since the example above shows that the Hochster-Laksov result cannot
directly be translated to the exterior algebra case.

Theorem 10.2. Consider an exterior algebra A on n generators modulo t linearly
independent quadratic forms as a point in Grass(

(n
2

)

, t). If t >
(n
2

)

− n2/4 there
is a non-empty countable intersection of open sets in Grass(

(n
2

)

, t) on which A is
Koszul. Moreover, A is not Koszul if t > 0 and ηA is nilpotent, where A! = U(ηA).

Proof. The same argument as in the proof of Theorem 7.1 shows that the set of A in
Grass(

(n
2

)

, t), such that A3 = 0 and A is Koszul, is a countable intersection of open
sets. We may use the same example as before to show that this set is non-empty if
t >

(n
2

)

− n2/4. Indeed, if a = dn/2e and b = bn/2c, a simple computation shows
that

(a
2

)

+
(b
2

)

= d
(n
2

)

− n2/4e. If ηA is nilpotent and (ηA)2 6= 0, then 1/A!(z) is a
polynomial of degree > n (see above), which is impossible if A is Koszul, since A(z)
is a polynomial of degree 6 n.

In analogy to the case where the variables are even, it is natural to make the
following conjecture.
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Conjecture 10.3. If A is a generic quadratic quotient of a polynomial algebra,
which is commutative in the graded sense, then A! is either a non-commutative c.i.
or ηA is nilpotent.

The conjecture is false for 3 generic forms in 5 odd variables, see below. We also
make the conjecture more precise in the odd case.

Conjecture 10.4. Let A be an exterior algebra on n variables, modulo
(n
2

)

− r
generic quadratic forms. Then ηA(z) = (log(1/(1− nz + rz2)))+.

If (n, r) = (5, 7) or (5, 8), the conjecture is false, see below. We believe, however,
that these are the only counterexamples.

Theorem 10.5. Conjecture 10.4 is true for n 6 8 except for (n, r) = (5, 7), (5, 8)
when it is false. It is true also for n = 9, r 6= 21 and in general for r 6 n2/4.

Proof. The case r 6 n2/4 follows from Theorem 10.2, since then A!(z) = 1/(1 −
nz + rz2). For the other cases, it is only necessary to provide an example with the
correct series in each case. We refer to the last table in Section 11. Observe that
the conjecture is trivially true when (ηA)3 = 0.

As in Section 7 we may reformulate the two conjectures above in terms of Hopf
algebras. Consider the free associative algebra k〈X1, . . . , Xn〉, where the variables
have some parities |Xi| ∈ Z2. We will call an element f =

∑

cij [Xi, Xj ] an Hopf
element, where [Xi, Xj ] = XiXj − (−1)|Xi||Xj |XjXi.

Conjecture 10.6. If B = k〈X1, . . . , Xn〉/J , where J is generated by r generic
Hopf elements, then B is a non-commutative c.i. or η is nilpotent, where B = U(η).

Conjecture 10.7. If B = k〈X1, . . . , Xn〉/J , where the variables are even and where
J is generated by r generic Hopf elements, then η(z) = (log(1/(1 − nz + rz2)))+,
where B = U(η).

Finally we discuss the counterexamples to Conjecture 10.4. First we consider
(n, r) = (5, 7); i.e., 3 generic quadratic forms in 5 variables. It is shown in [Ei-Ko 94],
that the forms x1x4 + x2x3, x1x5 + x2x4, x2x5 + x3x4 are generic. The Lie algebra
η for this case can be determined in the same way as in [Lö-Ro 97]. The result is
that η(z) is periodic, namely η(z) = (5 + 3z)

∑∞
i=0 z2i+1, while the expected series

is 5z +3z2 +5z3. In fact, η is the periodization of sl(3) equipped with a Z2-grading.
Secondly, if (n, r) = (5, 8); i.e., 2 generic forms in 5 variables, the expected series
is 5z + 2z2. Corollary 4.3 iii) together with Theorem 10.1 shows that L3 = η3 is
1-dimensional, so we really have a counterexample. We also have L4 = 0, so in this
case the Lie algebra is nilpotent but its series is not the expected minimal one.
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11. Tables

We give the results of our calculations of ηA(z) for the coordinate ring of s random
points in Pn. For the definition of m and t, see Definition 5.3. For the definition of
l3, l4, l5, see Definition 6.3.

n s m t ηA(z) l3 l4 l5
3 7 1 3 4z + 3z2 7 7 7
3 6 2 2 4z + 4z2 + 2z3 + 3z4 + 6z5 + · · ·
4 10 1 5 5z + 5z2 10 10 10
5 14 1 7 6z + 7z2 14 14 13
5 13 2 8 6z + 8z2 + 5z3 + 3z4

6 19 1 9 7z + 9z2 18 18 17
6 18 2 4 7z + 10z2 + 4z3

6 17 2 10 7z + 11z2 + 10z3 + 10z4

7 24 1 12 8z + 12z2 24 23 22
7 23 2 7 8z + 13z2 + 7z3

7 22 2 14 8z + 14z2 + 14z3 + 7z4

7 21 2 21 8z + 15z2 + 21z3 + 42z4 + 84z5 + 91z6

8 30 1 15 9z + 15z2 30 28 27
8 29 2 8 9z + 16z2 + 8z3

8 28 2 16 9z + 17z2 + 16z3

8 27 2 24 9z + 18z2 + 24z3 + 27z4

8 26 2 32 9z + 19z2 + 32z3 + 73z4 + 160z5 + 176z6

9 37 1 18 10z + 18z2 37 34 33
9 36 2 6 10z + 19z2 + 6z3

9 34 2 24 10z + 21z2 + 24z3

9 33 2 33 10z + 22z2 + 33z3 + 33z4

9 32 2 42 10z + 23z2 + 42z3 + 91z4 + 126z5

10 44 1 22 11z + 22z2 44 41 39
10 43 2 10 11z + 23z2 + 10z3

10 41 2 30 11z + 25z2 + 30z3

10 40 2 40 11z + 26z2 + 40z3 + 10z4

10 39 2 50 11z + 27z2 + 50z3 + 81z4

10 38 2 60 11z + 28z2 + 60z3 + 153z4 + 288z5 + · · ·
11 52 1 26 12z + 26z2 52 48 46
11 48 2 44 12z + 30z2 + 44z3

11 47 2 55 12z + 31z2 + 55z3 + 25z4

11 46 2 66 12z + 32z2 + 66z3 + 111z4

11 45 2 77 12z + 33z2 + 77z3 + 198z4 + · · ·
12 61 1 30 13z + 30z2 61 56 53
12 60 2 8 13z + 31z2 + 8z3

12 56 2 56 13z + 35z2 + 56z3

12 55 2 68 13z + 36z2 + 68z3 + 3z4

12 54 2 80 13z + 37z3 + 80z3 + 105z4

12 53 2 92 13z + 38z2 + 92z3 + 208z4 + · · ·
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n s m t ηA(z) l3 l4 l5
13 70 1 35 14z + 35z2 70 64 61
13 64 2 78 14z + 41z2 + 78z3

13 63 2 91 14z + 42z2 + 91z3 + 42z4

13 62 2 104 14z + 43z2 + 104z3 + 162z4

13 61 2 117 14z + 44z2 + 117z3 + 283z4 + · · ·
14 80 1 40 15z + 40z2 80 73 70
14 73 2 98 15z + 47z2 + 98z3

14 72 2 112 15z + 48z2 + 112z3 + 36z4

14 71 2 126 15z + 49z2 + 126z3 + 175z4 + · · ·
15 91 1 45 16z + 45z2 91 82 79
15 90 2 10 16z + 46z2 + 10z3

15 82 2 130 16z + 54z2 + 130z3

16 102 1 51 17z + 51z2 102 92 88
16 92 2 160 17z + 61z2 + 160z3

17 114 1 57 18z + 57z2 114 103 98
17 103 2 187 18z + 68z2 + 187z3

18 127 1 63 19z + 63z2 127 114 109
18 126 2 12 19z + 64z2 + 12z3 + · · ·
19 140 1 70 20z + 70z2 140 126 120
20 154 1 77 21z + 77z2 154 139 132

Here are the results of our calculations of η(z) for r random quadratic relations
in an ordinary Lie algebra on n generators.

n r η(z)
4 5 4z + z2

5 7 5z + 3z2 + 5z3 + 3z4 + 5z5 + 3z6 · · ·
5 8 5z + 2z2 + z3

5 9 5z + z2

6 10 6z + 5z2 + 10z3 + 10z4

6 11 6z + 4z2 + 4z3

6 12 6z + 3z2

7 13 7z + 8z2 + 21z3 + 42z4 + 84z5 + 70z6

7 14 7z + 7z2 + 14z3 + 7z4

7 15 7z + 6z2 + 7z3

7 16 7z + 5z2

8 17 8z + 11z2 + 32z3 + 73z4 + 160z5 + 144z6

8 18 8z + 10z2 + 24z3 + 27z4

8 19 8z + 9z2 + 16z3

8 20 8z + 8z2 + 8z3

8 21 8z + 7z2
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n r η(z)
9 22 9z + 14z2 + 42z3 + 91z4 + 126z5

9 23 9z + 13z2 + 33z3

9 24 9z + 12z2 + 24z3

9 25 9z + 11z2 + 15z3

9 26 9z + 10z2 + 6z3

9 27 9z + 9z2
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[Fr 75] R. Fröberg, Determination of a class of Poincaré series, Math.
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