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COMPUTING LINKING NUMBERS OF A FILTRATION
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(communicated by Gunnar Carlsson)

Abstract
We develop fast algorithms for computing the linking number of

a simplicial complex within a filtration. We give experimental results
in applying our work toward the detection of non-trivial tangling in
biomolecules, modeled as alpha complexes.

1. Introduction

In this paper, we develop fast algorithms for computing the linking numbers of simplicial
complexes. Our work is within a framework of applying computational topology methods
to the fields of biology and chemistry. Our goal is to develop useful tools by researchers in
computational structural biology.

1.0.0.1. MOTIVATION AND APPROACH. In the 1980’s, it was shown that the DNA,
the molecular structure of the genetic code of all living organisms, can become knotted
during replication [1]. This finding initiated interest in knot theory among biologists and
chemists for the detection, synthesis, and analysis of knotted molecules [8]. The impetus
for this research is that molecules with non-trivial topological attributes often display ex-
otic chemistry. Taylor recently discovered a figure-of-eight knot in the structure of a plant
protein by examining 3,440 proteins using a computer program [19]. Moreover, chemical
self-assembly units have been used to createcatenanes, chains of interlocking molecular
rings, androtaxanes, cyclic molecules threaded by linear molecules. Researchers are build-
ing nano-scale chemical switches and logic gates with these structures [2, 3]. Eventually,
chemical computer memory systems could be built from these building blocks.

Catenanes and rotaxanes are examples of non-trivial
structural tanglings. Our work is on detecting such interlocking structures in molecules
through a combinatorial method, based on algebraic topology. We model biomolecules as
a sequence of alpha complexes [7]. The basic assumption of this representation is that an
alpha-complex sequence captures the topological features of a molecule. This sequence is
also a filtration of the Delaunay triangulation, a well-studied combinatorial object, enabling
the development of fast algorithms.

The focus of this paper is the linking number. Intuitively, this invariant detects if compo-
nents of a complex are linked and cannot be separated. We hope to eventually incorporate
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our algorithm into publicly available software as a tool for detecting existence of inter-
locked molecular rings.

Given a filtration, the main contributions of this paper are:

(i) the extension of the definition of the linking number to graphs, using a canonical
basis,

(ii) an algorithm for enumerating and generating all cycles and their spanning surfaces
within a filtration,

(iii) data structures for efficient enumeration of co-existing pairs of cycles in different
components,

(iv) an algorithm for computing the linking number of a pair of cycles,
(v) and the implementation of the algorithms and experimentation on real data sets.

Algorithm (iv) is based on spanning surfaces of cycles, giving us an approximation to the
linking number in the case of non-orientable or self-intersecting surfaces. Such cases do
not arise often in practice, as shown in Section 6. However, we note in Section 2 that the
linking number of a pair may be also computed by alternate algorithms. Regardless of the
approach taken, pairs of potentially linked cycles must be first detected and enumerated.
We provide the algorithms and data structures of such enumeration in (i-iii).

1.0.0.2. PRIOR WORK. Important knot problems were shown to be decidable by Haken
in his seminal work on normal surfaces [10]. This approach, as reformulated by Jaco and
others [13], forms the basis of many current knot detection algorithms. Haas et al. re-
cently showed that these algorithms take exponential time in the number of crossings in a
knot diagram [12]. They also placed both theUNKNOTTING PROBLEM and theSPLITTING

PROBLEM in NP, the latter being the focus of our paper. Generally, other approaches to knot
problems have unknown complexity bounds, and are assumed to take at least exponential
time. As such, the state of the art in knot detection only allows for very small data sets. We
refer to Adams [1] for background in knot theory.

Three-dimensional alpha shapes and complexes may be found in Edelsbrunner and
Mücke [7]. We modify the persistent homology algorithm to compute cycles and sur-
faces [6]. We refer to Munkres [15] for background in homology theory that is accessible
to non-specialists.

1.0.0.3. OUTLINE . The remainder of this paper is organized as follows. We review link-
ing numbers for collections of closed curves, and extend this notion to graphs inR3 in
Section 2. We describe our model for molecules in Section 3. Extending the persistence
algorithm, we design basic algorithms in Section 4 and use them to develop an algorithm
for computing linking numbers in Section 5. We show results of some initial experiments
in Section 6, concluding the paper in Section 7.

2. Linking Number

In this section, we define links and discuss two equivalent definitions of the linking
number. While the first definition provides intuition, the second definition is the basis of
our computational approach.



Homology, Homotopy and Applications, vol. 5(2), 2003 21

2.0.0.4. L INKS. A knot is an embedding of a circle in three-dimensional Euclidean
space,k : S1 → R3. Two knots areequivalentif there is an ambient isotopy that maps
the first to the second. That is, we may deform the first to the second by a continuous mo-
tion that does not cause self-intersections. Alink l is a collection of knots with disjoint
images. A link isseparable (splittable)if it can be continuously deformed so that one or
more components can be separated from other components by a plane that itself does not
intersect any of the components. We often visualize a linkl by a link diagram, which is
the projection of a link onto a plane such that the over- and under-crossings of knots are
presented clearly, We give an example in Figure 1. For a formal definition, see [12].

−1 +1

+1−1

Figure 1: A link diagram for the Whitehead link. Vertices occur at crossings and are labeled
according to the convention in Figure 2.

2.0.0.5. L INKING NUMBER . A knot (link) invariantis a function that assigns equivalent
objects to equivalent knots (links.) Seifert first defined an integer link invariant, the linking
number, in 1935 to detect link separability [18]. Given a link diagram for a linkl, we choose
orientations for each knot inl. We then assign integer labels to each crossing between any
pair of knotsk, k′, following the convention in Figure 2. Letλ(k, k′) of the pair of knots

+1 −1

Figure 2: The crossing label is+1 if the rotation of the overpass by 90 degrees counter-
clockwise aligns its direction with the underpass, and−1 otherwise.

be one half the sum of these labels. A standard argument using Reidemeister moves shows
thatλ is an invariant for equivalent pairs of knots up to sign [1]. The linking numberλ(l)
of a link l is

λ(l) =
∑

k 6=k′∈l

|λ(k, k′)|.

We note thatλ(l) is independent of knot orientations. Also, the linking number does not
completely recognize linking. The Whitehead link in Figure 1, for example, has linking
number zero, but is not separable.
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2.0.0.6. SURFACES. The linking number may be equivalently defined by other methods,
including one based on surfaces [17]. A spanning surfacefor a knotk is an embedded
surface with boundaryk. An orientable spanning surface is aSeifert surface. Because it is
orientable, we may label its two sides as positive and negative. We show examples of such
surfaces for the Hopf link in Figure 3.

Figure 3: The Hopf link and Seifert surfaces of its two unknots. Clearly,λ = 1. This link
is the 200th complex for data setH in Section 6.

Given a pair of oriented knotsk, k′, and a Seifert surfaces for k, we labels by using
the orientation ofk. We then adjustk′ via a homotopyh until it meetss in a finite number
of points. Following alongk′ according to its orientation, we add+1 wheneverk′ passes
from the negative to the positive side, and−1 wheneverk′ passes from the positive to the
negative side. The following lemma asserts that this sum is independent of our the choice
of h ands, and it is, in fact, the linking number.

SEIFERT SURFACE LEMMA . λ(k, k′) is the sum of the
signed intersections betweenk′ and any Seifert surface fork.

The proof is by a standard Seifert surface construction [17]. If the spanning surface is non-
orientable, we can still count how many times we pass through the surface, giving us the
following weaker result.

SPANNING SURFACE LEMMA . λ(k, k′) (mod 2) is the parity of the number of timesk′

passes through any spanning surface fork.

2.0.0.7. GRAPHS. We need to extend the linking number to graphs, in order to use the
above lemma for computing linking numbers for simplicial complexes. LetG = (V, E), E ⊆(
V
2

)
be a simple undirected graph inR3 with c componentsGi. Let z1, . . . , zm be a fixed

basis for the cycles inG, wherem = |E| − |V | + c. We then define the linking number
between two components ofG to beλ(Gi, Gj) = |λ(zp, zq)| for all cycleszp, zq in Gi, Gj ,
respectively. The linking number ofG is then defined by combining the total interaction
between pairs of components:

λ(G) =
∑

i6=j

λ(Gi, Gj).

The linking number is computed only between pairs of components following Seifert’s
original definition. Linked cycles within the same component may be easily unlinked by a
homotopy. Figure 4 shows that the linking number for graphs is dependent on the chosen
basis. While it may seem that we wantλ(G) = 1 in the figure, there is no clear answer
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Figure 4: We get differentλ(G) for a graphG (top) depending on our choice of basis for
G2: two small cycles (left) or one large and one small cycle (right.)

in general. We will define a canonical basis in Section 4 using the persistent homology
algorithm to computeλ(G) for simplicial complexes.

3. Alpha Complexes

Our approach to analyzing a topological space is to assume a filtration for such a space.
A filtration may be viewed as a history of a growing space that is undergoing geometric and
topological changes. While filtrations may be obtained by various methods, only meaning-
ful filtrations give meaningful linking numbers. As such, we use alpha complex filtrations
to model molecules. The alpha complex captures the connectivity of a molecule that is rep-
resented by a union of spheres. This model may be viewed as the dual of the space filling
model for molecules [14].

3.0.0.8. DUAL COMPLEX. A spherical ballû = (u,U2) ∈ R3 × R is defined by its
centeru and square radiusU2. If U2 < 0, the radius is imaginary and so is the ball. The
weighted distanceof a point x from a ball û is πû(x) = ‖x− u‖2 − U2. Note that a
point x ∈ R3 belongs to the ball iffπû(x) 6 0, and it belongs to the bounding sphere iff
πû(x) = 0. Let S be a finite set of balls. TheVoronoi regionof û ∈ S is the set of points
for which û minimizes the weighted distance,

Vû = {x ∈ R3 | πû(x) 6 πv̂(x), ∀v̂ ∈ S}.
The Voronoi regions decompose the union of balls into convex cells of the formû ∩ Vû,
as illustrated in Figure 5. Any two regions are either disjoint or they overlap along a
shared portion of their boundary. We assume general position: at most four Voronoi re-
gions can have a non-empty common intersection. LetT ⊆ S have the property that its
Voronoi regions have a non-empty common intersection, and consider the convex hull of
the corresponding centers,σT = conv {u | û ∈ T}. General position implies thatσT is a
d-dimensional simplex, whered = card T − 1. Thedual complexof S is the collection of
simplices constructed in this manner,

K = {σT | T ⊆ S,
⋂

û∈T

(û ∩ Vû) 6= ∅}.
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Figure 5: Union of nine disks, convex decomposition using Voronoi regions, and dual com-
plex.

Any two simplices inK are either disjoint or they intersect in a common face which is a
simplex of smaller dimension. Furthermore, ifσ ∈ K, then all faces ofσ are simplices in
K. A set of simplices with these two properties is asimplicial complex[15]. A subcomplex
is a subsetL ⊆ K that is itself a simplicial complex.

3.0.0.9. ALPHA COMPLEX. A filtration ordering is an ordering of a set of simplices
such that each prefix of the ordering is a subcomplex. The sequence of subcomplexes de-
fined by taking successively larger prefixes is the correspondingfiltration. For dual com-
plexes of a collection of balls, we generate an ordering and a filtration by literally growing
the balls. For every real numberα2 ∈ R, we increase the square radius of a ballû by
α2, giving usû(α) = (u,U2 + α2). We denote the collection of expanded ballsû(α) as
S(α). If U2 = 0, thenα is the radius of̂u(α). If α2 < 0, thenα is imaginary, and so
is the ballû(α). Theα-complexK(α) of S is the dual complex ofS(α) [7]. For exam-
ple, K(−∞) = ∅, K(0) = K, andK(∞) = D is the dual of the Voronoi diagram, also
known as the Delaunay triangulation ofS. For each simplexσ ∈ D, there is a uniquebirth
timeα2(σ) defined such thatσ ∈ K(α) iff α2 > α2(σ). We order the simplices such that
α2(σ) < α2(τ) impliesσ precedesτ in the ordering. More than one simplex may be born
at a time and such cases may arise even ifS is in general position. In the case of a tie, it is
convenient to order lower-dimensional simplices before higher-dimensional ones, breaking
remaining ties arbitrarily. We call the resulting sequence theage orderingof the Delaunay
triangulation.

3.0.0.10. MODELING MOLECULES. To model molecules by alpha complexes, we use
representations of molecules as unions of balls. Each ball is an atom, as defined by its
position in space and its van der Waals radius. These atoms become the spherical balls we
need to define our complexes. Our representation gives us a filtration of alpha complexes
for each molecule, as shown in Figure 6. We compute a linking number for each complex in
a filtration ofm complexes. Let[m] denote the set{1, 2, . . . , m}. Then, the linking number
may be viewed as asignature functionλ : [m] → Z that maps each indexi ∈ [m] to an
integerλ(i) ∈ Z. For other signature functions for filtrations of alpha complexes, see [5, 7].
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Figure 6: Six complexes in the filtration of 42,787 complexes for data setZ in Section 6.

4. Basis and Surfaces

To compute the linking numbers for an alpha complex, we need to recognize cycles,
establish a basis for the set of cycles, and find spanning surfaces for the basis cycles. We
do so by extending an algorithm we developed for computing persistent homology [6]. We
dispense with defining persistence and concentrate on the algorithm and its extension.

4.0.0.11. HOMOLOGY. We use homology to define cycles in a complex. Homology par-
titions cycles into equivalence classes using the boundary class of bounding cycles as the
null element of a quotient group in each dimension. We useZ2 homology, so the group
operation, which we calladdition, is symmetric difference. Addition allows us to com-
bine sets of simplices in a way that eliminates shared boundaries, as shown in Figure 7.
Intuitively, non-bounding 1-cycles correspond to the graph notion of a cycle. We need to

+

Figure 7: Symmetric difference in dimensions one and two. We add two 1-cycles to get a
new 1-cycle. We add the surfaces the cycles bound to get a spanning surface for the new
1-cycle.

define a basis for the first homology group of the complex which contains all 1-cycles, and
choose representatives for each homology class. We use these representatives to compute
linking numbers for the complex.

A simplex of dimensiond in a filtration either creates ad-cycle or destroys a(d − 1)-
cycle by turning it into a boundary. We mark simplices aspositiveor negative, according to
this action [5]. In particular, edges in a filtration which connect components are marked as
negative. The set of all negative edges gives us a spanning tree of the complex, as shown in
Figure 8. We use this spanning tree to define our canonical basis. Every time a positive edge
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σi

Figure 8: Solid negative edges combine to form a spanning tree. The dashed positive edge
σi creates a canonical cycle.

σi is added to the complex, it creates a new cycle. We choose the unique cycle that contains
σi and no other positive edge as a new basis cycle. We call this cycle acanonical cycle, and
the collection of canonical cycles, thecanonical basis. We use this basis for computation.

4.0.0.12. PERSISTENCE. The persistence algorithm matches positive
and negative simplices to find life-times of homological cycles in a filtration. The algorithm
does so by following a representative cyclez for each class. Initially,z is the boundary of
a negative simplexσj , asz must lie in the homology classσj destroys. The algorithm then
successively adds class-preserving boundary cycles toz until it finds the matching positive
simplexσi, as shown in Figure 9. We call the half-open interval[i, j) the persistence in-

i

σj

σ

Figure 9: Starting from the boundary of the negative triangleσj , the persistence algorithm
finds a matching positive edgeσi by finding the dashed 1-cycle. We modify this 1-cycle
further to find the solid canonical 1-cycle and a spanning surface.

tervalof both the homology class and its canonical representative. During this interval, the
homology class exists as a class of homologous non-boundings cycles in the filtration. As
such, the class may only affect the linking numbers of complexesKi, . . . , Kj−1 in the fil-
tration. We use this insight in the next section to design an algorithm for computing linking
numbers.

4.0.0.13. COMPUTING CANONICAL CYCLES. The persistence algorithm halts when it
finds the matching positive simplexσi for a negative simplexσj , often generating a cy-
cle z with multiple positive edges and multiple components. We need to convertz into
a canonical cycle by eliminating all positive edges inz except forσi. We call this pro-
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cesscanonization. To canonize a cycle, we add cycles associated with unnecessary positive
edges toz successively, untilz is composed ofσi and negative edges, as shown in Figure 9.
Canonization amounts to replacing one homology basis element with a linear combina-
tion of other elements in order to reach the unique canonical basis we defined earlier. A
cycle undergoing canonization changes homology classes, but the rank of the basis never
changes.

4.0.0.14. COMPUTING SPANNING SURFACES. For each canonical cycle, we need a
spanning surface in order to compute linking numbers. We may compute these by main-
taining surfaces while computing the cycles. Recall that initially, a cycle representative is
the boundary of a negative simplexσj . We useσj as the initial spanning surface forz.
Every time we add a cycley to z in the persistence algorithm, we also add the surface
bounded byy to thez’s surface. We continue this process through canonization to produce
both canonical cycles and their spanning surfaces. Here, we are using a crucial property
of our filtrations: the final complex is always the Delaunay complex of the set of weighted
points and does not contain any 1-cycles. Therefore, all 1-cycles are eventually turned to
boundaries and have spanning surfaces.

If the generated spanning surface is Seifert, we may apply theSEIFERT SURFACE

LEMMA to compute the linking numbers. In some cases, however, the spanning surface
is not Seifert, as in Figure 10. In these cases, we may either compute the linking number
modulus 2 by applying theSPANNING SURFACE LEMMA , or compute the linking number
by alternative methods.

Figure 10: The spanning surface produced for the cycle which is the boundary of a Möbius
strip is non-orientable.

5. Algorithm

In this section, we use the basis and spanning surfaces computed for 1-cycles to find
linking numbers for all complexes in a filtration. Since we focus on 1-cycles only, we will
refer to them simply as cycles.

5.0.0.15. OVERVIEW. We assume a filtrationK1,K2, . . . , Km as input, which we al-
ternately view as a single complex undergoing growth. As simplices are added, the com-
plex undergoes topological changes which affect the linking number: new components are
created and merged together, and new non-bounding cycles are created and eventually de-
stroyed. We use a basic insight from the last section: a basis cyclez with persistence interval
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[i, j) may only affect the linking numbers of complexesKi,Ki+1, . . . , Kj−1 in the filtra-
tion, Consequently, we only need to consider basis cyclesz′ that exist during some subin-
terval [u, v) ⊆ [i, j) in a different component thanz’s. We call the pairz, z′ a potentially-
linked (p-linked) pairof basis cycles, and the interval[u, v) thep-linking interval.

Focusing on p-linked pairs, we get an algorithm with three phases. In the first phase,
we compute all p-linked pairs of cycles. In the second phase, as shown in Figure 11, we
compute the linking numbers of such pairs. In the third and final phase, we aggregate these
contributions to find the linking number signature for the filtration.

for each p-linked pairzp, zq with interval[u, v) do
Computeλ = |λ(zp, zq)| ;
Output(λ, [u, v))

endfor .

Figure 11: Linking number algorithm.

Two cycles zp, zq with persistence intervals [ip, jp),
[iq, jq) co-exist during[r, s) = [ip, jp) ∩ [iq, jq). We need to know if these cycles also
belong to different components during some sub-interval[u, v) ⊆ [r, s). Let tp,q be the
minimum index in the filtration whenzp andzq are in the same component. Then,[u, v) =
[r, s) ∩ [0, tp,q). If [u, v) 6= ∅, zp, zq are p-linked during that interval. In the remainder of
this section, we will first develop a data structure for computingtp,q for any pair of cycles
zp, zq. Then, we use this data structure to efficiently enumerate all pairs of p-linked cycles.
Finally, we give an algorithm for computingλ(zp, zq) for a p-linked pair of cycleszp, zq.

5.0.0.16. COMPONENT HISTORY. To computetp,q, we need to have a history of the
changes to the set of components in a filtration. There are two types of simplices that
can change this set. Vertices create components and are therefore all positive. Negative
edges connect components. We construct a binary tree calledcomponent treerecording
these changes using a union-find data structure [4]. The leaves of the component tree are
the vertices of the filtration. When a negative edge connects two components, we create
an internal node and connect it to the nodes representing these components, as shown in
Figure 12. The component tree has sizeO(n) for n vertices, and we construct it in time

1

2 4

5 21 54

3

6

7

6

7

3

Figure 12: The union-find data structure (left) has vertices as nodes and negative edges
as edges. The component tree (right) has vertices as leaves and negative edges as internal
nodes.
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O(nA−1(n)), whereA−1(n) is the inverse of the Ackermann’s function which exhibits
insanely slow growth. Having constructed the component tree, we find the time two vertices
w, x are in the same component by finding their lowest common ancestor (lca) in this
tree. We utilize Harel and Tarjan’s optimal method to find lca’s withO(n) preprocessing
time andO(1) query time [11]. Their method uses bit operations. If such operations are
not allowed, we may use van Leeuwen’s method with the same preprocessing time and
O(log log n) query time [20].

5.0.0.17. ENUMERATION. Having constructed the component tree, we use a modified
union-find data structure to enumerate all pairs of p-linked cycles. We augment the data
structure to allow for quick listing of all existing canonical cycles in each component in
Ki. Our augmentation takes two forms: we put the roots of the disjoint trees, representing
components, into a circular doubly-linked list. We also store all existing cycles in each
component in a doubly-linked list at the root node of the component, as shown in Figure 13.
When components merge, the rootx1 of one component becomes the parent of the rootx2

Figure 13: The augmented union-find data structure places root nodes in the shaded circular
doubly-linked list. Each root node stores all active canonical cycles in that component in a
doubly-linked list, as shown for the darker component.

of the other component. We concatenate the lists stored at thex1, x2, store the resulting
list at x1, and eliminatex2 from the circular list inO(1) time. When cyclezp is created at
time i, we first findzp’s component in timeO(A−1(n)). Then, we storezp at the root of
the component and keep a pointer tozp with simplexσj , which destroyszp. This implies
that we may deletezp from the data structure at timej with constant cost.

Our algorithm to enumerate p-linked cycles is incremental. We add and delete cycles
using the above operations from the union-find forest, as the cycles are created and deleted
in the filtration. When a cyclezp is created at timei, we output all p-linked pairs in which
zp participates. We start at the root which now storeszp and walk around the circular list
of roots. At each rootx, we query the component tree we constructed in the last subsection
to find the timet when the component ofx merges with that ofzp. Note thatt = tp,q for
all cycleszq stored atx. Consequently, we can compute the p-linking interval for each pair
zp, zq to determine if the pair is p-linked. If the filtration containsP p-linked pairs, our
algorithm takes timeO(mA−1(n) + P ), as there are at mostm cycles in the filtration.

5.0.0.18. ORIENTATION. In the previous section, we showed how one may compute
spanning surfacessp, sq for cycleszp, zq, respectively. To compute the linking number
using our lemma, we need to orient either the pairsp, zq or zp, sq. Orienting a cycle is
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trivial: we orient one edge and walk around to orient the cycle. If either surface has no self-
intersections, we may easily attempt to orient it by choosing an orientation for an arbitrary
triangle on the surface, and spreading that orientation throughout. The procedure either
orients the surface or classifies it as non-orientable. We currently do not have an algorithm
for orienting surfaces with self-intersections. The main difficulty is distinguishing between
two cases for a self-intersection: a surface touching itself and passing through itself, as
shown in Figure 14.

or=

Figure 14: A surface self-intersection viewed from its side. We cannot resolve it as the
surface touching or passing through itself.

5.0.0.19. COMPUTINGλ. We now show how to computeλ(zp, zq) for a pair of p-linked
cycleszp, zq, completing the description of our algorithm in Figure 11. We assume that we
have orientedsp, zq for the remainder of this subsection.

Let the star of a vertexu St u be the set of simplices containingu as a vertex. We
subdivide the complex via abarycentric subdivisionby connecting the centroid of each
triangle to its vertices and midpoints of its edges, subdividing the simplices accordingly.
This subdivision guarantees that no edgeuv will have both ends on a Seifert surface unless
it is entirely contained in that surface. We note that this approach mimics the construction
of regular neighborhoods for complexes [9].

For a vertexu ∈ sp, the edge property guaranteed by subdivision enables us to mark
each edgeuv ∈ St u, v 6∈ sp as positive or negative, depending on the location ofv with
respect tosp. We show an example of this marking in Figure 15. After marking edges, we

u

+ + +

− − −

+
ps

Figure 15: Edgesuv ∈ St u, u ∈ sp, v 6∈ sp are marked+ or− depending on where they
end relative to the oriented Seifert surfacesp.

walk once aroundzq, starting at a vertex not onsp. If such a vertex does not exist, then
λ(zp, zq) = 0. Otherwise, we create a stringSp,q of + and− characters by noting the
marking of edges during our walk.Sp,q has even length as we start and end our walk on
a vertex not onsp, and each intersection ofzq with sp produces a pair of characters, as
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+ −

− −

+ ++ +

qzsp
+

v

Figure 16: Starting atv, we walk onzq according to its orientation. Segments ofzq that
intersectsp are shown, along with their contribution toSp,q = “ + + + + +−−−”. We
getλ(zp, zq) = −1.

shown in Figure 16. IfSp,q is the empty string,zq never intersectssp andλ(zp, zq) = 0.
Otherwise,zq passes throughsp for pairs+− and−+, corresponding tozq piercing the
positive or negative side ofsp, respectively. ScanningSp,q from left to right in pairs, we
add+1 for each occurrence of−+,−1 for each+−, and0, for each++ or−−. Applying
theSEIFERT SURFACE LEMMA in Section 2, we see that this sum isλ(zp, zq).

5.0.0.20. COMPUTING λ mod 2. If neither of the spanning surfacessp, sq of the two
cyclesz1, z2 is Seifert, we may still computeλ(z1, z2) mod 2 by a modified algorithm,
provided one surface, saysp, has no self-intersections. We choose an orientation onsp

locally, and extend it until all the stars of the original vertices are oriented. are oriented.
This orientation will not be consistent globally, resulting in pair of adjacent vertices insp

with opposite orientations. We call the implicit boundary between vertices with opposite
orientations aflip curve, as shown in bold in Figure 17. When a cycle segment crosses the

− + −

− −

+ + − −

q

sp
−

z
sp

+

v

Figure 17: The bold flip curve is the border ofs+
p ands−p , the portions ofsp that are oriented

differently.Sp,q = “++−−−+−−− ”, so counting all+’s, we getλ(zp, zq) mod 2 =
3 mod 2 = 1.
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flip curve, orientation changes. Therefore, in addition to noting marked edges, we add a
+ to the stringSp,q every time we cross a flip line. To computeλ(zp, zq) mod 2, we only
count+’s in Sp,q and take the parity as our answer.

If sp is orientable, there are no flip curves on it. The contribution of cycle segments to
the string is the same as before:+− or −+ for segments that pass throughsp, and++
and−− for segments that do not. By counting+’s, only segments that pass throughsp

change the parity of the sum forλ. Therefore, the algorithm computesλ mod 2 correctly
for orientable surfaces. For the orientable surface on the right in Figure 16, for instance,
we getλ(zp, zq) mod 2 = 5 mod 2 = 1, which is equivalent to the parity of the answer
computed by the previous algorithm.

5.0.0.21. REMARK . We are currently examining the question of orienting surfaces with
self-intersections. Using our current methods, we may obtain a lower bound signature forλ
by computing a mixed sum: we computeλ andλ mod 2 whenever we can to obtain the ap-
proximation. We may also develop other methods, including those based on the projection
definition of the linking number in Section 2.

6. Experiments

In this section, we present some experimental timing results and statistics which we
used to guide our algorithm development. We also provide visualizations of basis cycles in
a filtration. All timings were done on a Micron PC with a 266 MHz Pentium II processor
and 128 MB RAM running Solaris 8.

6.0.0.22. IMPLEMENTATION. We have implemented all the algorithms in the paper, ex-
cept for the algorithm for computingλ mod 2. Our implementation differs from our exposi-
tion in three ways. The implemented component tree is a standard union-find data structure
with the union by rank heuristic, but no path compression [4]. Although this structure has an
O(n log n) construction time and anO(log n) query time, it is simple to implement and ex-
tremely fast in practice. We also use a heuristic to reduce the number of p-linked cycles.
We store bounding boxes at the roots of the augmented union-find data structure. Before
enumerating p-linked cycles, we check to see if the bounding box of the new cycle inter-
sects with that of the stored cycles. If not, the cycles cannot be linked, so we obviate their
enumeration. Finally, we only simulate the barycentric subdivision.

6.0.0.23. DATA . We have experimented with a variety of data sets and show the results
for six representative sets in this section. The first data set contains points regularly sampled
along two linked circles. The resulting filtration contains a complex which is a Hopf link, as
shown in Figure 3. The other data sets represent molecular structures with weighted points.
In each case, we first compute the weighted Delaunay triangulation and the age ordering of
that triangulation. The data points become vertices or 0-simplices. Table 1 gives the sizes
of the data sets, their Delaunay triangulations, and age orderings. We show renderings of
specific complexes in the filtration for data setK in Figure 18.
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# simplices of dimensiond
0 1 2 3

total

H 100 1,752 3,240 1,587 6,679
G 318 2,322 3,978 1,973 8,591
M 1,001 7,537 13,018 6,481 28,037
Z 1,296 11,401 20,098 9,992 42,787
K 2,370 17,976 31,135 15,528 67,009
D 7,774 60,675 105,710 52,808 226,967

Table 1:H defines a Hopf link.G is Gramicidin A, a small protein.M is a protein monomer.
Z is a portion of a periodic zeolite structure.K is a human cyclin-dependent kinase.D is a
DNA tile.

Figure 18: ComplexK8168 of K has two components and seventeen cycles. The spanning
surfaces are rendered transparently.

6.0.0.24. BASIS. Table 2 summarizes the basis generation process. We distinguish the
two steps of our algorithm: initial basis generation and canonization. We give the number of
basis cycles for the entire filtration, which is equal to the number of positive edges. We show
the effect of canonization on the size of the cycles and their spanning surfaces in Table 3.
Note that canonization increases the size of cycles by one or two orders of magnitude. This
is partially the reason we try to avoid performing the link detection if possible.

6.0.0.25. L INKS. In Table 4, we show that our component tree and augmented trees
are very fast in practice to generate p-linked pairs. We also show that our bounding box
heuristic for reducing the number of p-linked pairs increases the computation time negligi-
bly. The heuristic is quite successful, moreover, in reducing the number of pairs we have
to check for linkage It eliminates99.8% of the candidates for datasetZ, for example, as
shown in Table 5. The differences in total time of computation reflect the basic structure
of the datasets. DatasetD has a large computation time, for instance, as the average size of
the p-linked surfaces is approximately 264.16 triangles, compared to about 1.88 triangles
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time in seconds
generate canonize total

# cycles

H 0.08 0.04 0.12 1,653
G 0.08 0.03 0.11 2,005
M 0.28 0.20 0.48 6,537
Z 0.46 0.46 0.92 10,106
K 0.72 1.01 1.73 15,607
D 2.63 2.94 5.57 52,902

Table 2: Time to generate and canonize basis cycles, as well as their number.

avg cycle length avg surface size
before after before after

H 3.06 51.03 1.06 63.04
G 3.26 13.02 1.38 52.28
M 3.29 34.18 1.33 71.18
Z 4.71 25.33 3.26 117.81
K 3.48 67.87 1.62 166.70
D 3.46 39.94 1.81 158.99

Table 3: Average number of edges per cycle and number of triangles per spanning surface,
before and after canonization.

for datasetK, and about 1.73 triangles for datasetM.

6.0.0.26. DISCUSSION. Our initial experiments demonstrate the feasibility of the algo-
rithms for fast computation of linking. The experiments fail to detect any links in the protein
data, however. This is to be expected, as a protein consists of a single component, the pri-
mary structure of a protein being a single polypeptide chain of amino acids. Links, on the
other hand, exist in different components by definition. We may relax this definition easily,
however, to allow for links occuring in the same component. We have implementations of
algorithms corresponding to this relaxed definition. Our future plans include looking for
links in proteins from the Protein Data Bank [16]. Such links could occur naturally as a

tree alg heur links

H 0.01 0.00 0.00 0.01
G 0.00 0.01 0.02 0.02
M 0.03 0.06 0.06 0.23
Z 0.04 0.07 0.07 0.13
K 0.06 0.13 0.16 0.36
D 0.27 0.56 0.82 8.22

Table 4: Time in seconds to construct the component tree, and enumerate p-linked pairs
(alg), p-linked pairs with intersecting bounding boxes (heur), and links.
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alg heur links

H 1 1 1
G 112 0 0
M 16,503 14,968 0
Z 169,594 308 0
K 12,454 11,365 0
D 98,522 4,448 0

Table 5: Number of p-linked pairs (alg), p-linked pairs with intersecting bounding boxes
(heur), and links.

result of disulphide bonds between different residues in a protein.

7. Conclusion

In this paper, we develop algorithms for finding the linking numbers of a filtration. We
give algorithms for computing bases of 1-cycles and their spanning surfaces in simplicial
complexes, and enumerating co-existing cycles in different components. In addition, we
present an algorithm for computing the linking number of a pair of cycles using the surface
formulation. Our implementations show that the algorithms are fast and feasible in practice.
By modeling molecules as filtrations of alpha complexes, we can detect potential non-
trivial tangling within molecules. Our work is within a framework for applying topological
methods for understanding molecular structures.
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