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RESOLUTIONS AND LATTICES
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(communicated by Clas Löfwall)

Abstract
We discuss how lattices and posets can be used as tools to

study minimal free resolutions of monomial or toric ideals.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

In this paper we discuss properties, related to certain lattices and posets, of mono-
mial and toric resolutions.

A lattice is called a finite geometric lattice if it is finite, semimodular, and atomic.
The significance of such lattices comes from the fact that a lattice L is a finite geo-
metric lattice if and only if L is the intersection lattice of a central essential hyper-
plane arrangement, if and only if L is the lattice of flats of a simple matroid. We call
a monomial ideal M geometric if its lcm-lattice is geometric. In Section 2, we con-
struct the minimal free resolution FM of S/M as a cellular (simplicial in this case)
algebraic complex; this provides a large class of ideals whose minimal free resolu-
tions are simplicial but bigger than the Scarf-complex resolution. We also construct
FM as a quotient of Taylor’s resolution. A nice application is Theorem 2.10, which
shows that the Poincaré polynomial of the intersection lattice of a central hyper-
plane arrangement is equal to the Poincaré series of the minimal free resolution of a
certain monomial ideal. It leads to a dictionary between some questions/invariants
of simple matroids and questions/invariants of minimal free resolutions of geometric
ideals. Also, our approach leads to a new (algebraic) proof of Corollary 2.11, which
is an important fact in matroid theory and was proved in different ways by Björner,
Gelfand–Zelevinsky, Jambu–Terao.

In Section 3 we consider Betti numbers of toric ideals. M. Hochster and R. Stanley
have found and proved that such Betti numbers can be computed using simplicial
complexes. That formula for the Betti numbers was first published in the first edi-
tion of [St] (cf. [St, Theorem 7.9]). For a proof of the formula and applications,
see cf. [BH]. We construct a different type of simplicial complexes in Construc-
tion 3.1, and we prove in Theorem 3.4(b) that they provide the Betti numbers
as well; these simplicial complexes were first introduced in discussions between D.
Bayer, B. Sturmfels, and the author. Recently, the computation using lattices of
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the Betti numbers of a monomial ideal was developed in [GPW, Theorem 2.1].
We introduce the computation of the Betti numbers of a toric ideal by posets in
Construction 3.3 and Theorem 3.4(b). We also discuss the homotopy equivalence
between the simplicial complexes and posets that can be used to obtain the Betti
numbers. The proof of Theorem 3.4 uses methods from Topological Combinatorics
[Bj]. The homotopy equivalence of the complexes X(M) and Γ(M) in Theorem 3.4
can be proved alternatively using Theorem 3.5 on monomial ideals and the meth-
ods in [BS]; our proof of this homotopy equivalence does not rely on any results on
monomial ideals and is much simpler than the methods developed in [BS].

2. Geometric monomial ideals

Let S = k[x1, . . . , xn] be the polynomial ring over a field k. In this section M stands
for a geometric monomial ideal minimally generated by monomials m1, . . . , mr. We
will construct the minimal free resolution of S/M .

According to [GPW] the lcm-lattice L of M is the lattice with elements labeled
by the least common multiples of m1, . . . ,mr ordered by divisibility; in particular
the atoms in L are m1, . . . , mr, the maximal element is lcm(m1, . . . ,mr), and the
minimal element is 1 regarded as the lcm of the empty set.

If l1, . . . , lp are elements, then we denote by l1 ∨ · · · ∨ lp = lcm(l1, . . . , lp) the join
of these elements. The degree of a set J ⊂ [r] is mJ = lcm(mj | j ∈ J). We say that
J is independent if mJ 6= mJ\a for each a ∈ J . A set J is dependent if it is not
independent. The minimal dependent sets are called circuits. If C is a circuit and c
is the element in C with the smallest index, then C\c is called a broken circuit. A set
J is called a nbc-set if it contains no broken circuit. The nbc-sets form a simplicial
complex bc(M) called the broken circuit complex. Note that in the construction of
bc(M) we used the order of the minimal monomial generators m1, . . . , mr; changing
the order of m1, . . . , mr might change the broken circuit complex.

Construction 2.1. We build a cellular (simplicial in this case) resolution of S/M
applying Construction 2.1 from [BPS] to bc(M). Let E be the exterior algebra over k
on basis elements e1, . . . , er. We consider Taylor’s (possibly non-minimal) resolution
E, which is the module S ⊗ E equipped with the differential

d(ej1 ∧ · · · ∧ ejs) =
∑

16i6s
(−1)i+1 · mJ

mJ\ji

· ej1 ∧ · · · ∧ êji ∧ · · · ∧ ejs ,

where J = {j1, . . . , js} and êji means that eji is omitted in the product. Taylor’s
resolution is multigraded with deg(ej1 ∧· · ·∧ejs) = lcm(mj1 , . . . ,mjs) and homolog-
ically graded by deg(ej1 ∧· · ·∧ejs) = s. Set FM to be the subcomplex of E generated
as an S-module by the elements {ej1 ∧ · · · ∧ ejs | {j1, . . . , js} is an nbc-set }.

Theorem 2.1. If M is geometric, then FM is the minimal free resolution of S/M .

Proof. The complex FM constructed in 2.1 coincides with Lyubeznik’s resolution
[Ly]. Thus, FM is exact. Since the lcm-lattice is geometric, we have that each nbc-
set is an independent set. Hence, d(FM ) ⊂ (x1, . . . , xn)FM , which means that the
resolution is minimal.
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Next we take a completely different approach and build the minimal free resolu-
tion of S/M as a quotient of Taylor’s resolution.

Construction 2.2. We will construct the Orlik–Solomon complex of M as a quo-
tient of Taylor’s resolution by a free submodule; it will be a complex of free modules
homologically graded and multigraded.

We consider Taylor’s (possibly non-minimal) resolution E described in Construc-
tion 2.1. If J = {j1, . . . , js} ⊆ [n] and j1 < · · · < js, then we denote by eJ the
element ej1 ∧ · · · ∧ ejs .

Denote by L the lcm-lattice of M . We call ej1 ∧ · · · ∧ ejs a circuit element,
dependent element, or independent element if {j1, . . . js} is a circuit, dependent
set, or independent set, respectively. Set D to be the S-submodule of E generated
by all dependent elements. The independent sets form a simplicial complex, hence
d(independent element) is an S-combination of independent elements.

If C is a circuit, then

d(ej1 ∧ · · · ∧ ejs) =
∑

16i6s
(−1)i+1ej1 ∧ · · · ∧ êji ∧ · · · ∧ ejs .

Set C to be the S-submodule of E generated by all d(circuit element). Clearly,
d(C) = 0.

Note that D⊕C is an ideal in E. Furthermore, we have the inclusion d(D⊕C) ⊆
D⊕C because d(C) = 0 and if eJ ∈ D then

d(eJ ) ∈

{

C ifJisacircuit,
D ifJisdependent, butnotacircuit.

We call the complex Fos(M) = E/(D⊕C) the Orlik–Solomon complex of M . It is
a free S-module. For every circuit C we have that d(eC) is homogeneous with respect
to the multigrading and the homological grading; so Fos(M) is graded by homological
degree and multigraded.

Theorem 2.2. If M is geometric, then Fos(M) is the minimal free resolution of
S/M . This resolution is a differential graded algebra.

Proof. First, we will prove that Fos(M) is exact. For an element α ∈ E we denote by
ᾱ its image in Fos(M) = E/(D⊕C). Choose a homogeneous element α ∈ E such that
d(ᾱ) = 0, that is d(α) ∈ C. Therefore, there exist circuit elements β1, . . . , βq and
coefficients µ1, . . . , µq such that d(α) = d(

∑

16i6q µiβi). Since Taylor’s resolution
E is exact, it follows that there exists a γ ∈ E such that

α =
∑

16i6q

µiβi + d(γ) .

Thus, ᾱ = d(γ). We have ᾱ = d(γ̄) as desired. Hence Fos(M) is a free resolution of
S/M .

By Construction 2.4, we have d(Fos(M)) ⊆ (x1, . . . , xn)Fos(M). Therefore, the
resolution Fos(M) is minimal.

Taylor’s resolution E is a differential graded algebra. Since, D ⊕ C is an ideal
preserved under the differential, it follows that Fos(M) is a differential graded algebra
as well.
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A lattice is a finite geometric lattice if and only if it is the lattice of flats of a simple
matroid, if and only if it is the intersection lattice of a central essential hyperplane
arrangement. In the latter correspondence, the ground set of the simple matroid is
identified with the atoms (the hyperplanes in the arrangement) in the intersection
lattice of the arrangement. In this section A stands for a central essential hyperplane
arrangement in kq with r hyperplanes. Denote by L the intersection lattice of A.

Construction 2.3. Note that L is atomic and coatomic. We will construct a mono-
mial ideal M , such that L is its lcm-lattice. Let the atoms of L be labeled by 1̄, . . . , r̄.
Label the coatoms of L by 1′, . . . , n′. Label an atom ī by the monomial

mi =
∏

ī∨ j′=1̂

xj .

Let M be the monomial ideal generated by the monomial labels of the atoms. If
there exist two generators mp and mq such that mp divides mq, then {j | q̄ < j′} ⊂
{j | p̄ < j′} which is a contradiction. Hence m1, . . . ,mr are minimal generators of
M . Thus, M has r generators and it is an ideal in k[x1, . . . , xn], where r is the
number of atoms of L and n is the number of matroid hyperplanes.

Lemma 2.1. In the notation above, the lcm-lattice of M is L.
For the proof of 2.7 we recall some definitions: Let ∆ be a simplicial complex on

a vertex set 1, . . . , n. Its Stanley–Reisner ideal is

I∆ =
(

{xj1 · · ·xjp | {j1, . . . , jp} /∈ ∆}
)

.

The Alexander dual complex ∆∨ of ∆ is

∆∨ = { [n] \ {j1, . . . , jp} | {j1, . . . , jp} /∈ ∆ } .

The minimal monomial generators of I∆ are
{

x1 . . . xn

xj1 · · ·xjp

∣

∣

∣

∣

{j1, . . . , jp} is a facet in ∆∨
}

.

Proof. Let ∆ be the simplicial complex, such that M is its Stanley–Reisner ideal.
Let σ1, . . . , σr be the facets of the Alexander dual complex ∆∨. The minimal mono-
mial generators of M correspond bijectively to the facets of ∆∨ via the correspon-
dence

σi ∈ ∆∨ ←→ x1 · · ·xn
∏

i∈σi
xi
∈ M .

The equality
∏

ī∨j′=1̂

xj =
x1 · · ·xn
∏

i∈σi
xi

yields that σi = {j | ī < j′}. By [GPW, Propo-

sition 2.3(b)] we have that the lcm-lattice of M is isomorphic to the lattice L′ of
intersections of the maximal faces of ∆∨ enlarged by an additional minimal element
0̂ and an additional maximal element 1̂ (the intersections are ordered by reverse
inclusion). Note that

σi1 ∩ · · · ∩ σis = {j | īp < j′, 1 6 p 6 s} = {j | ī1 ∨ · · · ∨ īs < j′} .
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Now we construct a bijection between L′ and L. Let F ∈ L′, consider the corre-
spondence

⋂

F⊆σi

σi = F ←→
∧

j∈F

j′ =
∨

i<( ∧
j∈F j′)

ī =
∨

F⊆σi

ī .

We conclude that L′ = L.

Example. Let L be the lattice with atoms {1̄}, {2̄}, {3̄}, {4̄}, {5̄} and coatoms (hy-
perplanes of the matroid) {1̄2̄3̄}, {1̄4̄}, {1̄5̄}, {2̄4̄}, {2̄5̄}, {3̄4̄5̄}; this lattice is taken
from [Bj2, 7.6.1]. Label these coatoms as {1′}, {2′}, {3′}, {4′}, {5′}, {6′}. Then

M = (x4x5x6, x2x3x6, x2x3x4x5, x1x3x5, x1x2x4) .

For example, the first generator is x4x5x6 because {1′}, {2′}, {3′} are the coatoms
bigger than {1̄}.

The unsigned Whitney numbers of the first kind coincide with the face numbers
of the broken circuit complex by [Bj2, Theorem 7.4.6]. By Theorem 2.2, the unsigned
Whitney numbers of the first kind coincide with the Betti numbers of S/M . Thus,
we can translate [Ox, Conjecture 14.2.7] as

Conjecture 2.1. The sequence {bi} of Betti numbers of S/M is log-concave, i.e.

b2
i > bi−1bi+1 for 1 6 i.

Conjecture 2.9 raises the following problems in the spirit of Stanley’s Conjec-
ture 4(b) in [St2]:

Problems 2.1. Let T be an arbitrary monomial ideal and {bi} the sequence of
Betti numbers of S/T . Find sufficient conditions for {bi} to be log-concave. Find
sufficient conditions for {bi} to be unimodal.

One of the most interesting numerical invariants of A is its Poincaré polynomial
PA(t). Let µ be the Möbius function of L. The Poincaré polynomial is

PA(t) =
∑

l∈L

µ(l)(−t)rank(l) .

Theorem 2.2 implies

Theorem 2.3. PA(t) is equal to the Poincaré series PS/M (t) =
∑

i>0 dimTori(S/M, k)ti of the minimal free resolution of S/M .

Hilbert’s Syzygy Theorem [Ei, 19.7] together with our results implies the follow-
ing bound: Let n be the number of matroid hyperplanes (maximal flats) of L. The
broken circuit complex is at most n-dimensional.

For m ∈ L we denote by (0̂ : m)LM the open interval {l | l ∈ L, 0̂ < l < m}. The
homology H̃∗((0̂ : m)L; k) is the homology of the abstract simplicial complex with
faces the chains in the poset (0̂ : m)L . The homology H̃∗(L; k) = ⊕m∈L

m6=0̂
H̃i−2((0̂ :

m)LM ; k) is called the Whitney homology of the lattice L.
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The next corollary was proved in different ways independently by Björner, Gel-
fand–Zelevinsky, Jambu–Terao. Our proof is new and relies on the exactness of
Taylor’s resolution (which is easy to prove, see [BPS]), [GPW, Theorem 2.1], and
the results in this paper.

Corollary 2.1. Let bc(L) be the broken circuits complex of L, and A the Orlik–
Solomon algebra of L. Let fi be the number of i-faces in bc(L). Then

fi = dim Ai =
∑

m∈L
m 6=0̂

dim ˜Hi−2
(

(0̂,m)L; k
)

.

Proof. By construction 2.6 choose a geometric monomial ideal M , such that its lcm-
lattice is L. The ideal M and the minimal free resolution of S/M are Nn-graded.
Therefore we have Nn-graded Betti numbers bi,xα(S/M) = dimk TorS

i,α(S/M, k)
for i > 0, α = (α1, . . . , αn) ∈ Nn and xα = xα1

1 · · ·xαn
n . By [GPW, Theorem 2.1],

the Whitney homology relates to the Betti numbers of S/M as follows: for i > 1
and m ∈ L we have

bi,m(S/M) = dim ˜Hi−2
(

(0̂,m)L; k
)

.

Hence, for i > 1 we have

bi(S/M) =
∑

m∈L
m6=0̂

dim ˜Hi−2
(

(0̂,m)L; k
)

.

Theorem 2.2 implies that bi(S/M) = fi. On the other hand, note that Fos(M) ⊗
k = A, so Theorem 2.5 implies that bi(S/M) = dim Ai.

Below, we introduce a grading on the Orlik–Solomon algebra. Let the atoms of L
be labeled by 1̄, . . . , r̄ (that is, {1̄, . . . , r̄} is the ground set of the matroid). Let E be
the exterior algebra over C on n generators e1, . . . , er; this is a differential algebra
with differential d acting as d(ei1 ∧· · ·∧eis) =

∑s
j=1 (−1)j+1ei1 ∧· · ·∧ êij ∧· · ·∧eis ,

(here êij means that this variable is not present in the product). Let I be the ideal
in E generated by {d(circuit)}. Then A = E/I is called the Orlik–Solomon algebra
of L. If A is a complex hyperplane arrangement, then the Orlik–Solomon algebra A
is isomorphic to H∗(Cq \ A,C).

Consider the polynomial ring S = k[x1, . . . , xn] over the field k as Nn-graded by
letting deg(xi) be the ith standard basis vector in Nn.

Corollary 2.2. If v = (v1, . . . , vn),u = (u1, . . . , un) ∈ Nn, then we set v ∗ u =
(max(v1, u1), . . . , max(vn, un)); this operation makes Nn into a semigroup. The
Orlik–Solomon algebra is Nn-graded by

deg(ei) = deg(mi)

deg(ei1 ∧ · · · ∧ eis) = deg(lcm(mi1 , . . . , mis)) .

Proof. Clearly, E is Nn-graded. Each minimal generator of I has the form d(ei1 ∧
· · · ∧ eis) =

∑s
j=1 (−1)j+1ei1 ∧ · · · ∧ êij ∧ · · · ∧ eis with

ī1 ∨ · · · ∨ īs = ī1 ∨ · · · ∨ īp−1 ∨ īp+1 ∨ · · · ∨ īs for 1 6 p 6 s
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in the intersection lattice L. Therefore,

lcm(mi1 , . . . ,mis) = lcm(mi1 , . . . , m̂p, . . . , mis) for 1 6 p 6 s .

This shows that the minimal generators of I are homogeneous. Thus, the quotient
A = E/I is Nn-graded.

3. Betti numbers of toric ideals

Let A = {a1, . . . , an} be a subset of Nd \{0}, A be the matrix with columns ai, and
suppose that rank(A) = d. Consider the polynomial ring S = k[x1, . . . , xn] over a
field k generated by variables x1, . . . , xn in Nd-degrees a1, . . . , an respectively. The
prime ideal IA, that is the kernel of the homomorphism k[x1, . . . , xn] → k[t1, . . . , td]
mapping xi to tai = tai1

1 · · · taid
d , is called a toric ideal; the ring S/IA is called a toric

ring. Both the polynomial ring S and IA are Nd-graded. If α ∈ Nd, then the set of
all monomials in S of degree α is called the fiber of α. The minimal free resolution of
S/IA over S is Nd-graded as well. We are interested in computing the multigraded
Betti numbers

bi,α(S/IA) = dimk TorS
i,α(S/IA, k)

for i > 0 and α ∈ Nd.
In this section M stands for a finite set of monomials m1, . . . , mr in the polyno-

mial ring S. The support supp(m) of a monomial m is the set { i |xi divides m}.
The radical rad(m) is the maximal square-free monomial dividing m.

Construction 3.1. Let X(M) be the simplicial complex on vertices the monomials
in M and faces

{

{mj |j ∈ J} | J ⊆ [r], gcd(mj |j ∈ J) 6= 1
}

.

Construction 3.2. Let Γ(M) be the simplicial complex on vertices x1, . . . , xn and
faces the radicals of the monomials in M and all their factors. This complex was
introduced in [St].

Furthermore, we introduce the posets P (M), Lgcd(M), and L√(M), which can
be used to compute the Betti numbers:

Let P̄ (M) be the lattice with elements the greatest common divisors of monomials
in M ordered by reverse divisibility with an additional minimal element 0̂. The
atoms of P̄ (M) are m1, . . . ,mr. The join operation in P̄ (M) is taking gcd. If 1 ∈
P̄ (M), then it is the maximal element. We call P̄ (M) the gcd-lattice of M . Set

Lgcd(M) =

{

P̄ (M) \ 0̂ if1 /∈ P̄ (M)
P̄ (M) \ {1, 0̂} if1 ∈ P̄ (M).

We denote by Rad(M) the set of the distinct radicals of the monomials in M .
Set L√(M) = Lgcd(Rad(M)).

Construction 3.3. We denote by MaxRad(M) the set consisting of the distinct
maximal radicals of monomials in M . Set P (M) = Lgcd(MaxRad(M)). We call
P (M) ∪ 0̂ the radical lattice of M .
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The order complex ∆(P ) of a poset P is the abstract simplicial complex that is
the collection of all chains in the poset. Sometimes we implicitly think of P as a
topological space by considering its order complex.

The poset P (M) is the smallest and simplest among Lgcd(M), L√(M), P (M).
However, none of the simplicial complexes X(M), Γ(M),∆(P (M)) could be consid-
ered as the simplest in general.

Example. Consider the toric surface R = k[uz3, uy4z, uy3, uy3z7, uy2z4]
and the toric ideal that is the kernel of k[a, b, c, d, e] → R. Take the fiber M =
{ a5b5d4, a3d5c5e, a2bd3c3e5, ab2dce9} of α = u14y32z48. The poset P (M) consists of
the single element abcde. The poset L√(M) has minimal element abcde, maximal
element ad, and two rank 1 elements abd and adce. The poset Lgcd(M) is much
bigger: it has 11 elements and is not graded. This illustrates that P (M) is much
simpler than Lgcd(M) and L√(M).

For a simplicial complex ∆ on a vertex set 1, . . . , r let I∆ be the Stanley–Reisner
monomial ideal associated to ∆, that is

I∆ =
(

{xj1 · · ·xjp | {j1, . . . , jp} /∈ ∆}
)

.

The Alexander dual complex ∆∨ of ∆ is

∆∨ = { [r] \ {j1, . . . , jp} | {j1, . . . , jp} /∈ ∆ } .

Theorem 3.1. • (a) Let M = m1, . . . ,mr be a finite set of monomials. The
simplicial complexes X(M), Γ(M), and ∆(P (M)) are homotopy equivalent.

• (b) Let IA be the toric ideal defined by A and α ∈ Nd. Denote by M the fiber
of α. Then

bi,α(IA) = dim ˜Hi
(

X(M); k
)

= dim ˜Hi
(

Γ(M); k
)

= dim ˜Hi
(

P (M); k
)

.

• (c) Under the conditions of (c), let ∆∨ be the Alexander dual complex of Γ(M)
and I∨ be the Stanley–Reisner ideal of ∆∨. For i > 0 we have that

bi,α(IA) = bi,h(I∨) ,

where h is the square-free product of the variables appearing in the monomials
in M . The lcm-lattice of I∨ coincides with P (M) enlarged with additional
minimal and maximal elements 0̂, 1̂.

Example 3.1. Consider the toric surface R = k[uz3, uy4z, uy3, uy3z7, uy2z4] and
the toric ideal that is the kernel of the map k[a, b, c, d, e] → R. Take the fiber M =
{ a4b4d3, ac3d2e5, bce9} of α = u11y25z37. The complex X(M) has the three vertices
a4b4d3, ac3d2e5, bce9 and the three edges between them. The complex Γ(M) has
vertices a, b, c, d, e and facets bce, abd, acde. The poset P (M) has atoms bce, abd, acde
and each of its other elements is equal to the gcd of some couple of atoms.
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Proof of Theorem 3.4. For simplicity, we set X = X(M), Γ = Γ(M), Lgcd =
Lgcd(M), L√ = L√(M), and P = P (M) throughout the proof. We will show
in four steps that X ' Lgcd, Lgcd ' L√, L√ ' Γ, and Γ ' P .

The set M is a crosscut in the poset Lgcd. The corresponding crosscut complex
consists of all bounded subsets of M , so it coincides with X. By [Bj, Theorem 10.8]
the crosscut complex X is homotopy equivalent to the order complex of Lgcd.

Consider the map ϕ : Lgcd → L√ that sends a monomial to its radical. This
map is order preserving. If p ∈ L√, then the fiber ϕ−1(p) has maximal element
gcd(mj | p divides mj , 1 6 j 6 r), hence ϕ−1(p) is contractible. Quillen’s fiber
lemma [Bj, Theorem 10.5] implies that the order complexes of the posets Lgcd and
L√ are homotopy equivalent.

For a monomial m ∈ Rad(M) denote by Γm the face {xj |xj divides m} of
Γ. Then {Γm |m ∈ Rad(M) } is a cover of the simplicial complex Γ. Moreover,
if J ⊆ [r] and ΓJ =

⋂

j∈J Γmj is not empty, then ΓJ is a full simplex on the
vertices

{

xi | xi divides mj for j ∈ J
}

, so it is contractible. By the nerve lemma [Bj,
Theorem 10.6] we get that Γ is homotopy equivalent to the nerve simplicial complex
N on vertex set the monomials in Rad(M) and with faces { J ⊂ [r] |ΓJ 6= ∅ }. Now

note that N has faces
{

J ⊂ [r]
∣

∣

∣ gcd(mj |j ∈ J) 6= 1
}

. Denote by L the lattice of
faces of N ordered by inclusion with the minimal element removed. Then the order
complex ∆(L) of L is the barycentric subdivision of N . Hence ∆(L) is homotopic to
Γ. We will show that L and L√ are homotopic. Consider the map ψ : L → L√ that
sends an element F of L to the monomial rad

(

gcd(mi|i ∈ F )
)

. This map is order
preserving. If p ∈ L√, then the fiber ψ−1(p) has maximal element

⋂

i∈H Γmi where
H = { i | p divides mi }, hence ψ−1(p) is contractible. By Quillen’s fiber lemma [Bj,
Theorem 10.5] it follows that the order complexes of L and L√ are homotopic. Thus,
Γ is homotopy equivalent to the order complex of L√.

For a monomial m ∈ MaxRad(M) denote by Γ′m the face {xj | xj divides m} of
Γ. Then {Γ′m |m ∈ MaxRad(M) } is a cover of the simplicial complex Γ. The same
argument as in the above paragraph can be applied to the set MaxRad(M) instead
of to the set Rad(M); using the cover {Γ′m |m ∈ MaxRad(M) } this argument shows
that Γ is homotopy equivalent to the order complex of P .

The proof of (a) is completed. In order to prove (b) it suffices to show that

bi,α(IA) = dim ˜Hi
(

Γ; k
)

.

This is stated in [St] and proved in [AH].
Finally, (c) follows from [GPW, Proposition 2.3(b)] because P is the lattice with

elements the intersections of the maximal faces of Γ with the minimal element 0̂
removed.

Remark 3.1. Here we discuss the motivation for Theorem 3.4; it comes from a
similar theorem on monomial ideals. Let I be a monomial ideal minimally generated
by monomials m1, . . . , md. The ideal I and the minimal free resolution of S/I over
S are Nn-graded. Therefore we have Nn-graded Betti numbers

bi,xα(S/I) = dimk TorS
i,α(S/I, k)
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for i > 0, α = (α1, . . . , αn) ∈ Nn and xα = xα1
1 · · ·xαn

n . These Betti numbers can
be computed using various simplicial complexes: Let Γ(m) be the simplicial complex

with faces
{

J ⊆ [n]
∣

∣

∣

m
∏

i∈J xi
∈ I

}

. Denote by X�m the full simplex with vertices

the minimal monomial generators of I which divide m; let X(m) be the subcomplex
of X�m obtained by deleting each face whose vertices have least common multiple
equal to m. We denote by LI the lattice with elements labeled by the least common
multiples of m1, . . . , md ordered by divisibility; this is the lcm-lattice of I introduced
in [GPW]. Set P (m) to be the open interval (0̂,m) in the lattice LI .

The next theorem is the motivation for Theorem 3.4.

Theorem 3.2. Let I be a monomial ideal and m ∈ LI .
(a) The simplicial complexes X(m), Γ(m), and ∆(P (m)) are homotopy equivalent.
(b) We have

bi,m(I) = dim ˜Hi−1
(

X(m); k
)

= dim ˜Hi−1
(

Γ(m); k
)

= dim ˜Hi−1
(

P (m); k
)

.

Proof. The proof of [GPW, Theorem 2.1] shows that X(m) and ∆(P (m)) are homo-
topic; the proof of [BS, Corollary 1.13] shows that X(m) and Γ(m) are homotopic;
so (a) holds. The first equality for the Betti number in (b) is proved in [BS, Theo-
rem 1.11], the second equality is proved in [BH, Proposition 1.1], and the third is
proved in [GPW, Theorem 2.1].
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1983.

[12] R. Stanley, Log-concave and unimodal sequences in Algebra, Combinatorics,
and Geometry, Graph theory and its applications: East and West, (Jinan,
1986), 500–535, Ann. New York Acad. Sci., 576, New York Acad. Sci., New
York, 1989.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2002/n2a19/v4n2a19.(dvi,ps,pdf)

Irena Peeva irena@math.cornell.edu

Department of Mathematics,
Purdue University,
West Lafayette, IN 47907,
USA


