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Abstract
Resolutions that arise as iterated mapping cones are consid-
ered. Explicit resolutions are given for monomial ideals with
linear quotients which admit decomposition functions, and it
is studied under which conditions a mapping cone admits a DG
algebra structure.

To Jan—Erik Roos on his sixty—fifth birthday

Introduction

Many well-known free resolutions arise as iterated mapping cones. Prominent
examples are the Eliahou-Kervaire resolution of stable monomial ideals (as noted by
Evans and Charalambous [10]), and the Taylor resolution. The idea of the iterated
mapping cone construction is the following: Let I C R be an ideal generated by
fi,-.., fn,and set I; = (f1,..., f;). Then for j = 1,..., n there are exact sequences

0— R/(Ij_l : fJ) —_— R/Ij_l i R/I] — 0.

Assuming that the free R-resolution F' of R/I;_; is already known, and a free
R-resolution G of R/(I;—1 : f;) is also known, one obtains a resolution of R/I;
as a mapping cone of a complex homomorphism : G — F which is a lifting of
R/(I;—1 : f;) — R/I;—1. Of course one cannot expect that such a resolution will
be minimal in general. However this construction yields an inductive procedure to
compute a resolution of R/I provided for each j, a resolution of R/(I;_1 : f;) is
known as well as the comparison map 1.

So it is natural to consider classes of ideals for which the colon ideals I;_; : f; are
generated by regular sequences. But even in this nice case it is still hard to construct
the comparison maps. In the first section of this paper we therefore restrict ourselves
to the case that I is a monomial ideal in a polynomial ring, and that the colon ideals
in question are generated by subsets of the variables. In this case we say that I has
linear quotients. At a first glance these hypotheses seem to be very restrictive. On
the other hand, there are many interesting examples of such ideals. All stable and
squarefree stable ideals belong to this class, as well as all matroidal ideals (see
Section 1 for the definitions).
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It is easy to see that I has linear quotients, if and only if the first syzygy module
of I has a quadratic Grobner basis, which, in case of a Stanley ideal Ia attached
to the simplicial complex A, is equivalent to saying that the Alexander dual A* of
A is nonpure shellable. This fact was communicated to us by Skoldberg [15]. Tt is
also easy to see that I has linear quotients if and only if I satisfies condition (4.1)
of Batzies and Welker [3], a condition which the authors call shellable.

It is clear that our approach only requires to describe the comparison maps in
order to compute explicit free resolutions of ideals with linear quotients as iterated
mapping cones. Our description of the comparison maps is modeled after Eliahou
and Kervaire and is based on decomposition functions. A function g which assigns
to each monomial in I (in a natural way) a monomial generator of I, see 1.7, is
called a decomposition function. If it satisfies a certain additional condition which
is described in Definition 1.9, then we call it regular. Stable and squarefree stable
ideals have regular decomposition functions, but also matroidal ideals as we show
in Theorem 1.10. The main result of Section 1 however is Theorem 1.12 in which we
give an explicit resolution of all ideals with linear quotients which admit a regular
decomposition function. These include then of course also matroidal ideals for which
explicit resolutions in different terms are already known by Reiner and Welker [14],
and Novik, Postnikov and Sturmfels [13].

In the second part of this paper we ask ourselves under which circumstances a
mapping cone can be given the structure of a DG algebra. The natural way of doing
this, is to assume that F' (notation as above) is already a DG algebra, that G is a
DG F-module, and that the mapping cone of 1 is a trivial extension of F' by G in
the category of DG modules. This idea was first used by Levin and Avramov [12]
in order to compute the Poincaré series of Gorenstein algebra modulo its socle. In
Section 2 we analyze under which conditions the mapping cone can be given the
structure of a trivial extension and in the final Section 3 we describe cases for which
resolutions which are constructed as iterated mapping cones admit a DG algebra
resolution. We call such resolutions of Koszul type and show in Example 3.6 that the
known DG algebra structure (see [9] and [11]) on the Taylor complex is of Koszul
type, as well as the resolution of an almost complete intersection which is directly
linked to a complete intersection, see Example 3.7.

1. Monomial Ideals with linear quotients

Let K be a field, R = K[z1,...,x,]| be the polynomial ring in n indeterminates,
and I C R a monomial ideal. The unique minimal set of monomial generators of
I will be denoted by G(I). The ideal I is said to have linear guotients if for some

order wuq,...,u;, of the elements of G(I) and all j = 1,...,m the colon ideals
(u1,...,uj_1) : uj are generated by a subset of {x1,...,z,}.
We define
set(uj) ={k € [n]: zx € (u1,...,uj—1) :u;} for j=1,...,m.

Example 1.1. According to Eliahou-Kervaire [8], a monomial ideal I is called
stable if for all u € G(I) and all © < m(u) one has that 2;(u/zy,.))) € I. Here
m(u) = max{i: i € supp(u)}, and supp(u) = {i: z; divides wu}.
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Let G(I) = {u1,...,Un}, where u; > ug > -+ > u,, in the reverse degree
lexicographical order with regard to z; > z2 > ... > x,. It is easy to see that I has
linear quotient for this order of the generators, and that set(u) = {1,...,m(u) — 1}
for all u € G(I).

Example 1.2. In [2] a squarefree monomial ideal T is called squarefree stable if for
allu € G(I) and all i < m(u) with i ¢ supp(u) one has that x;(u/xp () € I. With
respect to the reverse degree lexicographical order on the generators, I has linear
quotients and set(u) = {i: i < m(u), & supp(u)}.

We now want to analyze more carefully when a squarefree monomial ideal I
has linear quotients. Let A the corresponding simplicial complex on the vertex set
[n] ={1,...,n}, so that I = In. The Alexander dual of A is the simplicial complex
A* ={o € [n]: [n]\o & A}. The following two statements are almost tautologically
equivalent: (i) Ia has linear quotients, (ii) A* is shellable in the non-pure sense of
Bjorner and Wachs [5].

In particular, it follows that if the simplicial complex I" generated by

B = {supp(u): u € G(Ia)}

is a matroid (in which case we say that Ia is matroidal), then Ia has linear quotients.
In fact, if T' is a matroid, then B is the matroid basis, and A* is the dual matroid
of T with basis {[n]\ supp(u): u € G(Ia)}. On the other hand, it is known that all
matroids are shellable, see [4].

For the convenience of the reader we show directly that, for a simplicial complex
A, the Stanley-Reisner ideal Ian has linear quotients, if it is matroidal. If Ia is
matroidal, then for all u,v € G(Ia) and all i € supp(u) \ supp(v) there exists
J € supp(v) \ supp(u) such that z;(u/x;) € In. We now claim that the generators
of Ia in reverse lexicographical order have linear quotients.

We will prove a slightly more general result from which this claim will follow.
Let u = 27" -+ - 2% be a monomial. We set v;(u) = a; for i =1,...,n.

Lemma 1.3. Let I be a monomial ideal for which all generators have the same
degree. Suppose I satisfies the following exchange property:
For all u,v € G(I) and all i with v;(u) > v;(v), there exists an integer j with
vj(v) > vj(u) such that xj(u/z;) € G(I).
Then I has linear quotients with respect to the reverse lexicographic order of the
generators.

Note that a squarefree monomial ideal is matroidal if and only if it satisfies
the exchange property of Lemma 1.3. Blum [6] has shown that ideals whose gen-
erators correspond to the basis of a polymatroid satisfy the exchange property of
Lemma 1.3.

Proof of 1.3. Let u € G(I), and let J be the ideal generated by all v € G(I) with
v > u (in the reverse lexicographical order). Then

J:u=(v/[v,u]: veJ),



Homology, Homotopy and Applications, vol. 4(2), 2002 280

where [v, u] denotes the greatest common divisor of v and . Thus in order to prove
that J : u is generated by monomials of degree 1, we have to show that for each
v > u there exists x; € J : u such that x; divides v/[v, u].

In fact, let u = 2§ --- 2% and v = 25" - -- 2% Since v > u, there exists an integer
i such that ay = b for k =14+ 1,...,n, and a; > b;, and hence an integer j with
b; > a; such that v’ = x;(u/x;) € I. Since j < i, we see that v’ € J, and from
the equation z;u’ = z;u we deduce that x; € J : u. Finally, since vj(v/[u,v]) =
b; —min{b;,a;} = b; — a; > 0, we have that z; divides v/[v, u]. O

Since for a matroid A*, the Stanley-Reisner ideal Ian has linear quotients with
respect to the reverse lexicographical order of the generators, it follows that

set(u) C {i: i < m(u),i & supp(u)}
for all u € G(Ia). More precisely, we have
set(u) = {i :supp(v) \ supp(u) = {i} for some v €& G(Ia),v > u}.
Example 1.4. Let Ay, ..., A, be non-empty subsets of [n]. The collection of subsets
{i1,... i} of [n] withi; € A; for j =1,...,7 and i; # i), for j # k, is the basis of a
matriod, called transversal. Let I be the squarefree monomial ideal whose generators

correspond to the basis of this transversal matriod. Let v € G(I), u = a;, -+ - x;
The above description of set(u) yields in this case

e

set(u) = U{k € Aj: k<j}\supp(u).
j=1

Let ¥: A — B be a complex homomorphism. Recall that the mapping cone of
¥ is the complex C(v) with C(¢); = B; & A;—; for all i, and chain map d with
di: C(); — C(¥)i1, dilb,a) = ((a) + O(b), ~(a)).

We want to apply this concept in the following situation: Suppose that I has
linear quotients with respect the order uq,...,uy, of the generators of I. Set I; =
(ui,...,u;) and L; = (u1,...,u;) : w;jq1, then, since I;41/I; = R/L;, we get the
exact sequences

0— R/L; — R/I; — R/I;11 — 0.

The homomorphism R/L;y1 — R/I; is multiplication with u;j;. Let FU) be a
graded free resolution of R/I;, K () the Koszul complex for the regular sequence
Thys- .-, Tk, With k; € set(ujiq), and ) : KU) — FU) a graded complex homo-
morphism lifting R/L; — R/I;. Then the mapping cone C(¢)()) of 1\9) yields a
free resolution of R/I;;1. Thus by iterated mapping cones we obtain step by step
a graded free resolution of R/I.

Lemma 1.5. Suppose deguy < degug < --- < deguy,. Then the iterated mapping
cone F, derived from the sequence ui,...,Umn, iS a minimal graded free resolution
of R/I, and for all i > 0, the symbols

flosu) with vwe GU), o Cset(u), |oj=i-1

form a homogeneous basis of the R-module F;. Moreover, deg f(o;u) = |o| 4 degu.
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We remark that if I has linear quotients with respect to wq,...,u,,, then this
does not necessarily imply that degu; < degus < -+ < deguy,. In fact, I =
(z12, Tox324, 123) has linear quotients for the given order of the generators.

Proof of Lemma 1.5. We prove by induction on j that FU) is a minimal free res-
olution of R/I;, and that F () has a basis as asserted. For j = 1, the assertion
is trivial. In homological degree i — 1 the Koszul complex K ) has the R-basis
eo = €, N ... Nej_,, where 0 = {j1 < jo < --- < ji_1} C set(ujy1). Since
Fi(j ) Fi(j o K Z(i )1, we obtain the desired basis from the induction hypothesis if
we identify the elements e, with f(o;uj41).

In order to show that FUtD is a minimal free resolution, it suffices to
show that Im())) ¢ mFU). Let f(ojuj11) € Ki(z)l and YU (f(osujp1)) =

g:l > arif(T5u;). Since |7| = |o| — 1 and deguj1 > degu; for all i =1,...,j
it follows that deg f(o;ujy1) > deg f(7;u;) for all 7 and 4, and so dega,; > 0 for
all 7 and q. O

Corollary 1.6. The bigraded Poincaré series of an ideal with linear quotients is
given by

Pryr(s,t) =1+ Y (1+s)lstlgpdeer,
ueG(I)

Next we want to describe the chain maps of the graded minimal free resolution
of an ideal with linear quotients as explicitly as possible. It will turn out that the
maps are described similarly as in the Eliahou-Kervaire resolution [8] provided we
impose some extra condition on the linear quotients.

Let I have linear quotients with respect to the sequence of generators uq, ..., U,
and set as before I; = (uq,...,u;) for j = 1,...,m. Let M(I) be the set of all
monomials in I. The map g: M(I) — G(I) is defined as follows: we set g(u) = u;,
if j is the smallest number such that u € I;.

Lemma 1.7. (a) For allu € M(I) one has u = g(u)c(u) with some complementary
factor c(u), and set(g(u)) Nsupp(c(u)) = 0.

(b) Let u € M(I), v = vw with v € G(I) and set(v) N supp(w) = @. Then
v = g(u).

Notice that any function M(I) — G(I) satisfying Lemma 1.7(a) is uniquely
determined because of Lemma 1.7(b). We call g the decomposition function of I.

Proof of Lemma 1.7. (a) Suppose g(u) = u;. Since u € I; it is a multiple of some
w; with ¢ < j. If ¢ < j, then u € I;, a contradiction. This shows that g(u) divides
u, i.e., u = g(u)c(u) for some c(u). Suppose set(g(u)) N supp(c(u)) # B, and let
i € set(g(u)) Nsupp(c(w)). Then u = (x;u;)(c(w)/z;) € I;_1, a contradiction.

(b) Let w € M(I). Suppose there exist u;,u; € G(I) such that v = u;v; = u;v;
for some monomials v; and v;, and set(u;) N supp(v;) = 0 = set(u;) N supp(v;).
We may assume that ¢ < j. Then the equation w;v; = u;v; implies that v; €
I;_1 : u;. Hence there exists k € set(u;) such that xj|v;. In other words, we have
k € set(u;) Nsupp(v;), a contradiction. O
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The following properties of the decomposition function will be needed later

Lemma 1.8. Let u,v € M(I). Then g(uv) = g(u) if and only if
set(g(u)) Nsupp(v) = 0.

Proof. Since u = g(u)c(u), we have uv = g(u)c(u)v. Thus if set(g(u)) Nsupp(v) = 0,
it also follows that set(g(u)) N supp(c(u)v) = 0. Because of the uniqueness of the
decomposition function we conclude that g(uv) = g(u).

Conversely, suppose that g(uv) = g(u). Then c(u)v = ¢(uv), and so supp(v) C
supp(c(uv)). Hence, since supp(c(uv)) and set(g(uv)) are disjoint sets, supp(v) and
set(g(uv)) are disjoint, too. This yields the assertion, since g(u) = g(uv). O

Definition 1.9. We say that the decomposition function g: M(I) — G(I) is regu-
lar, if set(g(xsu)) C set(u) for all s € set(u) and u € G(I).

Unfortunately the decomposition function for an ideal with linear quotients is not
always regular. For example, consider I = (zox4, 122, 2123). Then with respect to
the given order of the generators, I has linear quotients. One checks that set(z123) =
{2}, and that set(g(z2(z123))) = {4}.

On the other hand it is obvious that stable and squarefree stable ideals have
regular decomposition functions with respect to the reverse degree lexicographic
order. Another large class of squarefree ideals with regular decomposition function
is given by

Theorem 1.10. Let I be the Stanley-Reisner ideal of a matroid. Then I has a
reqular decomposition function.

Proof. Let G(I) = {u1,...,up} with uy > -+ > wu, in the reverse lexicographic
order. We will set u = u,, for convenience. Then
set(u) = {i : supp(ug) \ supp(u) = {i}, for some uy > u}.

Take an arbitrary element ¢ € set(u), then we have

set(g(ziu)) = {j : supp(w;) \ supp(g(ziu)) = {j}, for some w; > g(wiu)}.
Now we will prove that g is regular, namely that set(g(x;u)) C set(u).
We first note the following:
glazu) = = for some j(i) € supp(u). i < j(i). M
J(1)
and for arbitrary j € set(g(z;u)),

{7} = supp(w) \ ((supp(u) U {i}) \ j(i))- (2)

Notice that, since ¢ € supp(g(z;u)) by (2), we have i # j. In the following, we will
prove that j € set(u).
Now we first consider the case of i € supp(u;). From (2), we have

{7} = supp(wr) \ (supp(u) \ j (7).
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Now assume that j(i) € supp(u;). Then we must have j = j(i), and supp(u;) =
supp(u), a contradiction. Thus we have j(i) & supp(u;) and

{7} = supp(w) \ supp(uw).

Since u; > g(x;u) > u, this means that j € set(u).
Next we consider the case of ¢ € supp(u;). From (2), we have
{#,5} = supp(uwr) \ (supp(w) \ j(4))- 3)

Now we have j(i) ¢ supp(u;). In fact, assume that j(i) € supp(u;). Then we have
j(@) € {i,j} by (3). Moreover, j(i) = j since ¢ < j(i). But then we have z;u =
zji9(zu) = z;9(zsu) by (1). Applying the decomposition function g, we obtain
g(z;u) = g(z;g(x;u)). This contradicts the assumption j € set(g(x;u)). Thus we
have

{i,4} = supp(w:) \ supp(u). (4)

Since {supp(u;)}; is a basis of a matroid, there exists some k € supp(u) \ supp(u;)
such that (z/x;)w € G(I). We denote this element by u,. Moreover we have

{7} = supp(w) \ (supp(u) U {i}\ j(i))
= supp(ur) \ (supp(u) U {i})
= (supp(w) \ i) \ supp(v)
= (supp(u) \ i) U {k} \ supp(u)
= supp(up) \ supp(u).
If u, > u, this equation means j € set(u), and we are done.
Now in the rest of the proof, we assume u, < u. Then, since u, = (z)/x;)u; and
u; > w, we must have i < k. Assume that k = j(i). Since all bases of a matroid

have the same cardinality and | supp(uw;) \ supp(u)| = 2 by (4), there must be some
element ¢ € supp(u) such that

{¢,4(i)} = supp(u) \ supp(u;).

Then we have
TiTjU Truy Z;u
U = ————, Up = =
LTI xX; Z¢

and u, < u implies j > (. Moreover, g(z;u) = (zi/x;4))u = (xi/zr)u, by (1).
Thus we have u; = (z;/x¢)g(zu) and v < g(z;u). But this contradicts with the
assumption that u; > g(z;u). Consequently, we must have k # j(i).

Now we have

{k,j(i)} = supp(u) \ supp(u;). (5)
Since
ul = M > g(xzu) = xlu 5
LT (i) T (i)

we have j < k. Since moreover we have i < j(i) and i < k, there are five possibilities
of total order on 4, j, k and j(7) left, namely (i) i < j < k < j(2), (ii) i < j < j(2) < k,
(iil) j <1<k <j(@), (v) j <i<j(@) <k,or (v)i<j() <j <k Itiseasy to
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check that only in the last case one has u, < u. So we assume i < j(i) < j < k in
the following.

Since {supp(u;)}; is the basis of a matroid, we have, for k, either (z;/zy)u € G(I)
or (zj/xr)u € G(I), by (4). If (xj/xx)u € G(I), then

{j} = supp (Q;j:) \ supp(u),

and, since j < k, we get (u;/xi)u > u. Hence we have j € set(u). Now assume
that (x;/zx)u ¢ G(I). Then we must have (2;/z)u € G(I). Since i < k, we get
(zi/xp)u > w. But g(zsu) = (zi/2;0))u < (2;/2r)u since j(i) < k, a contradiction.
Hence this case does not happen. O

Lemma 1.11. If g: M(I) — G(I) is a reqular decomposition function, then
g(xzsg(xiu)) = g(arg(asu))  for all we M(I) and all s,t € set(u).

Proof. If s ¢ set(g(ziu)), then Lemma 1.8 implies that g(zsg(ziu)) = g(g(xiu)) =
g(zu), and if s € set(g(xiu)), then set(g(rsg9(riun))) C set(g(xiu)) since g is regular.
Thus in any case, it follows that set(g(zsg(xiu))) C set(g(ziu)). Hence

set(g(zsg(zeu))) Nsupp(c(ziu)) = 0,

so that by Lemma 1.8 again we have g(zsg9(ziu)c(riu)) = g(zs9(ziu)). Therefore,
by the uniqueness of the decomposition function (see Lemma 1.7(b)), the equation
xsxiu = (x5g(xpu))e(xiu) yields g(zsg(ziu)) = g(xszu). This implies the assertion.

O

The exchange property of the decomposition function in Lemma 1.11 is weaker
than the regularity, as is demonstrated by the following example: The ideal I =
(x123, X223, T1T5, T3y, T425) has linear quotients with respect to the given order of
the generators. One checks that the exchange property holds. But since set(x425) =
{1,3}, and set(g(z5(z4zs))) = {1, 2}, g is not regular.

The following theorem is the main result of this section. It generalizes the theorem
of Eliahou-Kervaire ([8]) for stable ideals and that of Aramova-Herzog-Hibi ([2]) for
squarefree stable ideals. For convenience, and to avoid unnecessary distinctions, we
extend the definition introduced in Lemma 1.5 and set f(o;u) =0 if o ¢ set(u).

Theorem 1.12. Let I be a monomial ideal with linear quotients, and F the graded
minimal free resolution of R/I. Suppose the decomposition function g: M(I) —
G(I) is regular. Then the chain map 0 of F is given by

Of(oiu) = = 3 (=)™ f(o\tiw) + Y (~1)*7 s f o\t g weu),
teo teo 9(zeu)
if o £ 0, and
O(f(D;u)) =u otherwise.
Here a(o;t) = |{s € o: s < t}|.
Proof. Let I have linear quotients with respect to the sequence uy, . . ., u,,. We show

by induction on j, that F) has the desired chain map. For j = 1, the assertion is
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trivial. Since FUtY is the mapping cone of 9U): K@) — FU) it follows that FU)
is a subcomplex of FUtY and it suffices to check the formula for the chain map
on the basis elements f(o;u;11). By the definition of the mapping cone of ) we
have 9(f(o;uj11)) = =0 (f(o5uj41)) + ¥ (f(05u)41)), where 9y is the chain map
of the Koszul complex K(9). Thus in order to prove the asserted formula it remains
to show that we can define 1) as

VI (f(05u541)) = Z(—l)”‘(”)%ﬂ)ﬂa\t;g(wtujﬂ)),

2 S

if o # 0, and 9 (f(0;uj11)) = uji1, otherwise.
To verify this we must prove that 1)) 09, = dotp) . In order to simplify notation
we set u = u;41 and 1 = 1), Then for ¢ € set(u) we have

(¥ 0 00)(f({t}iw)) = P(zef (05 1))

= Tiu,

while on the other hand

(8ow)(f({t};u))—3( e f((?);g(xtU))

g(wiu)

T+l ( )
= ——g9(Tu) = T1U.
g(zu) ’ !
Now let o C set(u) with |o| > 2. Then

(o dn)(flo;w) = D (=) f(o\t;w)

teo

=3 (1), [ Y <—1>a<”\“s>gi)f<a\{s,t};gmu)

TsU
teo s€o\t g( s

_ Z Z a(a t)+a(o;s) wf(g\{s, t}; g(xsu))

tEo sco\t g(msu)
s<t
30N (rpyetetitalen) T o\ (s 1) g(a ).
—~ =, g(zsu)

s>t

Exchanging the role of s and t in the second sum, we obtain

(100, Z Z a(at )+a(o; S)% (o\{s,t}; g(xsu)) (6)
e e S

30N (ryetetate) T p 0\ (g 1) g (o)),
SEo t€o\s g(wtu)
s<t

On the other hand we have

@0 v)(flosu) = 3 (=) L f(o\t; g(wsu), (7)

JCwc)
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and

O(f(o\t glwu))) == Y (=1)*a, f(o\{s, 1}; g(x1u)

seo\t
pyate ) LI b ol
+Z\ g (anyy O\ hig(@sg(ww)

Before we continue our calculation we notice that it may happen that o \ {t} ¢
set(g(zu)), in which case f(o \ {t};g(xtu)) = 0, by convention. Thus the right
hand side of the equation should also be zero.

In fact, let s € o\ {t}. Ilf o\ {s,t} ¢ set(g(xiu)), then o\ {s,t} ¢ set(g(zsg(ziu))),
since g is regular, and so the corresponding summands are zero. Otherwise, o \
{s,t} C set(g(xsu)). But then s & set(g(xiu)), so that g(zs(g(zwu))) = g(ziu), by
Lemma 1.8. Therefore,

£ng(ﬂftu)
9(@sg(ziu))
Hence we see that the summands on the right hand side of the equation are either

zero or cancel each other, as we wanted to show.
Now continuing with our calculation we get

O(f(o\tg(ww)) == Y (1" f(o\{s, t}; glawu))

f(o\{s,t}; g(zsg(ziu))) = zs f(o\ {5, 1}; g(xu)).

s€o\t
+ > (D) f(o\{s,t}; g(wru))
seo\t
a(a s SQ(xtu) o\ s salz.alzu
0 O testa)
_ oc(cr s) Isg(l:tu) o\ s calz.alzu
3 (e ey o\ itz

s>t

Exchanging the role of s and ¢ in the second and fourth sum, and substituting into

(7) we obtain

(@ o) (f

=22

tEo s€o\t
s<t

22 (-

SE0 tEo\s
s<t

DI

tEo seo\t
s<t

2.2

SEo teo\s
s<t

1)04(0;8)+a(0;t)

a(a t)+oa(o;s) LsTtl
g(aiu)

flo\{s,t}; g(ziu))

a(a t)+a(o;s) TsTil
g(zsu)

f(o\{s,t}; g(wsu))

LTyl

mf(a\{s7 t}; g(xsg(ibtu)))

TsTil

a(a s)ta(o;t)
9(x1g(zsu))

f(o\{s,t}; g(xg(zsu))).
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The last two double sums in this expression cancel each other since by Lemma 1.11
we have g(zsg(ziu)) = g(zig(zsu)) for all s,t € set(u). Hence a comparison with
(6) yields the conclusion. O

2. DG algebra structures on trivial extensions

In this section we describe constructions which in some cases allow to define
algebra structures on free resolutions.

We shall need the following concepts: Let R be a commutative ring with a unit.
DG algebra A is a complex (A, 9) of R-modules with A; = 0 for ¢ < 0, which admits
the structure of a unitary, associative, graded commutative algebra such that the
Leibniz rule is satisfied:

d(ab) = d(a)b + (—=1)!7ad(b) for all homogeneous elements a,b € A.

Here |a| denotes the degree of a.

Let I C R be an ideal. A DG algebra resolution of R/I is a DG algebra A which
is a R-free resolution of R/I.

A two-sided DG module M over A is a complex of R-modules together with
complex homomorphism AQr M — M,a®m—am and M Qr A — M, mQa —
ma, which are unitary and associative, satisfy the Leibniz rule, and the rules:

(am)b = a(mb) and am = (—1)l*1"ma,

for all homogeneous elements a,b € A and m € M. We refer the reader to [1] for
details.

The following lemma which, in a different context, can be found in [12] and
which mimics for DG algebras the trivial extension of an algebra by a module (the
so-called Nagata extension), is the basis of our theory.

Lemma 2.1. Let A be a DG algebra, M a two-sided DG A-module and ¢¥: M — A
a DG module homomorphism. Suppose ¢ satisfies the condition:

Y(m)n =map(n), for all m,n € M.
Then the mapping cone C(v) of ¥ has a DG algebra structure with Nagata product
(a,m)(b,n) = (ab, (—=1)1*lan + mb),
for all (a,m), (b,n) € C(¥).

The mapping cone with the DG algebra structure as in defined in Lemma 2.1
will be denoted by A x M.

Let I = (f1,..-, fasr1) C R be an ideal. Set J = (f1,...,fn), and let L =
(f1,--,fn) ¢ fasr1. Let A be a free R-resolution of R/J, M a free R-resolution of
R/L, and ¢¥: M — A be a complex homomorphism extending R/L — R/J, and
C(v) a mapping cone.

Assume that A and M are DG algebra resolutions of R/.J and R/L, respectively.
We want to give to C(¢) a DG-algebra structure by applying Lemma 2.1. To this
end, we must define a suitable action of A on M, and the complex homomorphism
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1 has to be chosen such that it is a DG module homomorphism over A satisfying
the condition of Lemma 2.1.

We first define an action of A on M: Since J C L, there is a natural surjection
R/J — R/L, which induces a complex homomorphism ¢: A — M. Assume that ¢
can be chosen to be a DG-algebra homomorphism. Then the action of A on M will
be defined by:

am = p(a)m and ma=mp(a) forall a€ A andall me M,

where the product on the right hand side of the equation is multiplication in the
DG-algebra M. It is clear that with this action M is a two-sided DG A-module over
A.

Lemma 2.2. (a) Let ¢v: M — A be complex homomorphism such that ¢ o) =
fn+1idas. Assume that either

(i) fnt1 is a non-zerodivisor of R, and Im1 is an ideal of A, or

(ii) ¢ is injective.
Then v is a DG A-module homomorphism.

(b) Let¢¥: M — A be a DG A-module homomorphism. The following conditions
are equivalent:

(i) 1 satisfies the condition of Lemma 2.1,

(i) po = fayridn.
Proof. (a) In order to prove that ¢ a a DG module homomorphism, we must show
that

P(p(a)m) = ap(m), forall a€c A and me M.
Assuming case (i), there exists n € M with ay(m) = (n). Also, since ¢ is a
DG-algebra homomorphism, we have ¢(ay(m)) = ¢(a)p(b(m)) = frnri1p(a)m by
@ o1 = fri1idps. Therefore,
forrp(a)m = p(ayp(m)) = e(¢(n)) = fatin,

so that n = p(a)m. Applying ¢ we obtain the desired equation.
In case (ii) the assertion follows again, since

e(¥(pla)ym) —ap(m))) = p(P(p(a)m)) — p(ap(m))

= fur1p(a)m — p(a)p(sp(m))
= far1p(@)m — p(a)(fny1m)
=0.

(b) Suppose ¢ satisfies the condition of Lemma 2.1, then

p((m))) = Y(m)la = mp(lar) = mfnir = fapam

for all m € M. Hence we have ¥ o ¢ = f,, 1 idps. Conversely, if (ii) is satified, then
for all m,n € M we have

p(m)n = (poy)(m)n = foprmn =m(furin) = m(e o P)(n) = mip(n).
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3. Koszul type resolutions

We introduce the following notion.

Definition 3.1. Let I C R be an ideal. A DG algebra resolution A of R/I over R
is of Koszul type (of length n), if for all i
(i) rank A; = (7),
(i) the homomorphism A; — Hompg(A,—;, A,) which assigns to each a € A; the
map aq: Ap—; — Ay with a,(b) = ab is injective.

Let, as in Section 2, A and M be DG algebra resolutions of R/J and R/I,
respectively, and let ¢: A — M be a DG algebra homomorphism.

Lemma 3.2. Assume that R is a domain with quotient field Q, and that A and
M are of Koszul type of length n. Fix a basis e for A, and a basis € for M, and
assume that p(e) = de with § # 0. Then there is a unique complex homomorphism
P M®RrQ — ARg Q satisfying

¢(m)a = me(a),
forall0 <i<n,a€ A,_; and m € M;, where the equation means equality between

the coefficients of the bases e and e. Moreover, oy = didagg and pop = didyeg-

Proof. Let e: M,, ® Q — A,, ® Q be the isomorphism with £(¢) = e. Given m €
M; ® Q, we define the Q-linear map v: A,_; ® Q@ — A, ® Q by y(a) = e(mp(a)).
(Here we write ¢ instead of ¢ ® @, in order to simplify notation.)

Since by assumption the natural map A; — Hompg(A,—;, A,) is injective, the
induced map 4; ® @ — Homg(4,—; ® Q, A, ® Q) is again injective, and hence
must even be bijective since it is a linear map of vector spaces of equal dimension.
Therefore, there exists b € A; ® Q with ba = y(a) = mep(a) for all a € A,,_;, and
we set ¢(m) = b. Then @(m)a = mep(a).

For arbitrary elements m € M;11 ® @ and a € A,,_; ® Q, we have

¢(0(m))a = d(m)p(a).
Since my(a) € M, 11®Q = 0, we have 0 = d(mep(a)) = (m)p(a)+(—1)"md(p(a)).
Hence
a(m)p(a) = —(=1)™md(p(a))
= —(=1)"lmp(d(a))

= —(=1)""l@(m)d(a),
and since ¢(m)a € Apy1 = 0, we have
0 = a(@(m)a) = (@(m))a+ (~1)17"™¢(m)d(a),
so that

Consequently,
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forall a € A,,—; ® Q and all m € M;1; ® Q. Therefore, since A is of Koszul type
we conclude that

$(00m) = 2((m),
which shows that ¢ is indeed a complex homomorphism.

Let a € A, @ Qand b € A,,_; ® Q. Then ¢(v(a))b = p(a)p(b) = ¢(ab) = dab.
Hence since A is of Koszul type, it follows that @(p(a)) = da. In other words,
@ o =didage. This implies in particular that ¢: 4; ® Q@ — M; ® Q is injective.
However, since A; ® @ and M; ® @ have the same Q-dimension, we see that ¢ is
an isomorphism with ¢ =1 = §=15. Therefore, ¢ 0 671¢ = id, 00, and so po @ =
didm,»q, as desired. O

Now Lemma 2.2 and Lemma 3.2 imply immediately

Corollary 3.3. With the assumptions and the notation of Lemma 3.2, suppose
that fry10(M) C 0A, and set p = (frny1/0)@. If M is viewed a two-sided A-module
via @, then ¥: M — A is a DG module homomorphism satisfying the condition of
Lemma 2.1. In particular, A x M is defined, and A« M is of Koszul type of length
n+1.

Proof. Tt remains to be shown that A x M is of Koszul type of length n 4 1. In fact,
we have (Ax M); = A; ® M;_1, and so rank(A x M); = rank A; + rank M;_; =
() + G2 = (")

Finally, let (a,m) € (AxM);, (a,m) # 0. We must show that there exists (b,n) €
(A% M)p,41—; such that (a,m)(b,n) # 0. By the definition of our multiplication we
get (a,m)(b,n) = (0, (=1)1*lp(a)n + mep(b)).

There are two cases to consider. If a # 0, we let b = 0, and have to show that
there exists n € M with p(a)n # 0. Now since M is of Koszul type, there exists
w € M; such that wn # 0. But recall that A; ® Q@ — M; ® @ is an isomorphism
via ¢. Thus, since a # 0, p(a)n # 0 for arbitrary n # 0, and by the isomorphism
A, ®Q — M, ® Q between one dimensional vector spaces we have A € Q, A # 0
such that p(a)n = Awn # 0.

In the second case, m # 0, and we let n = 0. Then we have to find b € A, 11
such that my(b) # 0. The rest of the argument is the same as in the first case. O

Definition 3.4. A sequence fi,..., fn in R is called a Koszul sequence, if for all
i=1,...,n

(i) R/(f1,...,fi) has a Koszul type resolution AW of length i;

(ii) R/((f1,..., fi_1): fi) has a Koszul type resolution MU= of of length i;
(i1i) AW =2 AC=1) 4 pra=1),

We will now consider some examples.
Example 3.5. Regular sequences are Koszul sequences.

Proof. Let fi,..., f, be regular sequence. For a given i we let A®) be t he Koszul
complex for the sequence f1,..., fi. Since (f1,..., fi) : fix1 = (f1,---, fi), we may
choose M@ = A® and ¢ =ida@). Then 1 = fi1idse . It is then easy to see that
AGHD = A « AG) 5 the Koszul complex for the sequence fi,. .., fit1. O
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Example 3.6. Monomial sequences are Koszul sequences.

Proof. Let fi1,...,f. be a sequence of monomials. The Taylor resolution T =
T(f1,..., fn) of this sequence admits a natural DG algebra structure, as shown
by Gemeda [11] (see also [9]). As an R-module T} is the kth exterior power of
Ty = @;_, Re; with R-basis {e,: o C [n], |o| = k}, where e, = €;, Aejy, A+ Ney,
for o = {iy < iy < --- <ix}. The chain map d: T; — T;_; is defined by

3 fa
des) =Y (-1)7 €o\{i}s
Z Fo\ () \{i}

1€0
where for 7 C [n], f. denotes the least common multiple of the monomials f; with

i € 7, and where o(0,7) = |{j € 0: j < i}|. According to Gemeda, the DG algebra
structure on 7" is given by

€sCr = es N\ er.

It is also known, and easy to see, that T'(f1,..., fn) is obtained as the mapping

coneof : T(g1,...,9n—1) = T(f1,-- -, fn-1), where g; = fi/[fi, fn] fori=1,...,n,
and where 9 (€5) = (fou{n}/fo)es. Here {€,: o C [n—1]} denotes the natural basis

of T(gl, . 7gn—1)-
We now define an R-module homomorphism ¢: T(f1,..., fn) — T(g1,---,9n)

by

_ fofn-‘rl

= €, forall o C[n].
fau{n+1}

p(eq)

It is easy to check that ¢ is an injective DG algebra homomorphism, and that poy =
fn+1id. Therefore, Lemma 2.2 implies that ¢ is a DG A-module homomorphism sat-
isfying the condition Lemma 2.1. Thus the DG algebra T'(f1,..., fu)*T(g1,---,9n)
is defined.

Consider the R-module homomorphism
o T(fl,...,fnJrl) —>T(f1,,fn) *T(gh,gn)

with

[ (es,0), ifn+1¢o,
a(es) = { (O,éa\{n+1}), ifn+leo.

We leave it to the reader to check that this DG algebra isomorphism.
It may be worthwhile to notice that with the notation of Corollary 3.3 one has

Y = (fny1/0)@ where in this case § = (fin) frs1/fnt1))-
O

Example 3.7. Let f1,..., fn and g1,...,gn be reqular sequences, such that

(fla"'vfn) C (gla"'agn)'

Let f; = Z?:l a;;g; fori = 1,...,n, and set A = det(a;;). Then the almost
complete intersection (f1,..., fn, A) is a Koszul sequence.
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Proof. The initial sequence fi,..., f, is a Koszul sequence by Example 3.5. Next
we observe observe that (g1,...,9n) = (fi,..., fn) : A. We let A(™ be the Koszul
complex of the sequence fi, ..., fn, and M the Koszul complex of the sequence

J1,---5G9n. Let e1,...,e, be the R-module basis of Agn) with d(e;) = f; for i =
1,...,n,and hy,. .., hy, the R-module basis of M{™ with d(h;) = g; fori =1,...,n.
Then the unique algebra homomorphism ¢: A™ — M ™) with ¢(e;) = Z?:l a;jh;
for i =1,...,n extends the epimorphism R/(f1,...,fn) — R/(91,---,9n), and

oleg Ao ANey) =A(hy A+ A hy).

Thus Corollary 3.3 implies that the mapping cone C(¢)) = A" « M with ¢ = ¢
is of Koszul type. O

Note that the almost complete intersection considered in Example 3.7 is directly
linked to complete intersection. More generally, let I C R be a perfect ideal of grade
g in a Gorenstein ring R, L C I a complete intersection ideal of the same grade,
and J = L : I the linked ideal. Then the canonical module w4 of A is isomorphic to
Hompg(R/I,R/L) (see for example [7]), and Homp(R/I,R/L) = (L :1)/L = J/L.
Therefore one obtains an exact sequence

0 —wqy — R/L— R/J—0.

The R-dual A* = Hompg(A, R) (with A7 = Hompg(A4—;, R)) is a graded minimal
free R-resolution of wa (cf. [7]), and since K is self dual, we may lift the R-module
homomorphism wy — R/L to a graded complex homomorphism ¢: A* — K*.
Then the mapping cone C(v)) is a graded free resolution of R/J, as is well-known.

In case R/I is Gorenstein, in which case A = A* one could hope to define an
algebra structure on C(v) just as in Example 3.7. But this is not possible since
we would need that the composition A — K — A is the multiplication map by an
element of R. By rank reasons this could only be possible if rank A; = rank K; = (‘Zi)
for all 4.

On the other hand, if we suppose that A is a two-sided DG K-module and that
the epimorphism R/L — R/I can be extended to DG K-module homomorphism
p: K — A, then ¢: A* — K* can be chosen such that C(¢) has a natural two-sided
DG K-module structure.

In fact, we first define the structure of a two-sided DG K-module on A* as
follows: For a € A} and ¢ € K; we let ca,ac € A} with ca(a) = a(ap(c)) and
ac(a) = afp(c)a) for all a € A,_;—;. Then let ¢ = ¢*, the R-dual of ¢. It is
then easily checked that ¢: A* — K* is a DG K-module homomorphism. This
immediately implies that C'(¢) is a two-sided DG K-module.
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