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THE RIEMANN TENSOR FOR NONHOLONOMIC MANIFOLDS

DIMITRY LEITES

(communicated by Larry Lambe)

Abstract
For every nonholonomic manifold, i.e., manifold with non-

integrable distribution the analog of the Riemann tensor is in-
troduced. It is calculated here for the contact and Engel struc-
tures: for the contact structure it vanishes (another proof of
Darboux’s canonical form); for the Engel distribution the tar-
get space of the tensor is of dimension 2. In particular, the Lie
algebra preserving the Engel distribution is described.

The tensors introduced are interpreted as modifications of
the Spencer cohomology and, as such, provide with a new way
to solve partial differential equations. Goldschmidt’s criteria for
formal integrability (vanishing of certain Spencer cohomology)
are only applicable to “one half” of all differential equations,
the ones whose symmetries are induced by point transforma-
tions. Lie’s theorem says that the “other half” consists of dif-
ferential equations whose symmetries are induced by contact
transformations. Therefore, we can now extend Goldschmidt’s
criteria for formal integrability to all differential equations.

To Jan–Erik Roos on his sixty–fifth birthday

Introduction

Let Wn
k be the space of germs of irreducible k-dimensional distributions at the

origin of Rn. The orbits of DiffRn-action on Wn
k are usually of infinite codimension.

As shown in [VG1], there are 3 types of exceptions: (1) Wn
k is a point, (2) codi-

mension 1 distributions determined as zero set of α = 0 for the forms α of maximal
class (recall that the class of the form is the invariant equal to the least number of
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variables actually involved)

α =











dt +
∑

16i6r
(pidqi − qidpi) for n = 2r + 1

dt +
∑

16i6r−1
(pidqi − qidpi) for n = 2r

called (usually, for n odd) a contact structure (see [Z]) and (3) the Engel distribution
locally given by the system of Pfaff equations α1 = 0, α2 = 0, where

α1 = dx4 − x3dx1, α2 = dx3 − x2dx1. (E)

Any 4-dimensional manifold with the Engel distribution (E) will be called an Engel
manifold.

Both contact and Engel manifolds are examples of nonholonomic manifolds (i.e.,
manifolds with nonintegrable distributions). Recall that the term nonholonomic was
coined by H. Hertz [H] in his attempts to geometrically describe motions in such
a way as to eliminate the notion of “force”. For a historical review see [VG2]; see
also a very interesting paper by Vershik [V] with first rigorous mathematical formu-
lations of nonholonomic geometry and indications to various possible applications
in various, sometimes unexpected, areas (like optimal control or macro-economics).
In [V] Vershik summarizes about 100 years of studies of nonholonomic geometry
(Hertz, Carathéodory, Vrănceanu, Wagner, Schouten, Faddeev, Griffiths, Godbillon,
to name a few; to his list I’d add that MathSciNet returns about 700 entries for non-
holonomic, and for synonyms: 70 more for sub-Riemannian,1700 for Finsler, several
dozens for “cat’s problem” and autoparallel; physics have their own simialr lists
with thousands of entries because there seems to be more, actually, nonholonomic
dynamical systems than holonomic ones; finally supergravity is also a nonholonomic
structure, albeit on supermanifolds — ca 1800 more entries). In [V] Vershik also de-
clares that “it is probably impossible to construct an analog of the Riemann tensor
for the general nonholonomic manifold” though in some particular cases of small
dimension they had been constructed (Martinet) (and, one can add now, in papers
on supergravity).

Here I introduce the invariants that characterize “nonflatness” of nonholonomic
manifolds, i.e., positively solve this old problem. This definition appeared around
1989 but publication of this paper was delayed and the definition first (as far as I
know) appeared in contetext of supergravity in [LP]. For application to SUGRA
(supergravity equations) and other instances where the N-curvature tensors (the
left hand side of SUGRA) are calculated see [GL1], [LPS], [LSV].

The general definition is illustrated with contact and Engel manifolds. As ex-
pected, for the contact structure these invariants vanish, thus giving one more proof
of the Darboux theorem on the canonical form of the contact form; one can show
that they vanish for n even as well. The Engel manifolds are more rigid: there could
be nonflat ones among them.

Observe that our invariants, though natural analogs of the curvature and torsion
tensors, do not coincide on nonholonomic manifolds with the classical ones and
bearing the same name. Indeed, by definition on any nonholonomic manifold, there
is a nonzero classical torsion while every contact manifold is flat in our sense. To
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avoid confusion, we should always add adjective “nonholonomic” for the invariants
introduced below. Since this is too long, we will briefly say N-torsion, N-curvature,
etc.

For manifolds with a G-structure, the prototypes of the invariants we consider
are well-known: these are structure functions of the G-structure [St]; an important
particular case is G = O(n) when the structure function is called the Riemann
tensor.

A theorem of Lie states that there are two types of differential equations, con-
sidered as submanifolds in the jet bundles: (1) those whose symmetries are induced
by point transformations and (2) those whose symmetries are induced by contact
transformations. For equations of the first type Goldschmidt gave criteria for formal
integrability [BCG]. The notions introduced below — generalizations of Spencer
cohomology for nonholonomic case — provide with a straightforward generalization
of Goldschmidt’s criteria for formal integrability to the second half of differential
equations.

Finally, observe that “non-flatness” of distributions with non-linear constraints
(such as fields of cones [A], foreseen by Vershik in [V], or fields of spheres, like
the ones constructed by any driver who switched the cruise control ON, can also
be tested by invariants I introduce; in the case of the fields of solids, however,
the Lie algebras involved are of infinite dimension (they correspond to “curved
Grassmannians” of submanifolds, rather than linear subspaces) and feasibility to
obtain the final result becomes very doubtful.

The waves in plasma is another example of a nonholonomic system with infinite
dimensional algebras involved. This is a pity, since the curvature tensor is known to
be responsible for stability of the dynamical system expressed by geodesics; so, in
principle, we could just have computed the N-curvature in this case and settle an
intriguing question: “is cold fusion possible or not?”.

§1. Structure functions

Let M be a manifold of dimension n over a field K. Let F (M) be the frame bundle
over M , i.e., the principal GL(n;K)-bundle. Let G ⊂ GL(n;K) be a Lie group. A
G-structure on M is a reduction of the principal GL(n;K)-bundle to the principal
G-bundle. Another formulation seems to be clearer: if one can select transition
functions from one coordinate patch to another so that they belong to G for every
intersection pair of patches, then we have a G-structure on M .

The simplest G-structure is the flat G-structure defined as follows. Let V be Kn

with a fixed frame. Fix a frame in V . Having identified V with TvV via parallel
translation along v, we get a fixed frame in every TvV . The flat G-structure is the
bundle over V whose fiber over v ∈ V consists of all frames obtained from the fixed
one under the G-action.

In textbooks on differential geometry (e.g., in [St]) the obstructions to identifica-
tion of the k-th infinitesimal neighborhood of a point m ∈ M on a manifold M with
G-structure with that of a point of the manifold V with the above flat G-structure
are called structure functions of order k. It is also explained there that such an
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identification is possible provided all structure functions of lesser orders vanish.
To formulate the precise statement, we need some definitions. Let Si denote the

operator of the i-th symmetric power. Set

g−1 = TmM, g0 = g = Lie(G);

for any i > 0 and k = 1, . . . , i set:

gi = {X ∈ Hom(g−1, gi−1) | X(v1)(v2, v3, ..., vi) =

= X(v2)(v1, v3, ..., vi) for any vk ∈ g−1}.

Now, set (g−1, g0)∗ = ⊕
i>−1

gi.

Suppose that the g0-module g−1 is faithful. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = der K[[x1, . . . , xn]], where n = dim g−1.

It is subject to an easy verification that the Lie algebra structure on vect(n) induces
same on (g−1, g0)∗. The Lie algebra (g−1, g0)∗ will be called the Cartan’s prolong
(the result of Cartan’s prolongation) of the pair (g−1, g0).

Let Λi be the operator of the i-th exterior power; set Ck,s
(g−1,g0)∗

= gk−s⊗Λs(g∗−1);

we usually drop the subscript of Ck,s
(g−1,g0)∗

or indicate only g0. Define the differential
∂s : Ck,s −→ Ck,s+1 setting for any v1, . . . , vs+1 ∈ V (as usual, the slot with the
hatted variable is ignored):

(δsf)(v1, . . . , vs+1) =
∑

i

(−1)i[f(v1, . . . , v̂s+1−i, . . . , vs+1), vs+1−i].

As expected, δsδs+1 = 0. The homology of this bicomplex is called Spencer
cohomology of the pair (g−1, g0) and denoted by Hk,s

(g−1,g0)∗
.

Proposition . ([St]) Structure functions constitute the space of the (k, 2)-th Spencer
cohomology of the Cartan prolongation of the pair (TmM, g) where g = Lie(G).

The Riemann tensor on an n-dimensional Riemannian manifold is the structure
function from Hk,2

(g−1,o(n))∗
.

Remark . (cf. [G].)

⊕
k

Hk,s
(g−1,g0)∗

= Hs(g−1; (g−1, g0)∗).

This remark considerably simplifies calculations, in particular, if the Lie alge-
bra (g−1, g0)∗ is simple and finite dimensional: we can apply the Borel-Weil-Bott-
. . . (BWB) theorem. In the nonholonomic case considered in what follows the re-
mark provides with a compact definition1 of structure functions. We can recover
the bigrading (explicitly preserved in [T]) at any moment but to work with just one
grading is much simpler, as with generating functions of series instead of individual
terms. Moreover, there are a few general theorems that help to calculate Lie algebra
cohomology and no theorems on Spencer cohomology.

1Cf. with the problems encountered in the pioneer paper [T], where the case d = 2 for Lie algebras
was independently introduced.
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§2. Structure functions of nonholonomic manifolds

To embrace contact-like structures we have to slightly generalize the notion of
Cartan prolongation: the tangent space to a point of a nonholonomic manifold is
naturally rigged with a nilpotent Lie algebra structure (e.g., for any odd dimensional
contact manifolds this is the Heisenberg algebra), cf. [VG].

2.1. Nonholonomic manifolds
([VG1], [VG2]) Let Mn be an n-dimensional manifold with a nonintegrable

distribution D. Let

D = D1 ⊂ D2 ⊂ D3 · · · ⊂ Dd

be the sequence of strict inclusions, where the fiber of Di at a point x ∈ M is

Di−1|x ∪ [D1, Di−1]|x
(here [D1, Di−1] = {[X,Y ] | X ∈ D1, Y ∈ Di−1}) and d is the least number such
that

Dd|x ∪ [D1, Dd]|x = Dd|x.

In case Dd = TM the distribution is called completely nonholonomic. The number
d = d(M) is called the nonholonomicity degree. A manifold M with a distribution
D on it will be referred to as nonholonomic one if d(M) 6= 1.

Here we will consider nonholonomic manifolds only when they are completely
nonholonomic. This does not diminish generality, actually, since if the distribution
in question is not completely nonholonomic, we can take the integral manifold cor-
responding to it; the restriction of the same distribution onto this integral manifold
is completely nonholonomic, all right. If, nevertheless, we have to, for some reason,
consider the general case it is easy mutatis mutandis; it corresponds to nontransitive
Shchepochkina prolongs, cf. below, and the general machinery is easily adjusted to
them).

Let ni(x) = dim Di|x. The distribution D is called a regular one if all the di-
mensions ni are constants on M . In what follows we will only consider regular
distributions. This is also not a restriction if everything is smooth.

The tangent bundle over a nonholonomic manifold (M, D) can be naturally en-
dowed with a bundle of nilpotent Lie algebras as follows. Let L be the Lie algebra
of vector fields preserving the distribution in a neighborhood of some point x ∈ M .
Naturally, L is filtered and let g be the associated graded Lie algebra. Set

g− = ⊕
−d6i6−1

gi.

Clearly, d, the depth of g−, coinsides with the nonholonomicity degree of D, see
[VG2].

An analog of G-structure for nonholonomic manifolds is defined to be the pair
(g−, g0), where g0 is a subalgebra of the Lie subalgebra which preserves the Z-
grading of g−, i.e., g0 ⊂ (der g−)0. If g0 is not indicated explicitely we assume that
g0 = (der g−)0, i.e., is the largest one.

Thus, we see that with every nonholonomic manifold (M,D) a natural G-structure
is associated: Lie(G) = (der g−)0. But the structure functions of this G-structure do
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not reflect the nonholonomic nature of M . Indeed, when we compute the structure
functions (be they “traditional” Hk,2

(g−1,g0)∗
, or introduced above Hs(g−1; (g−1, g0)∗))

we use the fact that g−1 is a commutative Lie algebra (partial derivatives commute).
To take the nonholonomic nature of M into account we need an analog of the

above Proposition for the case when the natural basis of the tangent space consists
not of partial derivatives but rather of covariant derivatives corresponding to the
connection determined by the same Pfaff forms whose vanishing determines the
distribution. Therefore, instead of g−1 we have a nilpotent algebra g−.

So we have to define
(1) the simplest nonholonomic structure — the “flat” one, and
(2) the analog of Cartan prolong when g−1 is replaced with g−,
(3) (we have already understood) what is the analog of g0 if it is not mentioned

as is usually the case (only the distribution is given), but it remains to figure out
(4) what is the analog of (g−1, g0)∗), and, finally,
(5) what is the analog of Hk,2

(g−1,g0)∗
.

Let us answer these remaining questions.
Fix a frame F in Kn. Having identified TvV with V by means of the trans-

formation that preserves D, we fix a frame — the image of F — in each TvV .
The nonholonomic structure of the nonholonomic manifold (Kn, D) is the pair of
bundles: the frame bundle and the distribution D. The nonholonomic structure of
(Kn, D) will be considered to be flat if the frames over v are obtained from the fixed
one by means of the G-action, where G is a group whose Lie algebra is (der g−)0.

2.2. Structure functions of a nonholonomic manifold
Given a pair (g−, g0) as above, define its k-th Shchepochkina prolong (first pub-

lished by I. Shchepochkina [Sh] for Lie superalgebras; see also more accessible [Sh5])
for k > 0 to be:

gk = (i(S∗(g−)∗ ⊗ g0) ∩ j(S∗(g−)∗ ⊗ g−))k,

where the subscript singles out the component of degree k and where i : Sk+1(g−1)∗⊗
g−1 −→ Sk(g−1)∗ ⊗ g∗−1 ⊗ g−1 is a natural embedding and j : Sk(g−1)∗ ⊗ g0 −→
Sk(g−1)∗ ⊗ g∗−1 ⊗ g−1 a natural map.

Similarly to the case when g− is commutative, define (g−, g0)∗ to be ⊕
k>−d

gk;

then, as is easy to verify, (g−, g0)∗ is a Lie algebra. By the same reasons as for
the manifolds with G-structure ([St]), the space H2(g−; (g−, g0)∗) is the space of
structure functions — obstructions to the identification of the infinitesimal neigh-
borhood of a point on the manifold with a nonholonomic structure (given by g−
and g0) with same on a flat nonholonomic manifold with the same g− and g0.

The space H2(g−; (g−, g0)∗) naturally splits into homogeneous components whose
degree will be called the order of the structure function; the minimal order of struc-
ture function is equal to 2 − d. As in the case of a commutative g− = g−1, the
structure functions of order k can be interpreted as obstructions to flatness of the
nonholonomic manifold with the (g−, g0)-structure provided the obstructions of
lesser orders vanish. Observe that for a nonholonomic manifold the order of struc-
ture functions is no more in direct relation with the numbers of the infinitesimal
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neighborhoods of the points we wish to identify: distinct partial derivatives bear
different “weights”.

When I told this to A. Beilinson in 1989 he winced and, as I got this far, he
said that though he conceeded the idea is of interest, he doubted it can work in
the general case: all my constructions are graded, whereas with every distribution
only filtered algebras g− are naturally associated. This incredulity is justified but
fortunately, different filtrations on g− with the same graded g− are governed pre-
cisely by the structure functions of lesser orders and all of them must vanish for
the N-curvature to be well-defined. So, given a filtered g−, just take the associated
graded algebra and proceed as indicated above. This indicates a way to study the
stable normal forms of Pfaff equations listed in [Z].

§3. The Lie algebra e of Engel vector fields

Let us describe the Lie algebra e of vector fields that preserve the Engel dis-
tribution. Since each of the forms α1 and α2 is a familiar contact form, we know
enough to demonstrate (we leave it as an easy exercise for the reader) the following
statement.

Lemma . A weight basis of the Z-graded Lie algebra e is as follows (indicated are
the degrees):

−3 −2 −1 0
∂4 ∂3 + x1∂4 ∂1 x1∂1 + x2∂2 + 2x3∂3 + 3x4∂4

∂2 + x1∂3 + 1
2x2

1∂4 x1∂1 − x2∂2 + x4∂4

x1∂2 + x2
1
2 ∂3 + x3

1
3 ∂4

n > 1

xn+1
1 ∂2 + xn+2

1
n+2 ∂3 + xn+3

1
n+3 ∂4

The structure of the Engel algebra e seem to have never been described; so let
us do it. First, introduce a shorthand for some elements of e:

D3 = ∂3 + x1∂4;
E = x1∂1 + x2∂2 + 2x3∂3 + 3x4∂4;
H = x1∂1 − x2∂2 + x4∂4;

Xn = xn+1
1 ∂2 + xn+2

1
n+2 ∂3 + xn+3

1
n+3 ∂4 for n > −1.

Now, it is clear that e is solvable with

e/[e, e] = Span(E, H); e(1)/[e(1), e(1)] = Span(∂1), where e(1) = [e, e].

The negative part, e− plays for e the same role the Heisenberg algebra plays for
the contact algebra. This negative part was, of course calculated earlier, see, e.g.,
[G1] where it also bears the name of Engel algebra; perhaps one should say the
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“small” and the “total” ones. It seems very strange that the total algebra had never
beed desribed; I am sure such a description is buried in works of classics.

In review to [G1] [MR 96k:58010] it is written “There is a Darboux theorem
for Engel structures: any two are locally diffeomorphic”. Vershik also quoted this
statement as a well-known. But I can not place it. Indeed, by Darboux theorem for
the contact structure I understand the statement that says that the contact form
can be locally reduced to a canonical form , cf. [Z]. (In contradistinction, a related
statement that the nondegenerate differential 2-form ω can only be reduced to a
canonical form if and only if dω = 0, cf. [P], so the statement on reducibility of the
nondegenerate closed 2-form, sometimes encountered in textbooks on Differential
Geometry, is a tautology.)

Concerning Engel structures, there is, for example, paper [G2] with examples of
several non-equivalent Engel structures on R4. Doesn’t it contradict the statement
on an analog of Darboux theorem? So let us calculate the N-curvature of the contact
and Engel structures: to find out if these invariants vanish, hence, there are analogs
of Darboux theorem for them.

§4. Structure functions of the contact and Engel structures
Éli Cartan worked before “(co)homology” was defined, still, he introduced a

notion that helps to calculate some of these cohomologies. This notion is involutive
Lie algebra of vector fields. Serre gave a nice reformulation of this notion ([St]);
thanks to Serre’s statement for the case when (g−, g0)∗ is a simple vectorial Lie
algebra instead of computing H2(g−1; (g−1, g0)∗) = ⊕

k
Hk,2

(g−1,g0)∗
, it only suffices

to compute the summand with the least k = 1: only this term might be nonzero
because (g−, g0)∗ is involutive. This really helps, see examples in [LPS].

Regrettably, Serre’s theorem is only formulated so far for algebras of depth 1. So
I calculated H2(g−; (g−, g0)∗) by hands; later the result was confirmed by indepen-
dent computer calculations up to convincingly high degree:

4.1. Theorem . The space of nonholonomic structure functions on any Engel man-
ifold is of dimension 2. All structure functions are of order 2, their representatives
are:

∂∗1 ∧X∗
−1 ⊗H + ∂∗1 ∧X∗

−1 ⊗E and ∂∗4 ∧D∗
3 ⊗ ∂4.

The first of these cycles is “pure” in the sence that it does not represent its co-
homology class modulo any coboundary, the coboundaries vanish. The other one is
mixed: one can add any coboundary to it.

The following is another form of the classical theorem (see [LP]):

4.2. Theorem . (Darboux theorem) The space of nonholonomic structure functions
on any contact manifold vanishes.
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Kräftriket hus 6, SE-106 91, Stockholm,
Sweden;


