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NONCOMMUTATIVE DEFORMATIONS OF MODULES

O. A. LAUDAL

(communicated by Clas Löfwall)

Abstract
The classical deformation theory for modules on a k-algebra,

where k is a field, is generalized. For any k-algebra, and for any
finite family of r modules, we consider a deformation functor
defined on the category of Artinian r-pointed (not necessarily
commutative) k-algebras, and prove that it has a prorepresent-
ing hull, which can be computed using Massey-type products in
the Ext-groups. This is first used to construct k-algebras with
a preassigned set of simple modules, and to study the moduli
space of iterated extensions of modules. In forthcoming papers
we shall show that this noncommutative deformation theory is
a useful tool in the study of k-algebras, and in establishing a
noncommutative algebraic geometry.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

In this paper I shall introduce a noncommutative deformation theory for mod-
ules on some k-algebra A, k a field. The basic idea of noncommutative deformation
theory is very simple. Let ar denote the category of r-pointed not necessarily com-
mutative k-algebras R. The objects are the diagrams of k-algebras,

kr ι→→ R
ρ→→ kr

such that the composition of ι and ρ is the identity. Any such r-pointed k-algebra
R is isomorphic to a k-algebra of r × r-matrices (Ri,j). The radical of R is the
bilateral ideal Rad(R) := kerρ, such that R/Rad(R) ' kr. The dual k-vectorspace
of Rad(R)/Rad(R)2 is called the tangent space of R.

For r = 1, there is an obvious inclusion of categories

l ⊆ a1

where l, as usual, denotes the category of commutative local artinian k-algebras
with residue field k.
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Fix a not necessarily commutative k-algebra A and consider a right A-module
M . The ordinary deformation functor

DefM : l → Sets

is then defined. Assuming ExtiA(M,M) has finite k-dimension for i = 1, 2, it is well
known, see [15], or [6], that DefM has a noetherian prorepresenting hull H, the for-
mal moduli of M . Moreover, the tangent space of H is isomorphic to Ext1A(M, M),
and H can be computed in terms of ExtiA(M,M), i = 1, 2 and their matric Massey
products, see [6], [7].

In the general case, consider a finite family V = {Vi}r
i=1 of A-modules. Assume

that,

dimkExt1A(Vi, Vj) < ∞.

Any such family of A-modules will be called a swarm. Define a deformation functor,

DefV : ar → Sets

generalizing the functor DefM above. Given an object ρ : R = (Ri,j) → kr of ar,
consider the k-vectorspace and R-left module (Ri,j ⊗k Vj). ρ defines a k-linear and
left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).

The right A-module structure on the V ′
i s is defined by a homomorphism of k-

algebras, η0 : A → ⊕r
i=1Endk(Vi). Let

DefV(R) ∈ Sets

be the isoclasses of homomorphisms of k-algebras,

η′ : A → (Ri,j ⊗k Homk(Vi, Vj))

such that,

ρ̃(R) ◦ η′ = η0,

where the equivalence relation is defined by inner automorphisms in the k-algebra
(Ri,j⊗k Homk(Vi, Vj)). One easily proves that DefV has the same properties as the
ordinary deformation functor:

Theorem 1.1. The functor DefV has a prorepresentable hull, i.e. an object H of
the category of pro-objects âr of ar, together with a versal family,

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n>1

DefV(H/mn)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV
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is smooth (see §2), and an isomorphism on the tangent level. Moreover, H is
uniquely determined by a set of matric Massey products of the form

Ext1(Vi, Vj1)⊗ · · · ⊗ Ext1(Vjn−1 , Vj) · · · → Ext2(Vi, Vj),

see [7] and [16] for an exposition of the Massey product structure in the category
of all OX-modules for X a scheme defined on some field k.

The right action of A on Ṽ defines a homomorphism of k-algebras,

η : A −→ O(V) := EndH(Ṽ ) = (Hi,j ⊗Homk(Vi, Vj)),

and the k-algebra O(V) acts on the family of A-modules V = {Vi}, extending the ac-
tion of A. If dimkVi < ∞, for all i = 1, ..., r, the operation of associating (O(V),V)
to (A,V) turns out to be a closure operation.

Moreover, if A is an object of ar, and if V = {ki}r
i=1 is the correspondiong family

of simple A-modules, then

η : A −→ H(V)

is an isomorphism.

In §3 we prove that there exists, in the noncommutative deformation theory, an
obvious analogy to the notion of prorepresenting (modular) substratum H0 of the
formal moduli H. The tangent space of H0 is determined by a family of subspaces

Ext10(Vi, Vj) ⊆ Ext1A(Vi, Vj), i 6= j

the elements of which should be called the almost split extensions (sequences) rel-
ative to the family V, and by a subspace,

T0(∆) ⊆
∏

i

Ext1A(Vi, Vi)

which is the tangent space of the deformation functor of the full subcategory of the
category of A-modules generated by the family V = {Vi}r

i=1, see [6]. If V = {Vi}r
i=1

is the set of all indecomposables of some artinian k-algebra A, we show that the
above notion of almost split sequence coincides with that of Auslander.

In Remark (3.7) we associate to the family V = {Vi}, and to any quotient R of H
in ar a quiver with vertices contained in the set {Vi}. The Auslander-Reiten quiver
then turns out to correspond to R = H0/Rad(H0)2.

Observe that, in general, the k-algebra H0 and its corresponding modular family
Ṽ0 contains much more information than what may be deduced from the tangent
level.

In §4, we first prove,

Theorem 1.2 (A generalized Burnside theorem). Let A be a finite dimen-
sional k-algebra, k an algebraically closed field. Consider the family V = {Vi}r

i=1 of
simple A-modules, then

A ' O(V) = (Hi,j ⊗Homk(Vi, Vj))

Then we consider the general problem of classification of iterated extensions of
a family of modules V = {Vi, }r

i=1, and the corresponding classification of filtered
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modules with graded components in the family V. The remainder of the paragraph
is concerned with properties of the O-construction, and some examples.

Based on this notion of noncommutative deformations, we have in [13] proposed a
general definition of an affine noncommutative prescheme, and scheme, generalizing
the classical notion of an affine algebraic scheme in the commutative case.

Earlier versions of this paper has appeared in the preprints [9]–[12].

2. Homological preparations
Exts and Hochschild cohomology

Let k be a (usually algebraically closed) field, and let A be a k-algebra. Denote
by A-mod the category of right A-modules and consider the exact forgetful functor

π : A−mod −→ k −mod

Given two A-modules M and N, we shall always use the identification

σi : ExtiA(M, N) ' HHi(A,Homk(M,N)) for i = 0, 1, 2,

where Homk(M, N) is provided with the obvious left and right A-module structures.
If L∗ and F∗ are A-free resolutions of M and N respectively, and if an element

ξ ∈ Ext1A(M, N)

is represented by the Yoneda cocycle,

ξ̂ = {ξn} ∈
∏

n

HomA(Ln, Fn−1)

then σ1(ξ) is gotten as follows. Let σ be a k-linear section of the augmentation
morphism

ρ : L0 −→ M

and let for every a ∈ A and m ∈ M , σ(ma)− σ(m)a = d0(x). Put,

σ1(ξ̂)(a, m) = −µ(ξ1(x))

where

µ : F0 −→ N

is the augmentation morphism of F∗. Then,

σ1(ξ̂) ∈ Derk(A,Homk(M, N))

and its class in HH1(A,Homk(M, N)) equals σ1(ξ).
Recall the spectral sequence associated to a change of rings. If π : A −→ B is

a surjective homomorphism of commutative k-algebras, M a B-module and N an
A-module, then Ext∗A(M, N) is the abuttment of the spectral sequence given by,

Ep,q
2 = ExtpB(M,ExtqA(B,N)).

There is an exact sequence,

0 −→ E1,0
2 −→ Ext1A(M, N) −→ E0,1

2 −→ E2,0
2 ,
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which, for a B-module N, considered as an A-module, implies the exactness of

0 −→ Ext1B(M, N) −→ Ext1A(M, N)

−→ HomB(M,HomB(I/I2, N)) −→ Ext2B(M, N)

where I=ker π. The corresponding exact sequence,

0 → HH1(B,Homk(M, N)) → HH1(A, Homk(M, N))
→ HomA⊗Aop(I, Homk(M, N))

in the noncommutative case is induced by the sequence

0 → Derk(B, Homk(M, N)) → Derk(A,Homk(M, N))

→ HomA⊗Aop(I, Homk(M, N)).

Notice that in general we do not know that the last morphism is surjective. This,
however, is true if B=A/rad(A), where rad(A) is the radical of A, and A is a
finite dimensional, i.e. an artinian, k-algebra. In this case, B is semisimple and the
surjectivity above follows from the Wedderburn-Malcev theorem. Notice also that
in the commutative case,

HomA⊗Aop(I,Homk(M, N)) ' HomB(I/I2,HomB(M,N))

as it must, since for φ ∈ HomA⊗Aop(I,Homk(M,N)), a ∈ A, and i ∈ I, ai = ia,
and therefore

aφ(i) = φ(ai) = φ(ia) = φ(i)a, i.e. φ(i) ∈ HomB(M, N).

This implies that for B = A/p, M = A/p, N = A/q, where p ⊆ q are (prime) ideals
of A,

Ext1A(A/p, A/q) ' HomA(p/p2, A/q)

and, in particular

Ext1A(A/q, A/q) ' HomA(q/q2, A/q) = Nq,

the normal bundle of V (q) in Spec(A). If q ⊂ p and q 6= p we find,

Ext1A(A/p, A/q) ' Ext1A/q(A/p, A/q).

In [6], chapter 1., we considered the cohomology of a category c with values in a
bifunctor, i.e. in a functor defined on the category morc of morphismes of c. Recall
that a morphism between the objects ψ and ψ′ is a commutative diagram,

c1
ψ

// c2

��

c′1

OO

ψ′
/ / c′2.

It is easy to see that this cohomology is an immediate generalization of the projective
limit functor and its derivatives, or if one likes it better, the obvious generalization
of the Hochschild cohomology of a ring. In fact, for every small category c and for
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every bifunctor,

G : c× c −→ Ab

contravariant in the first variable, and covariant in the second, one obtains a co-
variant functor,

G : morc −→ Ab.

Consider now the complex,

D∗(c,G)

where,

Dp(c,G) =
∏

c0→c1···→cp

G(c0, cp)

where the indices are strings of morphisms ψi : ci → ci+1 in c, and the differential,

dp : Dp(c, G) −→ Dp+1(c,G)

is defined as usual,

(dpξ)(ψ1, . . . , ψi, ψi+1, . . . , ψp+1) = ψ1ξ(ψ2, . . . , ψp+1)

+
p

∑

i=1

(−1)iξ(ψ1, . . . , ψi ◦ ψi+1, . . . , ψp+1) + (−1)p+1ξ(ψ1, . . . , ψp)ψp+1.

As shown in [6], the cohomology of this complex is the higher derivatives of the
projective limit functor lim←−

(∗)
morc

applied to the covariant functor

G : morc −→ Ab.

This is the ”Hochschild” cohomology of the category c, denoted

H∗(c,G) := H∗(D∗(c,G)).

Example 2.1. Let c be a multiplicative subset of a ring R, considered as a category
with one object, and let R̃ : c × c −→ Ab be the functor, defined for ψ,ψ′ ∈ c, by
R̃(ψ,ψ′) = ψ∗ψ′∗, where ψ∗ is left multiplication on R by ψ, and where ψ′∗ is right
multiplication on R by ψ′, then

H0(c, R̃) = {φ ∈ R| φψ = ψφ for all ψ ∈ c},

i.e. the commutant of c in R.

Given a k-algebra A, and consider a subcategory c of the category of right A-
modules. Let, as above π : c → k −mod be the forgetful-functor, and consider the
bifunctor,

Homπ : c× c −→ k −mod

defined by

Homπ(Vi, Vj) = Homk(Vi, Vj).

Put,

O0(c, π) := H0(c,Homπ).
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It is clear that O0(c, π) is a k-algebra, and that there is a canonical homomorphism
of k-algebras,

η0(c, π) : A −→ O0(c, π),

see §5.

Example 2.2. Example 1.2 Let A be a commutative k-algebra of finite type, k
algebraically closed, and let Spec(A) be the subcategory of A-mod consisting of the
modules A/p, where p runs through Spec(A), the morphisms being only the obvious
ones. It is easy to see that the homomorphism

η0(Spec(A), π) : A −→ O0(Spec(A), π)

identifies A/rad(A) with O0(Spec(A), π). If rad(A) = 0 we even find an isomor-
phism,

η0(Simp∗(A), π) : A ' O0(Simp∗(A), π).

Here Simp∗(A) is the subcategory of A-mod where the objects are A and the simple
A-modules, A/m, i.e. the closed points of Spec(A), and where the morphisms are
the obvious quotient morphisms A → A/m. η0(Simp∗(A), π) is, however not, in
general, an isomorphism. This is easily seen when A is a local k-algebra. To remedy
this situation we shall in [13] introduce and study a generalization O(c, π) of O0(c, π)
defined in terms of the noncommutative deformation theory, see the next §.

3. §2. Noncommutative deformations

The category ar, test algebras and liftings of modules
Let ar be the category of “r-pointed” artinian k-algebras. Recall that an object

R of ar is a diagram of morphism of artinian k-algebras,

kr

=
!!

C

C

C

C

C

C

C

C

ι
/ / R

ρ

��

kr

Put, Rad(R) := kerρ, such that,

R/Rad(R) '
r

∏

j=1

kj , kj ' k.

A morphism φ : R → S of ar is a morphism of such diagrams inducing the identity
on kr, implying that the induced map,

kr ' R/Rad(R) → S/Rad(S) ' kr

is the identity. Pick idempotents ei ∈ kr ⊆ R such that
r

∑

i=1

ei = 1, eiej = 0 if i 6= j.
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For every (i, j), we shall consider the subspace Rij := eiRej ⊆ R, and the pairing

Rij ⊗k Rjk → Rik

given in terms of the multiplication in R.
Let

R′ = (Rij)

be the matrix algebra, the elements of which are matrices of the form

(αij)

with αij ∈ Rij , i, j = 1, · · · , r. There is an obvious isomorphism of k-algebras

φ : R → R′

defined by

φ(α) = (eiαej).

identifying the sub k-algebra kr of R with the algebra of diagonal r × r-matrices.
Now, for any pair (i, j), i, j = 1, . . . , r, consider the symbol εij , and let’s agree to
put all products of such symbols equal to zero. Then we define the (i, j)-test algebra
R(i, j) as the matrix algebra

R(i, j) = kr ⊕









j

0
... 0

i · · · k · εij · · ·

0
... 0









for i 6= j

R(i, i) =







i

k
... 0

i · · · k[εii] · · ·

0
... k





 for i = j

Denote by HH∗(A,−) the Hochschild cohomology of the k-algebra A. If W
is an A-bimodule denote by Derk(A,W ) the k-vectorspace of derivations of A in
W . Thus ψ ∈ Derk(A,W ) is a linear map from A to W such that ψ(a1 · a2) =
a1ψ(a2) + ψ(a1)a2.

In particular, any element w ∈W determines a derivation i(w) ∈ Derk(A,W )
defined by i(w)(a) = aw − wa. There is an exact sequence

0 → HH0(A,W ) → W → Derk(A,W ) → HH1(A,W ) → 0

If Vi, Vj are right A-modules, then

Homk(Vi, Vj)

is an A-bimodule. In fact if φ ∈ Homk(Vi, Vj), then aφ is defined by (aφ)(v) = φ(va),
and φa is defined by (φa)(v) = φ(v)a.
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Moreover, we know that

HH0(A,Homk(Vi, Vj)) = HomA(Vi, Vj)

HH1(A,Homk(Vi, Vj)) = Ext1A(Vi, Vj).

Fix a finite family V = {Vi}r
i=1 of right A-modules, and consider for every

ψ ∈ Derk(A,Homk(Vi, Vj))

the left R(i, j)-module and right A-module,

Vij(ψ) =

















j

V1
...

i · · · Vi · · · εijVj · · ·

Vj
... Vr

















defined by








v1

vi εijv′j
vj

vr









· a =









v1a
via εij(ψ(a, vi) + v′ja)

vja
vra









and the obvious left R(i, j)-action. The R(i, j)- and the A-action commute, therefore
we have got a R(i, j)⊗A-module, such that

kr ⊗R(i,j) Vij(ψ) ' ⊕r
i=1Vi .

Vij(ψ) is called a lifting of V to R(i, j). It is easy to see that if ψ maps to zero
in HH1(A,Homk(Vi, Vj)) = Ext1A(Vi, Vj) then the lifting Vij(ψ) is trivial, i.e. iso-
morphic to the trivial one. Conversely, if Vij(ψ) is trivial, then ψ maps to zero in
Ext1A(Vi, Vj).

The noncommutative deformation functor
We are now ready to start the study of noncommutative deformations of the

family V = {Vi}r
i=1. We shall assume that V is a swarm, i.e. that for all i, j =

1, 2, ..., r,

dimkExt1A(Vi, Vj) < ∞.

Given an object ρ : R = (Ri,j) → kr of ar, consider the left R-module (Ri,j⊗kVj).
ρ defines a k-linear and left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).
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The right A-module structure on the V ′
i s is defined by a homomorphism of k-

algebras,

η0 : A → ⊕r
i=1Endk(Vi).

Definition 3.1. The deformation functor

DefV : ar → Sets

is defined for every R ∈ ar, as the set,

DefV(R) ∈ Sets

of isoclasses of homomorphisms of k-algebras,

{η′ : A → (Ri,j ⊗k Homk(Vi, Vj))}/ ∼

such that,

ρ̃(R) ◦ η′ = η0,

where the equivalence relation ∼ is defined by inner automorphisms in the k-algebra

EndR((Ri,j ⊗k Vj)) = (Ri,j ⊗k Homk(Vi, Vj)).

Any such isoclass η̃′ will be called a deformation or a lifting of V to R, and
usually denoted VR.

One easily proves that DefV has the same properties as the ordinary deformation
functor.

Let π : R → S be a morphism of ar, such that Rad(R) ·ker π = 0. Morphisms like
this will be called small. If VR ∈ DefV (R) it is easy to see that VS := S ⊗R VR ∈
DefV (S) and that V = ker{VR → S⊗R VR} is, as a left R-module, an R/Rad(R) =
kr-module. Put ker π = (Kij), then V = (V ij) where V ij = Kij ⊗k Vj .

Consider now the k-vector spaces

Ed
ij = ExtdA(Vi, Vj)∗

i.e. the dual k-vectorspaces of ExtdA(Vi, Vj), and consider the k-algebra of matrices,

T d
2 =







k 0
. . .

0 k





 + (εijEd
ij)

where as above, we assume all products of the εij ’s are equal to zero. Now let for
every i, j = 1, . . . , r, and d = 1, 2,

{

tdij(`)
}ed

ij

`=1

be a basis of Ed
ij , and let {ψd

ij(`)}
ed

ij
`=1 be the dual basis. Thus ek

ij = dimkEk
ij .

Consider the k-algebra

T d =







k 0
. . .

0 k





 + ( ˜Ed
ij)
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freely generated as matrix algebra by the generators
{

tdij(`)
}ed

ij

`=1
. An element of ˜Ed

ij

is then a matrix where the elements are linear combinations of elements of the form:

τij = tdij1(l1)⊗ tdj1j2(l2)⊗ · · · ⊗ tdjm−1jm
(lm)

j = jm, 1 6 ls 6 ed
js−1js

, 1 6 js 6 r, m > 1

of Ed
ij1 ⊗ Ed

j1j2 ⊗ · · · ⊗ Ed
jm−1j .

Obviously
T 1

2 = T 1/Rad(T 1)2.

where Rad(T 1) is the two-sided ideal of T 1 generated by ( ˜E1
ij).

Lemma 3.1. Let R be an object of ar and suppose that there exists a surjective
homomorphism

φ2 : T 1
2 → R/Rad(R)2,

then there exists a surjective homomorphism

φ : T 1 −→ R

which lifts φ2.

Definition 3.2. For every object R of âr, put

TR = (Rad(R)/Rad(R)2)∗

and call it the tangent space of R.

Lemma 3.2. Let φ : R → S be a morphism of ar. Assume φ induces a surjective
homomorphism

φ1 : T ∗R → T ∗S

(or an injective homomorphism on the tangent space level). Then φ is surjective.

Notice that if we pick any finite dimensional k-vectorspaces Fij , then there is a
unique maximal pro-algebra F = F (Fij) in ar with tangent space

TF ' (F ∗ij)

F is defined in the same way as T d, above, with Ed replaced by F .
To prove the existence of a hull for the deformation functor DefV the basic tool

is the obstruction calculus, which in this case is easily established:

Proposition 3.1. Suppose R
φ→→ S is a surjective small morphism of ar, i.e.

suppose kerφ · Rad(R) = 0. Put kerφ = (Iij). Consider any VS ∈ DefV (S). Then
there exists an obstruction

o(φ, VS) ∈ (Iij ⊗k Ext2A(Vi, Vj))

which is zero if and only if there exists a lifting VR ∈ DefV (R) of VS. The set of
isomorphism classes of such liftings is a psevdotorsor under

(Iij ⊗k Ext1A(Vi, Vj)) .
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Proof. As a k-vectorspace VR = (Rij ⊗ Vj) maps onto VS = (Sij ⊗ Vj). Since the
right action of A commutes with the left S-action the action of an element a ∈ A
on VS is uniquely given in terms of a family of k-linear maps,

aij : Vi → Sij ⊗ Vj .

We may of course lift these to k-linear maps

σ(a)ij : Vi → Rij ⊗ Vj

inducing a lift of the action of each element of A on
r

⊕

j=1
Sij ⊗ Vj

to a k-linear action on
r

⊕

j=1

Rij ⊗ V,.

The obstruction for this to be an A-module structure is, as usual, the Hochschild
2-cocycle

ψ2(a, b) = σ(ab)− σ(a) · σ(b) ∈ (Iij ⊗k Homk(Vi, Vj)) .

The fact that this is a 2-cocycle follows from

1. σ(c) · ψ2(a, b) = c · ψ2(a, b)

2. ψ2(a, b) · σ(c) = ψ2(a, b) · c
and the obvious relation

dψ2(a, b, c) = aψ2(b, c)− ψ2(ab, c) + ψ2(a, bc)− ψ2(a, b) · c
= σ(a)(σ(bc)− σ(a)σ(c))− (σ(abc)− σ(ab)σ(c)) + (σ(abc)− σ(a)σ(bc))

− (σ(ab)− σ(a)σ(b))σ(c) ≡ 0

Suppose the class of ψ2 in (Iij ⊗k Ext2A(Vi, Vj)) is zero. This means that ψ2 = dφ,
where φ ∈ Homk(A, (Iij ⊗k Homk(Vi, Vj)), ψ2(a, b) = dφ(a, b) = aφ(b) − φ(ab) +
φ(a)b. Let σ′ = σ + φ and consider,

σ′(ab)− σ′(a)σ′(b) = σ(ab)− σ(a)σ(b) + φ(ab)− σ(a)φ(b)− φ(a)σ(b)− φ(a)φ(b) .

Since the matrix φ(a)φ(b) = 0 as Iij ·Ijk = 0, ∀i, j, k and since σ(a)φ(b) = aφ(b),
φ(a)σ(b)=φ(a)b for the same reason, we find that σ′(ab)− σ′(a)σ′(b)=0, i.e. there
is a lifting of the A-module action to VR = (Rij ⊗ Vj).

If we have given one A-module action σ on VR lifting the action on VS , then for
any other σ′ we may consider the difference

σ′ − σ : A → (Iij ⊗k Homk(Vi, Vj))

Consider

d(σ′ − σ)(a, b) = a(σ′(b)− σ(b))− (σ′(ab)− σ(ab)) + (σ′(a)− σ(a))b
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As above we may substitute σ′(a) for a and σ(b) for b, and the expression becomes
zero. Thus σ′ − σ = ξ̄ defines a class

ξ ∈ (Iij ⊗k Ext1A(Vi, Vj)) .

If ξ = 0, then ξ̄ = dφ, φ ∈ (Iij ⊗k Homk(Vi, Vj)) such that σ′(a)− σ(a) = aφ− φa.
Let φ = (φij), then φij defines an isomorphism

φ̄ = id + φ :
⊕

j

Rij ⊗ Vj →
⊕

j

Rij ⊗ Vj

lifting the identity of
⊕

j
Sij ⊗ Vj . Moreover

σ(a)(id + φ)(vi) = σ(a)vi + aφ(vi)

= σ′(a)(vi) + φ(avi) = (id + φ)σ′(a)(vi)

since φ(σ′(a)vi) = φ(avi).
Therefore the A-module structures on

VR = (Rij ⊗ Vj)

defined by σ and σ′ are isomorphic. The rest is clear.

Theorem 3.1. The functor DefV has a prorepresentable hull, or a formal moduli
of V , H ∈ âr, together with a versal family

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n>1

DefV(H/Rad(H)n)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV

is smooth and an isomorphism on the tangent level. Moreover, H is uniquely deter-
mined by a set of matric Massey products defined on subspaces,

Dn ⊂
n

⊕

p=2

Ext1(Vi, Vj1)⊗ · · · ⊗ Ext1(Vjp−1 , Vj),

with values in Ext2(Vi, Vj).

Proof. Notice first that ρ being an isomorphism at the tangent level means that ρ
is an isomorphism for all objects R of ar for which Rad(R)2 = 0.

Word for word we may copy the proof (4.2) of [6], and the proof of [7]. In
particular H/Rad(H)2 ' T 1

2 and

Mor(H, R(i, j)) ' Homk(E1
ij , k) ' Ext1A(Vi, Vj) ' DefV(R(i, j)).

Notice that the universal lifting of V to T 1
2 is the T 1

2 ⊗k A-module ˜V2






V1 0
. . .

0 V2





 + (E1
ij ⊗k Vj)



Homology, Homotopy and Applications, vol. 4(2), 2002 370

with the obvious left T 1
2 -action and the right A-action defined as,

((1⊗ vi) · a)ii = 1⊗ vi · a +
∑

`

t1i,j(`)⊗ (ψ1
i,j(`)(a, vi))

where vi ∈ Vi, and where {t1ij(`)}
eij
`=1 is the chosen basis of E1

ij . Recall that {ψ1
ij(`)}

eij
`=1,

the dual base, consists of elements ψ1
ij(`) ∈ Ext1A(Vi, Vj), which may be represented

as elements of Derk(A, Homk(Vi, Vj)).
To obtain H we kill obstructions for lifting ˜V2 successively, to

T 1
3 := T 1/Rad(T 1)3, T 1

4 etc. just like in the commutative case. The proof of the
existence of a prorepresentable hull for DefV can, of course, also be modeled on the
classical proof of M.Schlessinger [15]. This has been carried out by Runar Ile, see
[2].

A general structure theorem for artinian k-algebras
For every deformation VR ∈ DefV(R) there exists, by definition an, up to inner

automorphisms, unique homomorphism of k-algebras,

ηVR : A → EndR(VR) = (Rij ⊗Homk(Vi, Vj)).

Definition 3.3. Let V = {Vi}r
i=1 be any finite swarm of A-modules, and let

H := H(V) be the formal moduli for V, and Ṽ the versal family. The k-algebra
of observables of the family V is the k-algebra,

O(V) := EndH(Ṽ ) = (Hij ⊗Homk(Vi, Vj))

We would like to describe the kernel and the image of the map,

η : A → O(V)

To do this we need to consider the matric Massey products of the form,

Dn → Ext2A(Vi1 , Vin),

the obvious generalizations of the matrix Massey products introduced in [7].
Here we shall describe these products using Hochschild cohomology. This is a

more convenient way of describing the map η and maybe also an easier way of
understanding the nature of the Massey products.

To simplify the notations, put

Ext1A(V ) = (Ext1A(Vi, Vj))

For l = 2, the Massey product above is simply the cup product

Ext1A(V )⊗ Ext1A(V ) → Ext2A(V )

defined by: Let (ψ1
ij), (ψ

2
ij) ∈ Ext1A(V ), and express ψk

ij as 1-Hochschild cocycles,
i.e. ψ̄1

ij ∈ Derk(A,Homk(Vi, Vj)), ψ̄2
ij ∈ Derk(A,Homk(Vi, Vj)). The cup product

(ψ1
ij) ∪ (ψ2

ij) ∈ Ext2A(V ), now denoted

〈(ψ1
ij), (ψ

2
ij)〉 ∈ Ext2A(V )
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is defined by the 2-cocycle in the Hochschild complex

〈(ψ1
ij), (ψ

2
ij)〉ik(a, b) =

∑

j

ψ̄1
ij(a) ◦ ψ̄2

jk(b) ∈ Homk(Vi, Vk)

Suppose 〈(ψ1
ij), (ψ

2
ij)〉 = 0, this means that there exists, for each pair (i, k) a 1-

cochain φ12
ik in the Hochschild complex, i.e. a map

φ12
ik ∈ Homk(A,Homk(Vi, Vk))

such that dφ12
ik = 〈(ψ1

ij), (ψ
2
ij)〉ik, i.e. such that for all a, b ∈ A,

aφ12
ik (b)− φ12

ik (ab) + φ12
ik (a)b =

∑

j

ψ̄1
ij(a) ◦ ψ̄2

jk(b)

Given classes ψ1 = (ψ1
ij), ψ

2 = (ψ2
ij), ψ

3 = (ψ3
ij) ∈ Ext1A(V ) such that 〈ψ1, ψ2〉=

〈ψ2, ψ3〉 = 0 there exists φ12 = (φ12
ik ), φ23 = (φ23

ik ) ∈ Homk(A,Homk(Vi, Vk)) such
that

dφ12 = 〈ψ1, ψ2〉, dφ23 = 〈ψ2, ψ3〉 .

Then there exists a matrix Massey product

〈ψ1, ψ2, ψ3〉 ∈ Ext2A(V )

defined by the 2-cocycle

〈ψ1, ψ2, ψ3〉ik(a, b) =
∑

j

φ12
ij (a)ψ3

jk(b)−
∑

j

ψ1
ij(a)φ23

jk(b)

in Homk(A⊗k A,Homk(Vi, Vj)).
As in [7] we may go on and obtain a sequence of defining systems {Dn}∞n=2 and

Massey products, computing the relations of H(V).
Now if a ∈ A, denote by ãi ∈ Homk(Vi, Vi) its action on Vi, i = 1, . . . , d. Let

End0(V ) be the diagonal matrix (Endk(Vi, Vi)), contained in the matrix
Endk(V ) := (Endk(Vi, Vj)). Put,

End(V )a = (ã1, . . . , ãd) ∈ End0(V ) ⊆ End(V )

If a ∈ A is such that End(V )a = 0, this means that a acts trivially on each Vi.
Let ψ ∈ Ext1A(V ) be represented by 1-cocycles ψij ∈ Derk(A,Endk(Vi, Vj)). If
End(V )a = End(V )b = 0, we find,

ψij(ab) = aψij(b) + ψij(a)b = 0

This shows that ψ ∈ Ext1A(V ) defines a unique k-linear map,

ψ : {a ∈ A | End(V )a = 0} → Endk(V )

vanishing on all squares.
Let a ∈ A, End(V )a = 0, and put

Ext1A(V )a = 0

when ψ(a) = 0, ∀ψ ∈ Ext1A(V ). Consider the sub k-vector space of A

K1 = {a ∈ A | End(V )a = Ext1A(V )a = 0}
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Let
∑

αijψi ⊗ ψj ∈ Ext1A(V ) ⊗ Ext1A(V ) such that its Massey (cup-)product is
zero, i.e. such that:

∑

αij〈ψi, ψj〉 = 0

Then there exists a 1-cochain φ ∈ Homk(A, (Homk(Vi, Vj))) such that

dφ =
∑

ij

αij〈ψi, ψj〉

Since dφ = 0 implies that φ represents an element of Ext1A(V ) it is clear that φ
defines a unique k-linear map

φ : K1 → Endk(V ) .

Let us denote by

ker〈Ext1A(V ), Ext1A(V )〉

the subset of Ext1A(V )⊗Ext1A(V ) for which the Massey product (i.e. the cup prod-
uct) is zero. Then we may put

ker〈Ext1A(V ), Ext1A(V )〉a = 0

if for every dφ ∈ ker〈Ext1A(V ), Ext1A(V )〉, φ(a) = 0.
Let

K2 = {a ∈ A | End(V )a = Ext1A(V )a = ker〈Ext1A(V ), Ext1A(V )〉a = 0}

Continuing in this way we find a sequence of ideals {Kn}n>0, where K0 = ker{A →
End(V )} and, in general, Kn = {a ∈ A | Dna = 0}.

Theorem 3.2. Let A be any k-algebra and let V = {Vi}r
i=1 be a swarm of A-

modules. Then the kernel of the canonical map

η : A → O(V)

is determined by the matrix Massey product structure of ExtiA(V ), i = 1, 2. In fact

ker η =
⋂

n>0

Kn

Proof. By definition, the homomorphism of k-algebras

η : A → O(V)

lifts the k-algebra homomorphism,

η0 : A →
d

∏

i=1

EndA(Vi).

Modulo Rad(H)2 η induces the homomorphism,

η1 : A →
d

∏

i=1

Endk(Vi)⊕ (E1
ij ⊗Homk(Vi, Vj))
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with,

η1(a)ij = δij ⊗ η0(a)i +
∑

l

tij(l)⊗ ψ1
ij(l)(ai,−) , δij =

{

0 i 6= j
1 i = j

Now, by construction H is the quotient of the formally free k-algebra T 1 generated
by the independent variables {tij(l), l = 1, . . . , lij} as explained above. The relations
of T 1 are generated by linear combinations of monomials in these variables of the
form,

yik =
∞
∑

r=1

∑

j,l

αl1,...,lr
i,j1,...,jr−1,ktij1(l1)tj1j2(l2) · · · tjr−1,k(lr),

corresponding to elements,

yik ∈ Ext2A(Vi, Vk)∗.

The coefficients α are expressed in terms of partially, but inductively well defined,
matric Massey products,

〈 〉r : Dr −→ Ext2A(V )

such that, if the Massey product 〈ψ1
ij1(l1), . . . , ψ

1
jr−1,k(lr)〉 is defined, then

yik(〈ψ1
ij1(l1), . . . , ψ

1
jr−1,k(lr)〉) = αl1,...,lr

ij1,...,jr−1,k.

We therefore obtain a basis for H, as k-vector space, by picking, in a coherent
way, a k-basis for

coker{Ext2A(V )∗ → D∗
r} = (ker〈 〉r )∗

Since Kr = ker〈 〉r, the conclusion of the Theorem follows.

Remark 3.1. Let Eij be an extension of Vi by Vj , then as a k-vector space Eij =
Vj ⊕ Vi and the right action by A is defined for (vj , vi) ∈ Eij , a ∈ A by,

(vj , vi)a = (vja + ψ1
ij(a, vi), via),

where,

ψ1
ij ∈ Derk(A,Homk(Vi, Vj))

defines an element,
ψ̄1

ij ∈ Ext1A(Vi, Vj)

corresponding to Eij . Suppose we consider an extension Eijk of Eij by Vk. Then as
a k-vector space Eijk ' Vk ⊕ Eij = Vk ⊕ Vj ⊕ Vi and the action by A is defined by

(vk, vj , vi)a = (vka + φ(a, (vj , vi)), vja + ψ1
ij(a, vi), via).

By additivity

φ(a, (vj , vi)) = φ(a, (vj , 0)) + φ(a, (0, vi)) .

Put

ψ1,0
ij (a, vi) = ψ1

ij(a, vi), ψ0,1
jk (a, vj) = φ(a, (vj , 0)), ψ1,1

ik (a, vi) = φ(a, (0, vi)),
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then the conditions on the action imply

ψ0,1
jk ∈ Derk(A,Homk(Vj , Vk))

ψ1,1
jk ∈ Homk(A,Homk(Vi, Vk))

and

dψ1,1
ik = ψ0,1

jk ◦ ψ1,0
ij .

This means that ψ̄0,1
jk ∈ Ext1A(Vj , Vk) and that the cup product,

ψ̄0,1 ∪ ψ̄1,0 ∈ Ext2A(Vi, Vk)

is zero.

Now, consider an extension Eijkl of Eijk by Vl. As before the action of A on Eijkl

is given by

(vl, vk, vj , vi) · a
= (vl · a + φ(a, vk, vj , vi), vk · a + ψ2

ik(a, vi) + ψ0,1
jk (a, vj), vj · a + ψ1

ij(a, vi), vi · a).

Put, as above,

ψ1,0,0 = ψ1,0

ψ0,1,0 = ψ0,1

ψ0,0,1
kl (a, vk) = φ(a, vk, 0, 0)

ψ0,1,1
jl (a, vj) = φ(a, 0, vj , 0)

ψ1,1,1
ik (a, vi) = φ(a, 0, 0, vi)

The conditions on φ are expressed by:

dψ0,0,1
kl = 0

dψ0,1,1
jl = ψ0,0,1

kl ◦ ψ0,1,0
jk

dψ1,1,1
il = ψ0,1,1

jl ◦ ψ1,0,0
ij + ψ0,0,1

kl ◦ ψ1,1,0
ik

This means that ψ̄ 0,0,1
kl ∈ Ext1A(Vk, Vl), that the cup product ψ̄ 0,0,1

kl ∪ ψ̄ 0,1,0
jk ∈

Ext2A(Vj , Vl) is zero, and that the Massey product

〈ψ̄0,0,1
kl , ψ̄0,1,0

jk , ψ̄1,0,0
ij 〉 ∈ Ext2A(Vi, Vl)

is zero.
It is clear how to continue.

Corollary 3.1. Suppose the k-algebra A is of finite dimension, and let the finite
swarm V = {Vi}r

i=1 contain all simple representations, then

η : A → O(V)

is injective.
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Proof. Let a ∈ A, and suppose η(a) = 0. Since A as a right A-module is an extension
of the V ′

is we may assume there are exact sequences of right A-modules

0 / / Q1 // A //

⊕

i∈I1
Vi / / 0

0 // Q2 // Q1 / /

⊕

i∈I2
Vi / / 0

...
...

...
...

...

0 // QN // QN−1 //

⊕

i∈IN
Vi // 0

with QN =
⊕

i∈IN+1
Vi, QN+1 = 0. Since End(V )a = 0 it follows from the first

exact sequence above that 1 · a = a ∈ Q1. Consider the exact sequence

0 −→
⊕

i∈I2

Vi −→ A/Q2 −→
⊕

i∈I1

Vi −→ 0

Since Ext1A(V )a = 0 it follows that 1 · a = a ∈ Q2. In fact, multiplication by
a is zero on Vi, i = 1, . . . , r and on A/Q2 it is therefore given by the elements in
Ext1A(V ). Continuing in this way, we consider the extensions of extensions,

0 //

⊕

i∈I3
Vi / / A/Q3 // A/Q2 // 0

...
...

...
...

...

0 / /

⊕

i∈IN+1
Vi // A / / A/QN // 0.

Refering to (2.9), we know that the multiplication by a ∈ A on the right in the mid-
dle term is given inductively, by a family of cochains ψε

ij ∈ Homk(A,Homk(Vi, Vj)),
with ε ∈ {0, 1}n, for 2 6 n, such that

dψε
ik =

∑

ε1+ε2=ε
j

ψε1
ij ◦ ψε2

jk .

Now, this means that all these extensions are defined in terms of a series of well
defined Massey products each one containing 0. By the proof of Theorem (2.8), we
find that for all i, j and all ε, ψε

ij(a,−) = 0.
This means that the action of a ∈ A must be 0, so a = 0.

The same proof works for the following,
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Corollary 3.2 (2.10 bis). Suppose the k-algebra A is an iterated extension of the
objects in the finite swarm V = {Vi}r

i=1. Then

η : A → O(V)

is injective.

Corollary 3.3. Suppose A is an object of ar, and let V = {Vi}r
i=1 be the family of

simple representations, with Vi ' ki. Then

A ' H

Proof. Obviously A is a left A-and a right A-module, flat over A, therefore A ∈
DefV (A). Let R ∈ ar and pick an element VR ∈ DefV(R). Since

End(V ) =







k · · · k
...

...
k · · · k





 ,

this amounts to a homomorphism of k-algebras A → EndR(VR) = R, implying that
A is versal. But then the unicity of the hull of DefV gives us an isomorphism:

φ : H → A

Remark 3.2. (Reconstructing an ordered set Λ and k[Λ], from the swarm of simple
modules)

Let Λ be an ordered set, see §1, and let A = k[Λ], V = {kλ}λ∈Λ. Then the
Corollary above implies that H ' k[Λ].

1. By the general theory we know that A = k[Λ] is the matrix algebra generated
freely by the immediate relations λ1 � λ2, i.e. those for which {λ‘ ∈ Λ|λ1 > λ‘ >
λ2} = ∅, modulo relations of the form

(λ‘ > λ1
2)(λ

1
2 > λ1

3) · · · (λ1
n1

> λ)

= (λ‘ > λ2
2)(λ

2
2 > λ2

3) · · · (λ2
n2

> λ)

They correspond to the first obstructions, given by the ni term well defined Massey
products

Ext1A(kλ′ , kλ1
2
)⊗ · · · ⊗ Ext1A(kλ1

n1
, kλ) → Ext2A(kλ′ , kλ)

Ext1A(kλ′ , kλ2
2
)⊗ · · · ⊗ Ext1A(kλ2

n2
, kλ) → Ext2A(kλ′ , kλ)

There are as many relations as there are base elements of Ext2A(kλ′ , kλ).
2. Let us check this for the diamond, i.e. for Λ:

1→ ◦
y

y

y

y

E

E

E

E

2→ ◦
E

E

E

E

3→ ◦
y

y

y

y

→
4
◦
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One easily computes the Ext’s,

Ext1A(kλi , kλj ) =











0 i = j
k for i = 1, j = 2, 3
k for i = 2, 3, j = 4

Ext2A(kλi , kλj ) =

{

0 for (i, j) 6= (1, 4)
k for i = 1, j = 4

The two cup-products

Ext1A(kλ1 , kλj )⊗ Ext1A(kλj , kλ4) → Ext2A(kλ1 , kλ4) for j = 2, 3,

are non-trivial. At the tangent level we have:

H2 =









k k k 0
0 k 0 k
0 0 k k
0 0 0 k









Therefore H must be a quotient of the matrix ring,

T 1 =









k t12 · k t13 · k (t12t24 · k + t13t34 · k)
0 k 0 t24 · k
0 0 k t34 · k
0 0 0 k









The kernel of T 1 → H is given in terms of the cup products above. In fact, since
we have t∗13 ∪ t∗34 = t∗12 ∪ t∗24 = y∗ where y∗ is the generator of Ext2A(kλ1 , kλ4), the
kernel of T 1 → H is simply t13 ⊗ t34 + t12 ⊗ t24 such that

H =









k k k k
0 k 0 k
0 0 k k
0 0 0 k









' k[Λ]

as it should.

In general, we may reconstruct Λ from the tangent space TH and the Massey-
products above.

The corresponding problem for finite groups, i.e. reconstructing G from k[G] is
called the isomorphism problem. Due to some nice examples of Dade, we know that
this is hopeless. In fact there are two non isomorphic finite groups such that their
group algebras are isomorphic for all fields.

§3. Noncommutative modular deformations
Let V be any right A-module such that dimkExt1A(V, V ) < ∞. Consider the

formal moduli HA =: H, the formal versal family Ṽ = H⊗V , and the corresponding
morphism of functors,

ρ : Morar
(H,−) → DefV .
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We know that ρ is not, in general, injective. However, V is also a right A⊗EndA(V )-
module. As such it has a formal moduli HA,End, and there is a natural k-algebra
homomorphism, HA → HA,End. Let HA

0 be the unique maximal common quotient
of HA and HA,End. Using the same construction as in [8], §2, we prove that the
composition,

ρ0 : Morar
(H0,−) → Morar

(H,−) → DefV

is injective.
At the tangent level, the homomorphisms,

HA → HA,End ← HEnd,

looks like the canonical homomorphisms,

Ext1A(V, V ) ← Ext1A⊗kEnd(V, V ) → Ext1End(V, V ).

Representing elements of the Ext-groups as derivations, it is easy to see that the two
images are contained in the subspace Ext1A(V, V )End, respectively Ext1End(V, V )A.
Therefore the tangent space of H0 must be contained in the subspace of invariants
under EndA(V ) of the tangent space of H, Ext1A(V, V )End.

The tangent space of the modular (prorepresenting) substratum, and
almost split sequences

Consider as above a swarm V = {Vi}r
i=1 of A-modules, and consider the kr-

algebra

EndA(V ) = (HomA(Vi, Vj)).

Suppose from now on that the modules Vi are non-isomorphic, indecomposables,
and that for each i = 1, .., r. EndA(Vi) is a commutative local ring with maximal
ideal mi.

Lemma 3.3. Under the above assumptions, the radical of EndA(V ) has the form

rad(V ) =













m1EndA(V1)
...

· · · · · · miEndA(Vi) HomA(Vi, Vj) · · ·
mjEndA(Vj)

... mrEndA(Vr)













Proof. We need only check that rad(V ) is an ideal, and this amounts to proving
that if φij ∈ Hom(Vi, Vj) i 6= j and φji ∈ Hom(Vj , Vi) then

φjiφij ∈ mi ⊆ EndA(Vi).

Suppose φjiφij is not in mi, then φjiφij is an isomorphism, and we may as well
assume that φjiφij = idVi . But then Vj ' Vi ⊕ ker φji which contradicts the inde-
composability of Vj .

In particular this lemma proves that if A is artinian and all Vi are of finite type,
then for some N,

rad(V )N = 0
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Obviously there is a left and a right action of EndA(V ) on

TH = (Ext1A(Vi, Vj)).

The difference between these actions defines the action of the Lie algebra EndA(V )
on TH . The invariants of TH under the Lie algebra rad(V ), is equal to the invariants
under EndA(V ), therefore equal to,

TH0 := {ξ ∈ TH |∀φ ∈ EndA(V ), φξ − ξφ = 0},

containing the tangent space of the modular, or the prorepresentable substratum
H0 of H.

Lemma 3.4. Let ξ ∈ TH0 , with ξ = (ξi,j), then for all φ = (φk,l) ∈ rad(V ) we have
for i 6= j, and all l,

φl,iξi,j = 0

ξi,jφj,l = 0.

Moreover, for all i, j

φi,jξj,j = ξi,iφi,j

Proof. Just computation.

Definition 3.4. In the above situation, an extension ξ ∈ Ext1A(Vi, Vj) is called a
left almost split extension (resp. a right almost split extension), lase (resp. rase)
for short, if for all φki ∈ r(V )ki (resp. φjk ∈ r(V )jk)

φkiξ = 0 (resp. ξφjk = 0).

An extension ξ which is both a lase and a rase is called an ase, an almost split
extension.

This, of course, is nothing but a trivial generalization of the notion of almost
split sequence, due to Auslander, see [14].

Denote by Ext1l (Vi, Vj) (resp. Ext1r(Vi, Vj)) the subspace of Ext1A(Vi, Vj) formed
by the lase’s (resp. rase’s), and put

T l
H = (Ext1l (Vi, Vj)) ⊆ TH

T r
H = (Ext1r(Vi, Vj)) ⊆ TH

T a
H = T l

H ∩ T r
H =: (Ext1a(Vi, Vj)) ⊆ TH .

Observe that since the left and the right action of End(V ) on TH commute, End(V )
acts at right on T l

H and at left on T r
H . Moreover, by the lemma above

T a
H = T l

H ∩ T r
H ⊆ TH0 .

Observe also that if EndA(Vi) = k ⊕ mi the diagonal part of TH0 is exactly the
tangent space of the deformation functor of the full subcategory of modA generated
by V , see [6].
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The structure of the modular substratum, and the existence of almost
split sequences for artinian k-algebras

Assume that A is artinian, and that the V ′
i s are of finite type. Then TH is a k-

vectorspace of finite dimension, and the radical rad(V ) of End(V ) acts nilpotently
on TH .

Corollary 3.4. Given i ∈ {1, . . . , r}, assume there exists one j ∈ {1, . . . , r} such
that Ext1A(Vi, Vj) 6= 0. Then there exists a τ(i) ∈ {1, . . . , r} such that,

Ext1r(Vi, Vτ(i)) 6= 0.

Proof. This is simply Engels theorem for the right action of rad(V ) on TH .

Theorem 3.3. Suppose V is such that every extension ξ ∈ Ext1A(Vi, Vj) is of
the form 0 → Vj → E → Vi → 0 with E a direct sum of Vk’s. Then, for every
i = 1, . . . , r, such that there exists a j = 1, . . . , r for which Ext1A(Vi, Vj) 6= 0, there
is a unique ase of the form

0 → Vτ(i) → Ei → Vi → 0

Moreover, if we agree to put τ(i) = i for those i’s for which Ext1A(Vi, Vk) = 0 for
all k, then

τ : {1, . . . , r} → {1, . . . , r}

is a permutation.

Proof. We already know that there exists a rase of the form

ξi : 0 → Vτ(i) → Ei → Vi = 0.

We shall prove that ξi is also a lase. Let φki ∈ HomA(Vk, Vi) for k 6= i, or pick an
element φii ∈ mi ⊆ End(Vi), and consider the commutative diagram,

0

��

0 // Vτ(i)

��

// Ei // Vi / / 0, ξi

Ek = Vk →
Vi
×Ei

ψki

8 8

q

q

q

q

q

q

q

q

q

��

Vk

φki

;;

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

��

0

Suppose Vτ(i) → Ek is not split, then

0 → Ek → Ek
Vτ(i)→ ⊕Ei → Vi → 0
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is split, since ξi is a rase. Let pr.: Ek
Vτ(i)→ ⊕Ei → Ek be the splitting. But then the

two following diagrams commute:

0

� �

0 // Vτ(i)

��

// Ei //

ψik
y

y

y

| |y

y

y

Vi / /

φik
z

z

z

z

z

z

z

z

z

||z

z

z

z

z

z

z

z

0

Ek

ψki
y

y

y

<<

y

y

y

��

Vk

φki
z

z

z

z

z

z

z

z

<<

z

z

z

z

z

z

z

z

z

� �

0

Here ψik is the composition of Ei → Ek
Vτ(i)→ ⊕Ei and the projection

Ek
Vτ(i)→ ⊕Ei → Ek and φik the induced map.
This means that (φkiφik)ξi = ξi which is impossible since (φkiφik) acts nilpo-

tently on Ext1A(Vi, Vτ(i)), and ξ is nonzero. Therefore Vτ(i) → Ek splits and ξi is
also a lase, therefore an ase.

The unicity and the permutation property follows immediately from the follow-
ing: Assume there exist two ase’s ξi and ξ′i of the form:

0

0 // Vτ(i) //

φi

E

E

E

E

E

E

E

E

E

""

E

E

E

E

E

E

E

E

E

Ei
ρi

//

ψi

E

E

E

""

E

E

E

Vi

OO

/ / 0 ξi :

E′
i

ψ′i E

E

E

bbE

E

E

ρ′i

OO

Vτ(i′)

φ′i E

E

E

E

E

E

E

E

E

b bE

E

E

E

E

E

E

E

E

OO

0

OO

Then, since ρ′i is not split, there exist liftings ψi, ψ′i inducing morphisms φi, φ′i. But
then (φiφ′i)ξi = ξi which means that ξi is zero. Therefore an ase is unique and in
particular, τ(i) = τ(i′). Dually we prove that τ(i) = τ(i′) implies i = i′, so that τ
is a permutation.

We see that T a
V looks like:

(

Ext1a(Vi, Vj)

)
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where

Ext1a(Vi, Vj) =

{

0 if j 6= τ(i)
k if j = τ(i) and some Ext1a(Vi, Vj) 6= 0

Corollary 3.5. With the assumptions of the theorem above, we find that

TH0 = {(αij)
∣

∣

{

αij ∈ k, αij = 0 if j 6= τ(i)
αii ∈ Ext1A(Vi, Vi) ∀φji ∈ EndA(Vi), φijαii = αjjφji, if i=j

}

Remark 3.3. Consider again a not necessarily finite swarm V = {Vi}ℵi=1 of noethe-
rian A-modules. The kr-algebra

EndA(V )r := (HomA(Vi, Vj)), i, j 6 r

acts on

(Ext1A(Vi, Vj)), i, j 6 r,

in the way described above. Suppose that the modules Vi are non-isomorphic, inde-
composables, and that for each i, EndA(Vi) is a local ring with maximal ideal mi.
Suppose moreover that any iterated extension is a direct sum of such V ′

i s. This is
obviously the case when V = {Vi}ℵi=1 is the family of all indecomposible A-modules,
but holds in many other interesting cases, see [14].

Let H := H(V) and Ṽ be the prorepresentable hull and the formal versal family,
as defined in §2. For every quotient R of H in aℵ, such that

dimkRad(R)/Rad(R)2 < ∞

we consider the image Ṽ (R) ∈ DefV(R) of Ṽ . Denote by Li(R) the ith.-line of Ṽ (R).
Li(R) is an A-module and a finite iterated extension of the Vj , therefore a finite
sum of indecomposables {Li(R, p)}, from our family. Obviously there is a canonical
surjection,

Li(R) → Vi,

and a homomorphism of k-algebras,

ι : H → EndA(Ṽ (R)),

defined by left multiplication. Any element,

ri,j ∈ Ri,j ⊂ R

defines a homomorphism of right A-modules,

ri,j∗ : Lj(R) → Li(R).

In particular, if ri,j is in the socle of R, this morphism induces a homomorphism of
right A-modules,

ri,j∗ : Vj → Li(R).

Using this, we may consider different quiver-structures on the set of indecomposible
modules, {Vi}ℵi=1. The Auslander-Reiten quiver, see [14], is obtained by picking
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R = H0/Rad(H0)2, a basis {hi,j} of Rad(H0)/Rad(H0)2, the dual tangent space of
H0 and letting the arrows arriving at an indecomposible Vi be the compositions,

Li(R, p) → Li(R) → Vi,

and the arrows leaving an indecomposible Vj be the compositions,

Vj
hi,j→→ Li(R) → Li(R, p).

For an arbitrary quotient R of H, we may construct another quiver containing more
information than the Auslander-Reiten quiver. Consider representatives

{ri,j} ∈ Rad(R)

of a basis of the dual tangent space Rad(R)/Rad(R)2 of R, and let the arrows of
the quiver be the compositions

Lj(R, q) → Lj(R)
ri,j∗→ → Li(R) → Lj(R, p).

There is a ring homomorphism,

R → EndA(Ṽ ) = (HomA(Lj , Li)) = (HomA(Vq, Vp)np,q ).

If this homomorphism is surjective, or an isomorphism, we find that the arrows of
the quiver generate, in an obvious way, all morphisms of the full sub-category of A-
modules defined by the family of indecomposibles V = {Vi}. In both case, it is easy
to see that the relations in the quiver correspond to non-trivial cup and Massey
products of Ext∗a(Vi, Vj). When A is artinian, and the family {Vi} generates the
category of A-modules, it turns out that Ṽ is a projective generator. H defines a
quiver, with vertices corresponding to the indecomposible projectives, and

H = EndA(Ṽ )

is Morita equivalent to A. Moreover, H is determined by the quiver (with relations).
In particular, if {Vi} is the family of simple A-modules, we shall see in the next
paragraph that,

A → (Hi,j ⊗Homk(Vi, Vj))

is an isomorphism, and that

Li = ⊕j=1,2,···Hi,j ⊗ Vj

is a projective A-module, for i = 1, 2, ..r. Since therefore

H ' EndA(Ṽ ) = (HomA(Lj , Li))

is Morita-equivalent to A, the quiver of (projective) summands of Ṽ determines the
Morita-equivalence class of A.

We shall end this paragraph by proving the following easy result, see [3] for the
notions of Frobenius extension and Frobenius bi-module.
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Proposition 3.2. Suppose the following conditions hold:
(i) The family V = {Vi} of right A-modules are either finite dimensional as

k-vector spaces, or such that,

ExtpA(Vi, Vj) = ExtpA(V ∗
j , V ∗

i ).

(ii) The hull of the noncommutative deformation functor, H(V) = (Hi,j) is a
finite dimensional k-vectorspace.

(iii) For each i, the projective cover of Vi has a (finite) filtration with graded
components contained in the family V.

Then

η : A → O(V)

is a Frobenius extension.

Proof. The assumption 1. implies that the versal family P = Ṽ as a left H and
right A-module has the duality property, ∗P = P ∗. The assumption 2. implies that
P as left H-module is finite projective, and the assumption 3. garantees that P, as
right A-module, is finite projective, therefore a Frobenius bi-module.

§4. The generalized Burnside theorem
In §2 we proved the following result,

Corollary 3.6. Suppose the k-algebra A is of finite dimension and assume the
swarm V = {Vi}r

i=1 contains all simple A-modules, then the natural k-algebra ho-
momorphism

η : A → O(V) = (Hij ⊗k Homk(Vi, Vj))

is injective.

Recall also the classical Burnside-Wedderburn-Malcev theorems, see [4], and [1].

Theorem (Burnside). Let V be a finite dimensional k-vectorspace. Assume k is
algebraically closed and let A be a subalgebra of Endk(V ). If V is a simple A-module,
then A = Endk(V ).

Theorem (Wedderburn). Let A be a ring, and let V be a simple faithfull A-
module. Put D = EndA(V ) and assume V is a finite dimensional D-vector space.
Then A ' EndD(V ).

Theorem (Wedderburn-Malcev). Let A be a finite dimensional k-algebra, k-
any field. Let r be the radical of A, and suppose the residue class algebra A/r is
separable. Then there exists a semi-simple subalgebra S of A such that A is the
semidirect sum of S and r. If S1 and S2 are subalgebras such that A = Si ⊕ r,
i = 1, 2, then there exists an element n ∈ r, such that S1 = (1− n) · S2 · (1− n)−1.

In this § we shall prove a generalization of the theorem of Burnside. In fact,
assuming the field k is algebraically closed and that V = {Vi}r

i=1 is the family of all
simple A-modules we shall prove that the homomorphism η of the above Corollary
(2.10), is an isomorphism.



Homology, Homotopy and Applications, vol. 4(2), 2002 385

When A is semi-simple we know that Ext1A(Vi, Vj) = 0 for all i, j = 1, . . . , r,
therefore the formal moduli H of V is isomorphic to kr. This implies that

EndH(Ṽ ) =
r

⊕

i=1

Endk(Vi),

which is the classical extension of Burnsides theorem.
We shall need the following elementary lemma

Lemma 3.5. Let the k-algebra A be a direct sum of the right-A-modules Vi, i =
1, . . . , d of the family V = {V }r

i=1. Then left multiplication with an element a ∈ A
induces A-module homomorphisms

aij ∈ HomA(Vi, Vj), i, j = 1, . . . , d .

Moreover, any k-linear map x : A → A expressed as x = (xij) ∈ Endk(V ) :=
(Homk(Vi, Vj)), commuting with all ϕ = (ϕij) ∈ EndA(V ) := (HomA(Vi, Vj)) is
necessarily a right multiplication by some element x̃ ∈ A.

Proof. Trivial, since x commuting with all ϕ ∈ (HomA(Vi, Vj)) commutes with
all left-multiplications by a ∈ A, and therefore x(a) = a · x(1), and we may put
x̃ = x(1).

Corollary 3.7. Assume that the family of right A-modules V = {Vi}r
i=1 is such

that

A '
m

⊕

i=1

V ni
i (i)

HomA(Vi, Vj) = 0 for i 6= j (ii)

Then the canonical morphism of k-algebras

η : A →
ni

⊕

i=1

Endk(Vi)

is injective. Moreover, η induces an isomorphism

A '
ni

⊕

i=1

EndDi(Vi)

where Di = EndA(Vi).

This, in particular, implies the Wedderburn theorem for semisimple k-algebras
A.

Theorem 3.4 (A generalized Burnside theorem). Let A be a finite dimen-
sional k-algebra, k an algebraically closed field. Consider the family V = {Vi}r

i=1 of
simple A-modules, then

A ' O(V) = (Hi,j ⊗Homk(Vi, Vj))
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Proof. We know that the canonical map

η : A → O(V)

is injective. Since Rad(A)n = 0 for some n, we know that Â = A. The theorem
therefore follows from the following lemmas.

Lemma 3.6. Let A and B be finite type k-algebras and let ϕ : A → B be a
homomorphism of k-algebras such that the induced morphism

ϕ2 : A → B/Rad(B)2

is surjective, then

ϕ̂ : Â → B̂

is surjective.

Proof. Well-known.

Lemma 3.7. Let A be a finite dimensional k-algebra, k an algebraically closed field.
Let V = {Vi}r

i=1 be the family of simple A-modules. Then the homomorphism

η : A → O(V)

induces an isomorphism

Rad(A)/Rad(A)2 ' (Ext1A(Vi, Vj)∗ ⊗k Homk(Vi, Vj)).

Proof. The classical Burnside theorem implies that the canonical homomorphism
of k-algebras

A →→
r

⊕

i=1

Endk(Vi)

induces an isomorphism,

A/Rad(A) '
r

⊕

i=1

Endk(Vi).

According to the Wedderburn-Malcev theorem we may assume that A/Rad(A)2 is
a semidirect sum,

A/Rad(A)⊕Rad(A)/Rad(A)2.

Since Rad(A)/Rad(A)2 is both a left and a right
⊕r

i=1 Endk(Vi)-module

Rad(A)/Rad(A)2 = (Eij)

each Eij being an Endk(Vi)op ⊗k Endk(Vj)-module. This, however, means that

Eij ' Homk(Vi, Vj)⊗ krij

as a right Endk(Vi)op ⊗k Endk(Vj)-module. Since we already know that η is an
injection, we must have,

Eij ' Homk(Vi, Vj)⊗ krij ⊂ Ext1A(Vi, Vj)⊗Homk(Vi, Vj).
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We must show that this inclusion is an equality. Applying Hochschild cohomology
as in §1, we find:

Ext1A(Vi, Vj) = HH1(A,Homk(Vi, Vj)) = Derk(A, Homk(Vi, Vj))/imd◦

where d◦ is the differential

Homk(Vi, Vj) → Derk(A, Homk(Vi, Vj)).

Clearly any derivation

ξ ∈ Derk(A,Homk(Vi, Vj))

which is zero on Rad(A) induces a derivation

ξ0 ∈ Derk(A/Rad(A),Homk(Vi, Vj))

which, since A/Rad(A) is semisimple, obviously is a coboundary, i.e. an element of
imd◦.

Moreover, any derivation ξ ∈ Derk(A, Homk(Vi, Vj)) induces the zero map on
Rad(A)2 since ξ(r1 · r2) = riξ(r2) + ξ(r1)r2 = 0 for r1, r2 ∈ Rad(A), and any
coboundary ν ∈ imd◦ must vanish on Rad(A) since ν(r) = ϕr − rϕ, for some ϕ ∈
Homk(Vi, Vj). Now, every Aop ⊗k A-linear map Rad(A)/Rad(A)2 → Endk(Vi, Vj)
extends to a derivation of Derk(A/Rad(A)2, Homk(Vi, Vj)). In fact, let ϕ be an
Aop ⊗k A-linear map

Rad(A)/Rad(A)2 → Endk(Vi, Vj)

and define the map

ψ : A/Rad(A)2 = A/Rad(A)
⊕

Rad(A)/Rad(A)2 → Endk(Vi, Vj)

by

ψ(s, r) = ϕ(r) + ϕ(ρ(s))

where ρ is the 1-Hochschild cochain on A/Rad(A) with values in Rad(A)/Rad(A)2

that, according to the Wedderburn-Malcev theorem, defines the semidirect sum
refered to above. Then,

ψ((s1, r1) · (s2, r2)) = ψ((s1 · s2, s1ρ(s2)− ρ(s1 · s2) + ρ(s1)s2 + s1r2 + r1s2))

= ϕ(s1r2 + r1s2 + s1ρ(s2)− ρ(s1 · s2) + ρ(s1) · s2) + ϕ(ρ(s1 · s2))

= (s1, r1)ψ((s2, r2)) + ψ((s1, r1))(s2, r2)

Therefore,

Ext1A(Vi, Vj) = HomAop⊗A(Rad(A)/Rad(A)2,Homk(Vi, Vj))

= {ϕ : Rad(A)/Rad(A)2 → Homk(Vi, Vj)| ∀a ∈ A, r ∈ Rad(A), s.t.

ϕ(a · r) = a · ϕ(r) and ϕ(ra) = ϕ(r) · a}

Since Rad(A)/Rad(A)2 ' (Eij) with

Eij ' (V ∗
i ⊗ Vj)rij



Homology, Homotopy and Applications, vol. 4(2), 2002 388

it is clear that

HomAop⊗A(Rad(A)/Rad(A)2, Homk(Vi, Vj))

' HomEndk(Vi)op⊗kEndk(Vj)((V
∗
i ⊗ Vj)rij , (V ∗

i ⊗ Vj))

' krij

which means that

Eij ' Ext1A(Vi, Vj)∗ ⊗k Homk(Vi, Vj).

Now suppose, as above, that A is a finite dimensional k-algebra, and let VA =
{Vi}r

i=1 be any family of finite dimensional A-modules. Obviously

dimkExtpA(Vi, Vj) < ∞

for all p = 0, 1, 2, . . . and therefore the endomorphism ring

O(VA) := EndH(Ṽ )

is a k-algebra such that

O(V)/Rad(O) =
r

⊕

i=1

Endk(Vi).

This implies that V = {Vi}r
i=1 is the family of all simple O(V )-modules. The gen-

eralized Burnside theorem applies also in this case, showing that the operation

(A,V) 7→ (O(V),V)

is a closure operation. Moreover, we have the following,

Proposition 3.3. Let τ : A → B be any homomorphism of finite dimensional
k-algebras. Consider a family VB = {Vi}r

i=1 of finite dimensional B-modules and
let VA be the corresponding family of A-modules. Suppose moreover that VB is the
family of all simple B-modules. Then there exists an, up to isomorphisms, unique
homomorphism of k-algebras

O(τ) : O(VA) → O(VB) ' B

extending τ .

Proof. There is an obvious forgetful functor defining a morphism of functors on ar,

τ∗ : DefVB → DefVA

which in its turn induces a k-algebra homomorphism

η : H(VB) → H(VA)

unique up to isomorphisms, and therefore a k-algebra homomorphism

O(VA) := (H(VA)i,j ⊗Homk(Vi, Vj)) → (H(VB)i,j ⊗Homk(Vi, Vj)) =: O(VB)

obviously extending τ . By the generalized Burnside theorem, O(VB) ' B, and the
Proposition follows.
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Remark 3.4. Up to now we have only considered finite families of A-modules such
that

dimk ExtpA(Vi, Vj) < ∞, p = 1, 2.

Neither of these conditions are essential. Introducing natural topologies we may,
as in [6], treat general families of finite type A-modules. Notice also that if r1 6 r2,
there is an obvious canonical morphism

ar1
→ ar2

inducing a restriction morphism of functors

DefV(2) → DefV(1)

where V(1) = {Vi}r1
i=1,V(2) = {Vi}r2

i=1. Therefore we obtain an up to isomorphisms
unique k-algebra homomorphism

r2,1 : HA,V (2) → HA,V (1).

However, this restriction morphism is not, in general, unique. The resulting problems
will be dealt with later.

Filtered modules and iterated extensions
Let as above V = {Vi}r

i=1 be a family of right A-modules, and let Ei1,...,is : Es ⊂
Es−1 ⊂ · · · ⊂ E1 = E be a filtered module such that Ek/Ek+1 ' Vik . We shall, as
before, refer to any such filtered module as an iterated extension of V. Notice that
for every p there is an extension,

ξp,p+1 ∈ Ext1A(Vip , Vip+1)

given by the exact sequence.

0 → Ep+1/Ep+2 → Ep/Ep+2 → Ep/Ep+1 → 0.

Corresponding to the iterated extension Ei1,...,is we shall associate two directed
graphs, Γ(i) and Γ(Ei). The first is gotten as the graph with nodes in bijection with
the modules of the family V, and with arrows ε(ip, ip+1) connecting the node ip with
the node ip+1. The second, the extension type of the iterated extension, is obtained
from the first identifying two arrows ε(ip, ip+1) and ε(iq, iq+1) if the corresponding
extensions ξp,p+1 and ξq,q+1 coincide. The corresponding k-algebra is the object of
ar generated by the arrows ε(ip, ip+1) with relations given by composable monomials
of the form

ε(j1, j2)ε(j3, j4) . . . ε(jw, jw+1)

where the sequence

{j1, j2, j3, . . . , jw+1}

is not contained in the sequence

{i1, i2, i3, . . . , is}.
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Example 3.1. Let us draw up all extension types for r, s 6 3.

r = 3, s = 3 : 1'&%$ !"# / / 2'&%$ !"# / / 3'&%$ !"#
r = 2, s = 3 : 1'&%$ !"#

BCEDGF
��

// 2'&%$ !"# 1'&%$ !"# / / 2'&%$ !"#
BCEDGF

� �

1'&%$ !"# //

2'&%$ !"#
o o

r = 1, s = 3 : 1'&%$ !"#
BCEDGF

��

EDBC@AOO 1'&%$ !"#
BCED2GF

��

The last example is a Γ(Ei) corresponding to the situation, i1 = i2 = i3 = 1, and
ξi1,i2 = ξi2,i3 The associated k-algebras are, respectively, the matrix algebras,





k k k
0 k k
0 0 k





(

k[ε] k[ε]
0 k

)(

k k[ε]
0 k[ε]

)(

k[t1,2t2,1] kt1,2
kt2,1 k

)

with the obvious relations, and the k-algebras,

k{t, u}/(t2, u2, ut), k[t]/(t3)

Lemma 3.8. Let H be any object of âr, and let R ∈ ar. Then Mor(H,R) has a
natural structure of an affine algebraic scheme Mor(H, R) = Spec(A(H, R)), and
there is a universal morphism,

φ̃ : H −→ A(H,R)⊗k R

Proof. Put (Ei,j) = rad(H)/rad(H)2, and consider the affine space,

AN =
∏

i,j

E∗
i,j ⊗k Ri,j

with coordinates zi,j(l,m) = ti,j(l)⊗xi,j(m), where {ti,j(l)}i,j is a basis of Ei,j and
{ri,j(m)}i,j is a basis, and {xi,j(m)}i,j is a dual basis of Ri,j . An element

(αi,j(l, m)) ∈ AN

corresponds to a morphism φ ∈ Mor(H,R) if, and only if, the corresponding map

ti,j(l) 7−→
∑

m

αi,j(l,m)ri,j(m) ∈ Ri,j

satisfies the relations of H. Let these, modulo a high enough power of the radical,
be polynomials in the generators ti,j(l)i,j of the form

fp(ti,j(l)) = 0, p = 1, . . . s ,

and let the relations of R be expressed in terms of,

ri,j(m)rj,k(n) =
∑

p

βp
i,j,k(m,n)ri,k(p), i, j = 1, . . . r.

Then we obtain equations for Mor(H, R) given by (commutative) polynomial rela-
tions of the form,

Fp(zi,j(l,m)) = 0, p = 1, . . . t.
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But then

ti,j(l) 7−→
∑

m

zi,j(l, m)ri,j(m) ∈ A(H, R)⊗k Ri,j

where the coordinates zi,j(l, m) are subject to the conditions above, defines the
universal morphism φ̃.

Proposition 3.4. Let A be any k-algebra, V = {Vi}r
i=1 any swarm of A-modules,

i.e. such that,

dimk Ext1A(Vi, Vj) < ∞ for all i, j = 1, . . . , r.

(i): Consider an iterated extension E of V, with directed graph Γ. Then there
exists a morphism of k-algebras

φ : H(V) → k[Γ]

such that

E ' k[Γ]⊗φṼ

in the above sense.
(ii): The set of equivalence classes of iterated extensions of V with extension type

Γ, is a quotient of set of closed points of the affine algebraic scheme

A[Γ] = Mor(H(V), k[Γ])

(iii): There is a versal family Ṽ [Γ] of A-modules defined on A[Γ], containing as
fibres all the isomorphism classes of iterated extensions of Vs with extension type
Γ.

Proof. Any morphism ϕ : H → k[Γ] in ar correspond to an iterated extension of
the Vi’s. This may be expressed in the following way. As vector spaces, we have an
isomorphism,

k[Γ]⊗ϕ Ṽ ' V (Γ) ' Vi1 × Vi2 × · · · × Vis

An A-module structure on this vectorspace, corresponding to an iterated extension
with extension type Γ, is given by a homomorphism of k-algebras,

ψ : A −→ Endk(Vi1 × Vi2 × · · · × Vis)

inducing a family of linear maps

ψp,p+1,...,p+q : A −→ Endk(Vip , Vip+q)

for 0 6 p < p + q 6 s.
Consider these maps as 1-cochains in the Hochschild complex

HC∗(A,Homk(V (Γ), V (Γ)))

The maps ψp,p+1 correspond to the extensions ξp,p+1 above, and must therefore be
1-cocycles, or derivations. To obtain an A-module structure, corresponding to an
iterated extensions of V with extension type Γ, the conditions on these cochains
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are: For all a, b ∈ A,

ψp,p+1(a)ψp+1,p+2(b) = dψp,p+1,p+2(a, b)

ψp,p+1(a)ψp+1,p+2,p+3(b) + ψp,p+1,p+2(a)ψp+2,p+3(b) = dψp,p+1,p+2,p+3(a, b)

. . .
∑

m=2,...,s−1

ψ1,2,...,m(a)ψm,...,s(b) = dψ1,2,...,s(a, b),

which means that all Massey products of the form

< ξip,ip+1 , ξip+1,ip+2 , . . . , ξip+q−1,ip+q >

are defined and contain zero.
Now (i) follows from the very definition of H, generated as it is by a basis of the

dual Ext1’s, with relations exactly expressing the vanishing of the above Massey
products. (ii) and (iii) then follows from deformation theory, together with the
Lemma (4.9), above.

Example 3.2. Consider the extension Eijk of length 3 given as the composite
extension of ξi,j : 0 ← Vi ← Eij ← Vj ← 0 and ξi,j,k : 0 ← Eij ← Eijk ← Vk ← 0.
Take the pullback ξi,k of ξi,j,k via Vj → Eij and consider the diagram

0 0 0

0 Vioo

O O

Eijo o

OO

Vjoo

OO

0oo

Eik

O O

Eijkoo

OO

Ejkoo

OO

Vk

O O

Vk

OO

Vk

OO

0

OO

0

OO

0

OO

Let ψi,j ∈ Derk(A,Homk(Vi, Vj)) be a Hochschild cocycle representing the class
ξi,j . The multiplication with a ∈ A on Eij , identified with Vj ×Vi as k-vectorspace,
is given by

(vj , vi)a = (vja + ψi,j(a, vi), via)

and the multiplication with a ∈ A on Eijk identified with Vk × Vj × Vi as k-
vectorspace, must be such that,

(vk, vj , 0)a = (vka + ψj,k(a, vj), vja, 0).

If there exists an action of A on Eijk consistent with the above, then one proves
the existence of a Hochschild cochain

ψi,j,k ∈ Homk(A,Homk(Vi, Vk))

such that

dψi,j,k(a, b) = ψi,j(a)ψj,k(b).
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From this follows that the cup-product ξij ∪ ξjk is 0 in Ext2A(Vi, Vk). This is also
the criterion for the existence of ξi,j,k. Moreover if ξ and ξ′ are two extensions

ξ : 0 ← Eij ← Eijk ← Vk ← 0
ξ′ : 0 ← Eij ← E′

ijk ← Vk ← 0

with the same pullback ξjk, then there is an extension

ξik : 0 ← Vi ← Eik ← Vk ← 0

such that its pullback, via Eij → Vi, is the difference ξ − ξ′.
Consider for the iterated extensions Eijk, the extension diagram

Γ : i�������� // j'&%$ !"# / / k,76540123
the first one of the example (4.8) above, then the corresponding k-algebra is given
by,

k[Γ] =



































i j k
k 0 0 0 0
. . . · · · · · · · · ·

...
i k k k 0

. . . · · · · · ·
...

j k k 0
. . . · · ·

...
k k 0

. . . · · ·
k



































Notice that Eijk then corresponds to a morphism

φ : H → k[Γ]

determined, modulo Rad2(k[Γ]) (i.e. the radical squared), by

ξi,j = φ|Ei,j → k, and ξj,k = φ|Ej,k → k

Here

Rad2(k[Γ]) =



































i j k
0 0 0 0 0
. . . · · · · · · · · ·

...
i 0 0 k 0

. . . · · · · · ·
...

j 0 0 0
. . . · · ·

...
k 0 0

. . . · · ·
0


































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and φ is, according to the analysis above, ”calibrated” by the morphism φi,k :
Ei,k → k, i.e. by Ext1A(Vi, Vk), as it should.

Corollary 3.8. (i): Given any finitely generated module M on a Noetherian ring A,
there is a finite set of primes E(M), containing the set of associated primes Ass(M),
such that the module M is an iterated extensions of the corresponding modules A/p
for p ∈ E(M). The extension type of such an iterated extension is an ordered directed
graph Γ(M) the nodes of which is E(M).

(ii): For any finite ordered directed graph Γ, with nodes corresponding to a set of
primes P ⊂ Spec(A), there is an affine versal family of A-modules M̃ with extension
type Γ, and E(M) = P.

Proof. Obvious

Example 3.3. Given any scheme H = Spec(H), say the 2-dimensional affine space
given by H = k[x1, x2]. We shall be interested in the noncommutative moduli space
parametrizing subschemes of length 2 of H. We may do this by simply considering
a point in the space Spec(H) together with a tangent direction, i.e. the right H-
module of the form,

V = k[x1, x2]/(x2
1, x2),

and compute the formal moduli of V .

Lemma 3.9. The formal moduli, H(V ) of the H-module V = H/(x2
1, x2), is given

as the completion of the k-algebra,

Ω = k{t1, t2, ω1, ω2}/(y1, y2)

where

y1 = [t1, t2]− t1[ω1, ω2] y2 = [t1, ω2]− [t2, ω1]− ω1[ω1, ω2],

and where the family of left Ω-and right H-modules,

Ω⊗k k2

is defined by the actions of x1 and x2, given by,

x1 =
(

0 t1
1 ω1

)

, x2 =
(

t2 t1ω2
ω2 t2 + ω1ω2

)

Proof. Consider the obvious free resolution of V := H/(x2
1, x2) as an H-module,

V Hρ
oo H2

d0

oo H
d1

oo 0
d2

oo

where we have,

d0 = (x2
1, x2), d1 =

(

x2

−x2
1

)

.

Consider the Yoneda complex, and pick a basis

{t̂1, t̂2; ω̂1, ω̂2, }
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of Ext1H(V, V ) represented by the morphisms of the diagram,

V H
ρ

oo H2

ω̂j

t̂i
~ ~}

}

}

}

}

}

}

}

d0
oo H

ω̂2
j

t̂2i
}}{

{

{

{

{

{

{

{

d1
oo

V H
ρ

oo H2

ω̂j

t̂i
~ ~}

}

}

}

}

}

}

}

d0
oo H

ω̂2
j

t̂2i
}}{

{

{

{

{

{

{

{

d1
oo H

d2
oo 0oo

V Hρ
oo H3

d0

o o H3
d1

o o H
d2

o o 0oo

Here,

t̂1 = (1, 0), t̂2 = (0, 1, );
ω̂1 = (x1, 0), ω̂2 = (0, x1)

and,

t̂21 =
(

0
1

)

, t̂22 =
(

−1
0

)

,

and finally,

ω̂2
1 =

(

0
x1

)

, ω̂2
2 =

(

−x1

0

)

.

Using this it is easy to see that ,

t̂i ∪ t̂i = 0, t̂1 ∪ t̂2 = −t̂2 ∪ t̂1 = ŷ1,

and that

t̂1ω̂2
2 = ω̂1t22 = −ŷ2, ω̂it̂2i = 0, ω̂iω̂2

j = 0, t̂2ω̂2
1 = ω̂2t̂21 = ŷ2,

therefore

−y2 = t̂1 ∪ ω̂2 = ω̂1 ∪ t̂2 = −t̂2 ∪ ω̂1 = −ω̂2 ∪ t̂1, ω̂i ∪ ω̂j = t̂i ∪ t̂j = 0.

Now, consider the dual basis {t1, t2; ω1, ω2} generating the hull of the deformation
functor Defk[ε], we find after a simple computation of the 3. order Massey products
the formulas we want.

Notice that we just have to compute the tangent situation and check that our
formulas give us a lifting of the quadratic relations and of the corresponding H-
action, to know that our result holds.

By a simple computation one checks that the k-points of Ω form an open dense
part of Hilb2A2 containing V . Hilb2A2 is the blow-up of (A2 ×A2)/Z2 along the
diagonal. However, there are other simple representations of Ω. The homomrphism,

Ω → k|t1, t2,
∂
∂t1

,
∂
∂t2

]

maping ωi to
∂
∂ti

, shows that k|t1, t2] is a simple representation of Ω.
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