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SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY
THEORY
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(communicated by Gunnar Carlsson)

Abstract
Concurrency, i.e., the domain in computer science which

deals with parallel (asynchronous) computations, has very
strong links with algebraic topology; this is what we are de-
veloping in this paper, giving a survey of “geometric” models
for concurrency. We show that the properties we want to prove
on concurrent systems are stable under some form of deforma-
tion, which is almost homotopy. In fact, as the “direction” of
time matters, we have to allow deformation only as long as we
do not reverse the direction of time. This calls for a new ho-
motopy theory: “directed” or di-homotopy. We develop some
of the geometric intuition behind this theory and give some
hints about the algebraic objects one can associate with it (in
particular homology groups). For some historic as well as for
some deeper reasons, the theory is at a stage where there is a
nice blend between cubical, ω-categorical and topological tech-
niques.

1. Introduction

Concurrency theory deals with systems in which several computational activities
(called processes in general) can be performed at the same time, in an asynchronous
manner. These were introduced in order to have increased computational power, so
that computations can be faster (essentially in scientific computing), or so that
some concurrent transactions can be handled efficiently (user interfaces, embedded
systems reacting to the external environment etc.) or just handled at all (mostly
because of the amount of memory needed, as for concurrent databases).

The variety of applications that motivated the use of concurrent machines has
led to many different architectures. The main problem in concurrency is to have
processes cooperating for a common goal. Cooperation implies some form of syn-
chronisation and information passing. This can be done through message passing
for instance. In this class of models, processes have their own local memory, which
cannot be accessed by other processes. The way to communicate values to other
processes is by explicitely sending values to these other processes, which will have
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to explicitely ask for receiving values. One of the first of this class of models, is
the rendez-vous model (as used in most process algebra, like CCS [51], CSP [37]
etc.) in which the action of sending is blocking the sender until the receiver ac-
tually receives the corresponding message. Symmetrically the action of receiving
blocks the receiver until the message is actually sent. This is the simplest of all
message-passing models (also called synchronous message-passing). The variations
of it include, non-blocking send but blocking receive, non-blocking send and receive
(asynchronous message-passing), broadcasts to groups of processes instead of “point
to point” communication etc.

Another important class of concurrent architectures is shared memory style. Here,
processes have a local memory indeed, where they can perform their local computa-
tions, but also have a common memory space, which is accessible to all. Communi-
cation between processes is essentially asynchronous and is realized by writing and
reading values in this common space, as pictured in Figure 1. Processes P1, · · · , Pn

are writing and reading through shared locations such as scalar variables x and z
(containing boolean or integer values for instance), and also through more complex
structures, such as y, a “3-cell buffer” i.e., a variable consisting of a queue of 3
values. If concurrent reading by several processes is not a problem in general, con-
current writing of scalar variables is not to be allowed. At the hardware level, this
would mean at best, undefined behaviour, and at worst, short circuit. Therefore, it
is necessary to “protect” the accesses to shared variables by some mechanism. A
classical one is by using “semaphores” introduced by E. W. Dijkstra [10] in 1968.

Basically, before a process tries to write on a location in a shared memory, it
has to put a “lock” on it (through its associated semaphore), blocking the other
processes which try to write at the same time and on the same location. Formally,
the action of putting a lock on location x is denoted by Px (using E. W. Dijkstra’s
notation [10]). In case x is some more complex structure than a read/write variable
(such as y above), at most n > 1 processes can hold a lock on x (here with z, n = 3)
before blocking the accesses by other processes. In this case we call the associated
semaphore an n-semaphore1. After some process has written what it needed to write
on x, it can safely relinquish its lock by doing action V x; this will allow another
process to acquire a lock on x, i.e., to allow it to resume its execution.

Let us forget about actual calculations on x, y, z etc. and focus only on the
locking, unlocking mechanism (the coordination of processes involved). We will
then identify shared locations with their associated n-semaphores. This urges us
to consider throughout this paper (except for some minor exceptions) a simplified
programming language, in which processes are regular expressions on the alphabet
{Pa, V a | a ∈ Loc}, where Loc is a set of “locations”. Each of these locations are
in fact n-semaphores, for some n, defined by a map s : Loc → IN. Regular expres-
sions are formed freely from the alphabet {Pa, V a | a ∈ Loc} by application of the

1In fact, a semaphore has an associated integer which counts the number of processes which can
still lock it; each lock decreases the counter, each unlock increases it. Processes trying to lock a
zero-valued semaphore have to wait for another process to relinquish a lock. When the semaphore
is initialized with value n > 1, it can be locked by at most n processes concurrently; it is called a
counting semaphore in operating systems theory. When it is initialized with value one, it is called
a binary semaphore. We use the term n-semaphore in the two cases for the sake of simplicity.
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Figure 1: A shared memory concurrent machine.

following algebraic operators: + (which is associative and commutative), . (which
is associative), and the unary operator ∗. “Elementary moves” (or actions) are el-
ements of the alphabet, i.e., Pa, V b etc. A + B means that sequences of actions
that can be taken are those of A or those of B – this is non-deterministic choice.
Sequences of actions of A.B are concatenations of sequences of actions of A and of
actions of B (this is the concatenation operation), and sequences of actions of A∗

are any number of concatenations of sequences of actions of A (this is the Kleene
star operation, or finite unbounded iteration).

What are we looking for now? We want to be able to derive properties of con-
current machines, even of such a simplified one. Of course, the theory of sequential
computation is very much advanced and the properties of interest for sequential
computation (what function of the arguments are we computing? Is the computa-
tion always terminating for all its arguments? How long will this take? etc.) are not
the ones we are dealing with here. The novelty in concurrent programming resides
not in the fact we are computing another class of functions (which would contradict
Turing’s thesis) but is the fact that coordination between processes does matter.
For instance, we might have forgotten to properly lock some locations, creating an
unexpected behaviour of the program. On the contrary we might have constrained
the coordination too much, preventing the program to carry out normal computa-
tion. This is called a deadlocking situation. Another property of interest is to know
whether a concurrent system can go into a “bad state” or not. Typically, we are
trying to solve a “reachability problem”, e.g., do we have an execution in our system
which will go through such bad states? Also, we can ask for slightly more subtle
properties: for some applications (we will see an example later on), some sequences
of accesses to resources are considered right while others are not. It is therefore of
primary importance to be able to classify such sequences; this will actually lead to
arguments using homotopy theory.

Before getting to this, let us briefly show how this would normally be dealt with.
Of course to be able to prove things, one needs a mathematical model, in particular
for the notion of execution (sequence of actions) in a concurrent system.

There is a great variety of models for concurrency, as witnessed in [68] for in-
stance. Transition systems are one of the oldest semantic models, both for sequential
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Figure 3: A transition system interpret-
ing Pb.Pa.V b.V a | Pa.Pb.V a.V b.

and concurrent systems:

Definition 1. A transition system is a structure (S,i,L,Tran) where,
• S is a set of states with initial state i

• L is a set of labels, and
• Tran ⊆ S × L× S is the transition relation

Transitions systems are nothing but discrete dynamical systems: in general the
transition relation Tran is represented as a directed graph of actions. For in-
stance the transition system depicted in Figure 2 gives semantics to the process
Pa.Pb.c∗.(V a.V b + V b.V a), i.e., to a process which locks a, then b then does some
sequence c any finite number of times (this can be a computation on a and b), then
unlocks a and b in any order. This behaviour can be seen by looking at paths (or
executions) in this directed graph, from the leftmost state (the initial state) to the
rightmost ones (the final states).

A simple way to look at processes in parallel is to build a transition system for
each process and then to construct some kind of fibered product of all these graphs
of actions (this has a formal sense, see for instance [1]): states of this transition
system are now tuples of states of each individual process, and transitions from one
to another are interleavings of transitions of each individual process. For instance,
the graph of actions for T1 = Pb.Pa.V b.V a in parallel with T2 = Pa.Pb.V a.V b is
shown in Figure 3. State 1 is the initial state, actions on parallel segments have the
same label.

Now we can see that state 13 is not a “correct” final state. State 23 consists of
the pair of endpoints of digraphs representing each process, but not 13, which has
nevertheless no future. This is a deadlock. In this situation, the first process T1 has
a lock on b, waiting for a lock on a where the second one T2 has a lock on a waiting
for a lock on b. This is typical of a “deadly embrace” as E. W. Dijkstra originally
put it.

We can also ask ourself whether this concurrent system can be in a state we do
not want (which is rather artificial here); this would be a state in which T1 would
have a lock on a and just released a lock on b, whether T2 would have a lock on b
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and just released a lock on a. Looking at the graph of Figure 3 one sees that this is
precisely state 19, but there is not path from the initial state 1 to 19, so we never
go through this “bad state”.

Last but not least, we can also try to classify the different access orders to
resources in this system. Looking at all the 10 paths from state 1 to state 23 in
the directed graph of Figure 3, we see that we have only two such orders: T1 holds
locks on b then a before T2 does, or T2 holds locks on a then b before T1 does.
This situation is typical of concurrent databases, and is known under the name
“serializability”.

A distributed database can be seen as a shared-memory machine (containing
items) on which processes (called transactions) act by reading and writing, getting
permissions to do so by using the appropriate functions on attached semaphores.
One of the main purposes of this area is to ensure coherence of the distributed
database while ensuring good performance, through a definition of suitable policies
(protocols) for transactions to perform their own actions (with P and V ). This en-
tails of course that deadlock-freedom of transactions is of importance. Correctness of
a distributed database is itself very often expressed by some form of a serializability
condition.

Suppose we have two transactions T1 = Pb.V b.Pa.V a and T2 = Pa.V a.Pb.V b
trying to modify two items a and b. There is a path of execution in which T1 ac-
quires b, T2 acquires a, then T1 acquires a and T2 acquires b. Think of the database
to represent airplane tickets (for instance b is the return ticket corresponding to the
one-way ticket a), and the two transactions to represent remote booking booths,
the action between a P and its corresponding V is writing a name on the ticket.
The situation here is that T1 will have reserved its one-way ticket and T2 will have
reserved its return ticket only. This is not an allowed behaviour. It is not equivalent
to a purely serial schedule which are the only ones that are specified as correct
(only one of T1 or T2 gets the whole lot of tickets). Of course, this could be seen on
the corresponding transition system, but if we have many complex processes run-
ning altogether, the “state-space” and therefore the path-space becomes enormous.
Therefore it is important to have a way to “retract” this onto smaller transition
systems (or shapes) where we can still observe similar state or path like properties.
This is where some ideas from algebraic topology sneak in. We will see in the next
sections how this can be made precise.

Organisation of the paper. In Sections 2, 3, 4 and 5, we show how to model
these phenomena using, in a natural way, concepts from topology and combinatorial
algebraic topology. This will give us a meaning for the terms used above, such as
“retract”, first in a topological model (Section 2) and then in a combinatorial model
(Sections 3 and 4). This is all based on a notion of deformation, or homotopy, which
is slightly different from the usual homotopy of topological spaces. Here the direction
of time should be preserved, meaning the maps and hence the homotopies considered
should preserve the time direction. This is why the newly defined homotopy theory
is called directed homotopy or “dihomotopy”.

To fully reflect the combinatorial model, we have to refine the topological model
of Section 2; this is done in Section 5. Then we can attack in Section 6 a first
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geometric study of the notions such as deadlocks, schedules, serializability conditions
etc. This is only a first step, ideally one should try to find computable invariants of
dihomotopy. Some leads are given in Section 7, but there again, this implies some
refinement of the modeling, to have nice and “precise” functors; some of which are
shown in Section 8. Then one can try to see if standard results, such as Seifert/van
Kampen or exact sequence theorems still hold in the new theory. Some hints are
given in Section 9. We conclude by some perspectives in Section 10.

Some further references. The “topological” formalization that follows is one of
the most recent ones, and essentially dates back to [14] and [15], but is based on
much older results [10].

The combinatorial (cubical) and homological calculations are older, and have
been at the center of [26], starting with [30], [25] and [27].

I actually only realized the relationships between the combinatorial and the topo-
logical approaches quite recently, and have been aware of this line of research only
after J. Gunawardena published his very enlightening paper [35].

There are some ideas about using n-categories in [54]. It is only quite recently
that these have come into full bloom, see [21] for a start, where many algebraic
invariants are also introduced. The “unification” of these approaches has lead us to
the concept of a globular CW-complex [23] which I will briefly describe in Section
8.

The interested reader can find more references about this in [28] or [15].

2. A topological approach

The first “algebraic topological” model I am aware of is called a progress graph
and has appeared in operating systems theory, in particular for describing the prob-
lem of “deadly embrace” in “multiprogramming systems”. Progress graphs are in-
troduced in [9], but attributed there to E. W. Dijkstra. In fact they also appeared
slightly earlier (for editorial reasons it seems) in [60].

The basic idea is to give a description of what can happen when several processes
are modifying shared resources. Given a shared resource a, we see it as its associated
semaphore that rules its behaviour with respect to processes. For instance, if a is
an ordinary shared variable, it is customary to use its semaphore to ensure that
only one process at a time can write on it (this is mutual exclusion). Then, given
n deterministic sequential processes Q1, . . . , Qn, abstracted as a sequence of locks
and unlocks on shared objects, Qi = R1a1

i .R
2a2

i · · ·Rniani
i (Rk being P or V for

respectively acquiring and releasing a lock on a semaphore), there is a natural way of
understanding the possible behaviours of their concurrent execution, by associating
to each process a coordinate line in IRn. The state of the system corresponds to a
point in IRn, whose ith coordinate describes the state (or “local time”) of the ith
processor.

Consider a system with finitely many processes running concurrently. We assume
that each process starts at (local time) 0 and finishes at (local time) 1; the P and
V actions correspond to sequences of real numbers between 0 and 1, which reflect
the order of the P ’s and V ’s. The initial state is (0, . . . , 0) and the final state
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Figure 4: Example of a progress graph

a b

Figure 5: The correspond-
ing request graph

is (1, . . . , 1). An example consisting of the two processes T1 = Pa.Pb.V b.V a and
T2 = Pb.Pa.V a.V b gives rise to the two dimensional progress graph of Figure 4.

The shaded area represents states which are not allowed in any execution path,
since they correspond to mutual exclusion. Such states constitute the forbidden area.
For instance, look at Figure 4 again and take a point whose abscissa is (strictly)
between local times marked as Pb and V b and whose ordinate is (strictly) between
local times marked also as Pb and V b. Having these coordinates means that both
T1 and T2 have acquired b and not relinquished it, which is impossible since b can
only be held by at most one process at a time. This point ought to be forbidden.

An execution path is a path from the initial state (0, . . . , 0) to the final state
(1, . . . , 1) avoiding the forbidden area and increasing in each coordinate - time can-
not run backwards. We call these paths directed paths or dipaths. This entails that
paths reaching the states in the dashed square underneath the forbidden region,
marked “unsafe” are deemed to deadlock, i.e., they cannot possibly reach the al-
lowed terminal state which is (1, 1) here. Similarly, by reversing the direction of
time, the states in the square above the forbidden region, marked “unreachable”,
cannot be reached from the initial state, which is (0, 0) here. Also notice that all
terminating paths above the forbidden region are “equivalent” in some sense, given
that they are all characterized by the fact that T2 gets a and b before T1 (as far
as resources are concerned, we call this a schedule). Similarly, all paths below the
forbidden region are characterized by the fact that T1 gets a and b before T2 does.

On this picture, one can already recognize many ingredients that are at the
center of the main problem of algebraic topology, namely the classification of shapes
modulo “elastic deformation”. As a matter of fact, the actual coordinates that are
chosen for representing the times at which P s and V s occur are unimportant, and
these can be “stretched” in any manner, so the properties (deadlocks, schedules etc.)
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are invariant under some notion of deformation, or homotopy. This is a particular
kind of homotopy though, and this will be at the center of many difficulties in later
work. We call it (in subsequent work) directed homotopy or dihomotopy in the sense
that it should preserve the direction of time. For instance, the two homotopic shapes,
both of which have two holes, of Figure 6 and Figure 7 have a different number of
dihomotopy classes of dipaths. In Figure 6 there are essentially four dipaths up
to dihomotopy (i.e., four schedules corresponding to all possibilities of accesses of
resources a and b) whereas in Figure 7, there are essentially three dipaths up to
dihomotopy.

Before going to the formalization, we should ask ourselves if there is not a simpler
way to model these properties.

There is another method to determine deadlocks in such situations, which was
of course known long ago and was entirely graph-theoretic, known as the request
graph. Figure 5 depicts the request graph corresponding to the progress graph of
Figure 4. Nodes of this graph are resources of the concurrent system, i.e., here,
semaphores. There is an directed edge from a resource x to a resource y if there
is a process which has locked x and needs to lock y at a given time. A sufficient
condition for such systems to be deadlock-free is that their corresponding request
graphs be acyclic2. Unfortunately, this is not a necessary condition in general. For
instance a request graph cannot capture the notion of n-semaphore with n > 2,
i.e., resources that can be shared by up to n processes but not n + 1 (for instance,
asynchronous buffers of communication of size n which can be “written” on by at
most n processes). This really calls for some higher-dimensional versions of graphs.

There is no need in fact to resort to fancy n-semaphores to see that request graphs
are not enough. Consider the following concurrent program, which is composed of
processes A, B and C in parallel (introduced for other reasons by Lipsky and Pa-

2Note that this is a very geometric condition indeed.
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Figure 8: The request graph for the Lipsky/Papadimitriou example.

Figure 9: Progress graph of the Lipsky/Papadimitriou example.

padimitriou, mentioned in [35]), its request graph (Figure 8) and the corresponding
progress graph3 viewed from different angles in Figure 9:

A=Px.Py.Pz.Vx.Pw.Vz.Vy.Vw
B=Pu.Pv.Px.Vu.Pz.Vv.Vx.Vz
C=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv

The request graph for this example contains cycles, but it can be proved that it
does not deadlock.

A progress graph can be seen as a topological space - a sub-space of IRn in
fact. The topology is necessary to formally define the notion of path, which has to
be continuous (executions cannot skip from one point to another in no time). We
also need a partial order, allowing to characterize the “direction” of the time flow,
i.e., to characterize future and past of points (which are states of the concurrent
system). The two should be at least minimally compatible. We should be able to take
(topological) limits under the partial order sign, leading to the following definition:

Definition 2. [15] A po-space (or partially ordered space) is a pair (X, 6) formed
by a topological space X together with a partial order 6 such that 6 is closed (i.e.,

3The holes in the cube of states are in fact represented as solid shapes.
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6 is a closed subset of X ×X with the product topology).

This implies two natural properties: the sets ↑ x = {y | x 6 y} and ↓ x = {y |
y 6 x} are closed subsets of X.

We need now to define suitable morphisms between po-spaces, which in turn will
give the notion of dipath.

Definition 3. Let (X, 6X) and (Y, 6Y ) be two po-spaces.
A continuous function f : X → Y is called a dimap if for all y, z ∈ X : y 6X

z ⇒ f(y) 6Y f(z).

A dipath on X is then a dimap f : ~I → X where ~I is the topological space
I = [0, 1] ⊆ IR with the (global) partial order inherited from the one of IR. We write
~P1(X) for the set of dipaths on X and ~Pα,β

1 (X) for the set of dipaths on X going
from α to β.

Now, we can define more precisely what we mean by deformation of dipaths,
which we call directed homotopy, or dihomotopy. It is very important here to fix
the extremities of dipaths. The idea is that, contrarily to the classical case where it
suffices4, in order to characterize a shape, to choose a basepoint and then to consider
loops around this basepoint modulo homotopy, here we really need two basepoints5.
As a matter of fact, it is very unlikely that we have lots of directed loops in our
shapes (in fact, there are only trivial constant directed loops in a progress graph)
so we have to choose a source basepoint and a target basepoint, and then study all
dipaths between these two points modulo dihomotopy.

Definition 4. [15] Let f and g be two dipaths on X between an initial point α and
a final point β. A dihomotopy between f and g is a dimap from ~I×I to X such that
for all x ∈ ~I, t ∈ I, H(x, 0) = f(x), H(x, 1) = g(x) and H(0, t) = α, H(1, t) = β.
We write f ∼ g.

A first example of the kind of properties one wants to check on some systems,
which involves a characterization of dihomotopy classes of dipaths is the “serializa-
tion” property in some concurrent databases.

Look for instance at Figure 7 which we have already mentioned in the introduc-
tion. All paths of execution above the left hole are equivalent to a serial execution
of transaction T2 then transaction T1. All paths of execution below the right hole
are equivalent to the serial execution of transaction T1 then T2. The third type of
dipath is not a serial dipath: it describes several equivalent cases, for instance: T1

acquires b, T2 acquires a, then T1 acquires a and T2 acquires b.
Can we now make sense of the serializability condition of the introduction? A

simple criterion can seem to do the job here. It seems on the example of Figure
7 that connectivity of the forbidden region is a necessary condition for a system
to be serializable. But it is unfortunately not a sufficient condition. Consider again
the Lipsky/Papadimitriou example (Figure 9). The forbidden region is connected
but not simply connected (it is homeomorphic to a solid torus). There is a dipath

4When we restrict to a path-connected component.
5Or in fact as we will see later on when looking at higher-order homotopies, we need a base dipath.
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going through the center of this “torus” which cannot be deformed on one of the
boudaries of the outer cube of states.

We definitely need some new theory here, developed in Section 6 in particular.
But let us divert a little and look at another “geometrically flavoured” model for
concurrency.

3. A Combinatorial Approach

Let us get back to transition systems now. In fact, there is another “geomet-
ric” model for concurrency which seems to relate more to transition systems than
progress graphs, introduced in the article by Vaughan Pratt [54], and which has
inspired the following work on the subject a lot (for instance [26]). It was essentially
motivated by a defect in the duality between event structures and automata6, two
well known mathematical models for concurrency.

The models which have been introduced to fix this defect, which can be attributed
to the fact that the former semantics is a “truly-concurrent” one where the latter
is a simulation by interleaving, were based on one form or another of CW-complex.
Such objects are gluings of of “elementary” shapes along their boundaries. The
following explanation is inspired by [26].

Consider first transition systems. They allow to model concurrency with an in-
terleaving semantics. They already are (1-dimensional) geometric objects. Many
important semantic properties are actually geometric properties on their under-
lying graph of transitions. For instance, initial and final (or deadlocking) states,
unreachables states, cycles, branchings and confluences, as seen in the introductory
section. All these geometric notions are important for validating concurrent sys-
tems or proving them correct. For instance, branchings are of importance for the
so-called “branching-time” semantic equivalences such as bisimulation equivalence
[50], and deadlocks and unreachable states are useful for static analysis (such as
model-checking for instance).

In fact, the modelisation of concurrent systems by interleaving naturally con-
structs cubical shapes. For example, squares like a | b:

.
a- .

A

.

b
?

a′
- .

b′

?

which represents the asynchronous execution of actions a and b (a′ and b′ are tran-
sitions which have respectively a and b as “labels”).

The natural idea is that this interleaving is an expansive encoding of the fact
that a and b are independent indeed. Using a physicist’s image, we would like to
represent all the ways we can mix together any number of sub-actions of a and b
(all the shuffles of possibly infinitely many chunks of a and b) as shown in Figure
10.

6Which, later, will also motivate the introduction of Chu spaces [55].
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Figure 10: Possible interleavings.

Figure 11: A precubical set representing three concurrent accesses to a 2-semaphore.

It is thus natural to put into our model all the possible subdivisions of the square,
i.e., the interior A of the square as well as its boundary. Adding in the model the
concept “interior of a square” (as well as “interior of any n-cube” when we model
n concurrent processes in parallel) naturally leads to the notion of precubical set.

The usual way to define a precubical set is to define the boundary operators; for
instance, for the square, we have four boundary operators, respectively correspond-
ing to a, b, a′ and b′. This is not enough since we want to encode the “direction
of time” as well in this model. In dimension one, we use a “directed graph” of
transitions; we would like something similar here but with “higher-dimensional”
transitions.

The choice made in [26] is to divide the family of boundary operators into two
families of operators. In the case of a square, we have a family of two source boundary
operators d0

0 and d0
1, with d0

0(A) = a and d0
1(A) = b, and a family of two target

boundary operators d1
0 and d1

1, with d1
0(A) = a′ and d1

1(A) = b′. This naturally
extends the notion of source and target of arcs of directed graphs.

If a 2-transition (square) is nothing but an independence relation between two
1-transitions, a 3-transition, or cube, is not merely a shortcut for 3 independence
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relations. The fact that action a is independent of action b, b independent of c, and
c of a does not imply that a, b and c can be executed altogether in an asynchronous
manner. It is the case for instance of an abstraction of a print spooler with two
printers, or of two floating-point units7, or of a communication buffer with two
cells, i.e., of a 2-semaphore s.

If we use the notations of E. W. Dijkstra [10], it suffices to consider the three
actions a = b = c = Ps; s can be shared by two but not by three processes at the
same time (see Figure 11). This kind of object which synchronizes very weakly is of
great importance for fault-tolerant distributed systems8.

These properties cannot be expressed simply (if at all) in most of the other math-
ematical models for concurrency, as asynchronous transition systems, prime event
structures etc. a notable exception being Petri nets. These have other drawbacks:
they are not very compositional, which makes them clumsy for analyzing concurrent
programs9.

Of course this can be easily (and fruitfully) generalized. The concurrent access
of n + 1 processes to a given n-semaphore is represented by the boundary of an
hypercube of dimension n + 1. This means we need to add n-transitions to our
model for all n > 0.

There again, we divide the family of boundary operators into two subfamilies: the
set of n-transitions will have a family of n source boundary operators d0

i , 0 6 i 6
n− 1 (all giving (n− 1)-transitions), and a family of n target boundary operators
d1

j , 0 6 j 6 n− 1. For instance, for n = 3:

(0, 0, 0)
b - (1, 0, 0)

@@aR
@@R

(0, 1, 0) - (1, 1, 0)

(0, 0, 1)

c

?
- (1, 0, 1)

?

@@R @@R
(0, 1, 1)

?
- (1, 1, 1)

?

The interior D of the cube has three source boundaries, the three faces containing
(0, 0, 0), and three target boundaries, the three faces containing (1, 1, 1). Let A, B
and C be the faces

((0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1))

((0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1))

7For instance in Intel microprocessors.
8A shared FIFO, i.e., First In First Out stack with two entries allows for instance to implement
wait-free binary consensus for two processes, whereas a simple shared variable (with atomic reads
and writes) does not allow it. A good reference for these problems is [42].
9They are nevertheless very much used for analyzing boolean (telecommunication) protocols for
instance.
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((0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0))

respectively. Let A′, B′ and C ′ be the parallel faces of A, B and C respectively.
Let d0

0(D) = A, d0
1(D) = B, d0

2(D) = C and d1
0(D) = A′, d1

1(D) = B′, d1
2(D) =

C ′. Then d0
0(A) = b, d0

1(A) = c, d0
0(B) = a, d0

1(B) = c, d0
0(C) = a, d0

1(C) = b.
More generally, we can prove what we see here, that is, the boundary operators

can be defined so that they satisfy the following commutation rules (for i < j and
k, l = 0, 1):

dk
i ◦ dl

j = dl
j−1 ◦ dk

i

For instance, for a 2-transition, the relation with k = 0, l = 1 and i = 0, j = 1
means that the source of the target number one (i.e., of b′) is the same as the target
of the source number zero (i.e., of a). This gives us the (classical, but presented in
a slightly different manner) notion of precubical set:

Definition 5. A precubical set is a graded set M = (Mi)i∈IN with two families of
operators:

Mn

d0
i-

d1
j

- Mn−1

(i, j = 0, . . . , n− 1) satisfying the relations

dk
i ◦ dl

j = dl
j−1 ◦ dk

i

(i < j, k, l = 0, 1)

Of course, this is linked to progress graphs (just discretize the picture of Figure
4 using squares in the trivial way), but there is more to it than one could suspect.
This is partly developed in Section 5.

I used this formalization in my first article on the subject [30]. In fact, cubical
(that we will see a bit later) and precubical sets have a quite old history. They
have been used in the first developments of algebraic topology by D. Kan and
later by J.-P. Serre in his thesis [58]. Nowadays, combinatorial algebraic topology
uses simplicial sets [45, 18], union of simplices of all dimensions, glued along their
faces. In J.-P. Serre’s thesis, cubical sets were preferred to simplicial sets because, for
studying fibrations, which are locally canonical projections from a cartesian product
of two topological spaces to the first one, it is simpler to consider cubical sets which
have good properties with respect to projections and products10.

We can also define a (combinatorial) notion of dipath and of dihomotopy. As we
will see in Section 5, they are closely linked with the (topological) notions of dipath
and dihomotopy we have seen in Section 2.

Let N be a precubical set. A dipath in N is a sequence p = (p1, · · · , pk) of
elements of N1 such that for all i, 1 6 i < k, d1

1(pi) = d0
1(pi+1). We say that,

• d0
1(p1) is the initial point of p,

• d1
1(pk) is the final point of p.

10Even if a simplicial construction was published later, see for instance [47].
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Two combinatorial dipaths are dihomotopic if we can go from one to the other by
a finite number of “transpositions” of two consecutive actions. It is in fact exactly
the same notion as the “partial commutative monoids” used in Mazurkiewicz trace
theory [46] (another model for concurrency).

Consider the “contiguity” relation (or “combinatorial dihomotopy”) as follows.
Let p = (p1, · · · , pk) and q = (q1, · · · , ql) be two non-empty dipaths with same
initial and final states. We say that p and q are elementary contiguous if k = l and
if there exists u, 1 6 u < k such that,

• for all i < u and i > u + 1, pi = qi,

• there exists A ∈ M2 such that d0
0(A) = pu, d1

1(A) = pu+1, d0
1(A) = qu and

d1
0(A) = qu+1.

The contiguity relation is the equivalence relation (i.e., the reflexive, symmetric
and transitive closure of) generated by the elementary contiguity. We will see in
Section 5 that this is very close to dihomotopy in the topological space given by the
geometric realization of M indeed.

To actually give semantics to concurrent systems, the use of cubical or precubical
sets is natural as I already explained (for instance by starting with the “interleaving
semantics” of transition systems); this is fully examplified in [14] for our little P, V
language. The link can be made more formal as hinted at in next section.

4. Interpretation in terms of concurrency theory

Reciprocally, all “geometric shapes” built by glueing together hypercubes of any
dimension along their corresponding upper and lower faces can be presented as a
precubical set11. For this to be clear, we need a number of definitions and lemmas.

Let K and L be two precubical sets. Then f = (fn)n∈IN is a morphism of
precubical sets from K to L if for all n ∈ IN, fn is a function from Kn to Ln such
that:

fn ◦ ∂α
i = ∂αi ◦ fn+1

(for all i, 0 6 i 6 n)
This forms a category called ΥS . It is a presheaf category as follows. Let 21 be

the free category whose objects are [n], where n ∈ IN, and whose morphisms are
generated by,

[n− 1]
δ0
i-

δ1
j

- [n]

for all n ∈ IN\{0} and 0 6 i, j 6 n− 1, such that δk
j δl

i = δl
iδ

k
j−1 (i < j) .

Now, the category 21opSet of contravariant functors from 21 to Set (morphisms
are natural transformations) is isomorphic to the category of precubical sets. This

11This terminology was recently suggested to us by Ronnie Brown. Before this, we used the term
“precubical set” by analogy with the old term “presimplicial set” or simplicial (formerly called
complete presimplicial) sets without degeneracy operators.
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implies, by general theorems [44], that ΥS is an elementary topos. Moreover it is
complete and co-complete because Set is complete and co-complete.

The category of precubical sets of dimension less or equal than n can be seen as
the presheaf category (216n)opSet where 216n is the full subcategory of 21 where
objects are [p] with p 6 n.

Lemma 1. Let Tn (respectively TS
n ) be the function from ΥS to ΥS

n, which to every
M ∈ ΥS associates N ∈ ΥS

n with,

N([k]) = M([k]) if k 6 n

N(ei : [k + 1] → [k]) = M(ei) for k < n

N(∂α
i : [k − 1] → [k]) = M(∂α

i ) for k < n

defines a functor, called the n-truncation functor.

Now, let D[n] be the representable functor from 21 to Set with D[n]([p]) =
21([p], [n]). We define the singular n-cubes of a precubical set M to be any morphism
σ : D[n] → M .

Lemma 2. The set of singular n-cubes of a precubical M is in one-to-one corre-
spondence with Mn. The unique singular n-cube corresponding to a n-cube x ∈ Mn is
denoted by σx : D[n] → M . It is the unique singular n-cube σ such that σ(Id[n]) = x.

Proof. The proof goes by Yoneda’s lemma [43].

There is only one morphism in 21 from a given [n] to itself, the identity of [n],
hence D[n]\{Id} is a functor which has only as non-empty values the D[n]([p]) with
p < n (“it is of dimension n− 1”). We write ∂D[n] for this functor. For σ a natural
transformation from D[n] to M , we write ∂σ for its restriction to ∂D[n].

Proposition 1. Let M be a precubical set. The following diagram is co-cartesian
(for n ∈ IN),

∐

x∈Mn+1

∂D[n+1]

⊔
x∈Mn+1

∂σx- Tn(M)

∐

x∈Mn+1

D[n+1]

⊆
? ⊔

x∈Mn+1
σx- Tn+1(M)

⊆
?

where ∂D[n+1] = Tn(D[n+1]) and ∂σx = σx|∂D[n+1]
.

Proof. We mimick the proof of [18]: it suffices to prove that the diagram below (in
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the category of sets) is cocartesian for all p 6 n + 1,

∐

x∈Mn+1

(∂D[n+1])p

⊔
x∈Mn+1

(∂σx)p- (Tn(M))p

∐

x∈Mn+1

(D[n+1])p

⊆
? ⊔

x∈Mn+1
(σx)p- (Tn+1(M))p

⊆
?

since colimits (hence pushouts) are taken point-wise in a functor category into Set.
For all p < n + 1, the inclusions are in fact bijections, and the diagram is then

obviously cocartesian.
For p = n + 1, the complement of

⊔
x∈Mn+1

(∂D[n+1])p in
⊔

x∈Mn+1
(D[n+1])p is

the set of copies of cubes Id[n+1], one for each cube of Mn+1. This means that the
map

⊔
x∈Mn+1

(σx)p induces a bijection from the complement of
⊔

x∈Mn+1
(∂D[n+1])p

onto the complement of (Tn(M))p. This implies that the diagram is cocartesian for
p = n + 1 as well.

This lemma states that the truncation of dimension n + 1 of a precubical set M
is obtained from the truncation of dimension n of M by attaching some standard
(n+1)-cubes D[n+1] along the boundary ∂D[n+1] of (n+1)-dimensional holes. In fact,
any precubical set M is the direct limit of the diagram consisting of all inclusions
Tn−1(M) ↪→ Tn(M), hence is also the direct limit of the diagram consisting of all the
cocartesian squares above. Computer-scientifically, this means that any precubical
set can be seen as a (unlabelled) transition system, which is its 1-skeleton, on
which we add independence relations. Filled-in squares specify that two actions
commute, i.e., that they can be run asynchronously. This is exactly the asynchronous
automata sort of models [5], [59] and [46]. Then in higher-dimensions, we fill in
cubes etc. meaning that we add some extra (n-ary) independence relations. This is
fully worked out in [29] in the form of adjunctions between suitable categories of
transition systems and of asynchronous automata with (pre-)cubical sets. In fact, to
do this properly, we have two steps to make. First, it is easy to relate 21opSet with
unlabelled transition systems only if we take as morphisms for transition systems,
the “total” morphisms of [68], i.e., graph morphisms; this is unfortunately not
quite enough, and to add the right morphisms is reflected on the geometric side by
added degeneracy operators, i.e., by going from precubical to cubical sets. Secondly,
we have to add up labels to cubical sets. This can easily be done using a comma
category constructions: labelled cubical sets are just labelling morphims from a
“shape” cubical set to a “labelling” cubical set. In fact, it is a particular case of a
sconing construction [17], and as a side result we automatically know that labelled
cubical sets will also form a topos.

5. A Useful Generalization

Progress graphs are a very limited model for concurrency: in particular, we are
unable to give a semantics to recursive processes other than unfold all loops, whereas
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we could give a semantics to loops in the combinatorial model. This is not very
satisfying and motivates a more local definition: a first natural idea is to impose
only a local partial order instead of a global one, on a topological space, leading
to a definition very much like differentiable manifolds. We recap here the main
definitions, the full details can be found in [15].

Definition 6. Let X be a topological space. A collection U(X) of pairs (U,6U ) of
opens of X, covering X, and partially ordered by 6U is called a local partial order
on X if for all x ∈ X there exists a non-empty open neighbourhood W (x) ⊂ X such
that the restrictions of 6U to W (x) coincide for all U ∈ U(X), i.e.,

for all U1, U2 ∈ U(X) such that x ∈ Ui and for all y, z ∈ W (x) ∩ U1 ∩ U2 :

y 6U1 z ⇔ y 6U2 z.

We call the collection of opens U of the definition, an atlas for X (by analogy
with differentiable manifolds). Again by analogy with differentiable manifolds, there
is a notion of equivalence of atlases:

Definition 7. • Two local partial orders on X are “equivalent” if their union
is a local partial order on X.

• A locally partially ordered space consists of a topological space X and of an
equivalence class of local partial orders on X. If moreover there exists a cov-
ering U in this equivalence class such that all (U,6U ) ∈ U are po-spaces, then
we say that X is a local po-space.

Let us give a simple example. A “directed” loop S1 = {eiθ ∈ C } is a local po-
space: it suffices to take U1 = {eiθ ∈ S1|0 < θ < 2π} with the order induced by
the natural order on the θ and U2 = {eiθ ∈ S1|π < θ < 3π} again with the natural
order on the θ.

We need now to define suitable morphisms between local po-spaces, which in
turn will give the notion of dipath.

Definition 8. Let (X,U) and (Y,V) be two local po-spaces.
A continuous function f : X → Y is called a dimap if for all x ∈ X there exists

a subset V (f(x)) ⊂ Y on which 6Y is well defined and U(x) ⊂ f−1(V (f(x))) on
which 6X is well defined, such that for all y, z ∈ U(x) : y 6X z ⇒ f(y) 6Y f(z).

There again, a dipath on X is then a dimap f : ~I → X where ~I is the topological
space I = [0, 1] ⊆ IR with the (global) partial order inherited from the one of IR.
We still write ~P1(X) for the set of dipaths on X and ~Pα,β

1 (X) for the set of dipaths
on X going from α to β.

The notion of dihomotopy is exactly the same as for po-spaces; let f and g be two
dipaths on X between an initial point α and a final point β. A dihomotopy between
f and g is a dimap from ~I × I to X such that for all x ∈ ~I, t ∈ I, H(x, 0) = f(x),
H(x, 1) = g(x) and H(0, t) = α, H(1, t) = β. We write once more f ∼ g.

If we want to be more general, we should consider maximal dipaths (with respect
to an obvious “extension” partial order) and not dipaths from an initial point to
a final point. This is partially developed in [15] but there are still a number of
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open problems, in particular about infinite dipaths (on local po-spaces which are
not compact).

Now, we can link the (new) topological model with the combinatorial one (the
sequel is also taken from [15]).

Let 2n be the “standard” n-cube in IRn (n > 0),

2n = {(t1, . . . , tn)|∀i, 0 6 ti 6 1}
20 = {0}

and let δk
i : 2n−1 → 2n, 1 6 i 6 n, k = 1, 2, be the continuous functions (n > 1),

2n
¾ δ0

i
2n−1

2n−1

δ1
i

6

defined by,
δk
i (t1, . . . , tn−1) = (t1, . . . , ti−1, k, ti, . . . , tn−1)

Given a precubical set M , consider now the set R(M) =
∐
n

Mn×2n. The sets Mn

can be considered as topological spaces with the discrete topology and 2n inherits
the topological structure of IRn. Thus R(M) is a topological space with the disjoint
union topology. Let now ≡ be the equivalence relation induced by the identities:

∀k, i, n,∀x ∈ Mn+1, ∀t ∈ 2n, n > 0,

(∂k
i (x), t) ≡ (x, δk

i (t))

Let | M |= R(M)/ ≡ with the quotient topology. The topological space | M | is
called the geometric realization of M .

All this is rather classical as a direct imitation of the geometric realisation functor
from simplicial sets to topological spaces. The only trouble here is to find how to
interpret the direction of time as it is prescribed in precubical sets (as seen in the
definition of dipaths for instance) in terms of local partial orders. For this, we restrict
ourselves to non-pathological situations12.

Definition 9. [15] Let M be a precubical set. We say that M is not self-linked if
for all its n-cubes x, ∂k

l (x) = ∂k′
l′ (x) implies k = k′ and l = l′.

Let x ∈ M . The star of x in M is

St(x,M) = {y | ∂k1
l1

. . . ∂ku

lu
y = x}

(see for instance [65]).
Then we set, for y ∈ St(x,M),

(x, t) 6U
x (y, u) if δki

li
. . . δk1

l1
(t) 6 u in 2n+i

12Which might well be non-necessary; this is currently been worked out.
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Figure 12: Illustration of the transitivity of 6x.

(y, u) 6U
x (x, t) if δki

li
. . . δk1

l1
(t) > u dans 2n+i

Let x be an element of M and (z, v) be a point in Ux whose carrier is z. We set
(z, v) 6x (y, u) if there exists b in the star of x and t such that (z, v) 6U

b (b, t) 6U
b

(y, u).

It is a partial order indeed; the only difficulty lies in the proof of transitivity (see
Figure 12). As a matter of fact, both on the left and right hand sides of the figure,
we have z 6b y and y 6b′ a but on the left hand side, z 6x a, and on the right hand
side z 6c a where b is the segment going from the front faces to the back faces from
x.

Then, the geometric realisation of a non self-linked precubical set M defines a
local po-space with atlas {St(x,M)/x ∈ M0} and local partial orders 6x on each
St(x, M).

The geometric realisation is functorial, I refer the reader to [15]. We also have
a right-adjoint to this functor, which is a “singular cube functor” defined very
similarly as in simplicial sets theory.

The correspondence between homotopical properties in the topological case and
in the combinatorial (cubical) case fortunately looks quite nice. This implies that
we will be able to reason about concurrent systems both geometrically on local
po-spaces (for instance on progress graphs) and algebraically or combinatorially on
cubical sets.

This has at least been proven in the simpler case of dimension two in [15]. The
geometric realisation of a combinatorial dipath p of M induces a (topological) dipath
| p | in | M |. Every combinatorial dihomotopy between p and q in M induces a
(topological) dihomotopy between | p | and | q |.

We also have the inverse one could hope for. Let L be a finite precubical set
and h be a dipath in | L | (i.e., a dipath from 21 to | L |). Then there exists a
“cubical approximation” f : Sk → L of h where Sk is a subdivision of ~I. Moreover
f defines a (combinatorial) dipath (f(u1), . . . , f(uk)) which we call f̃ . Finally, | f |
is homotopic to | f̃ | in | L |.
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Figure 13: “A room with 3 barriers” and
two non dihomotopic dipaths.

Figure 14: “A room with 3 barriers”
(another view).

6. First study of dihomotopy

We have already seen that the equivalence classes of dipaths modulo dihomotopy
are less numerous in general than the homotopy classes of dipaths. Since the article
[54], as well as in [26], I had the intuition that studying the dihomotopy classes
of dipaths with fixed extremities was equivalent to studying the homotopy classes
of dipaths with fixed extremities. In fact this is not true. It suffices to consider the
example of Figures 13 and 14 which give semantics to terms13

#sem c 2
A=Pa.Pc.Va.Pb.Vc.Vb
B=Pa.Va.Pc.Vc.Pb.Vb
C=Pc.Vc
PROG=A|B|C

The two dipaths that are represented on these pictures are homotopic but not
dihomotopic. The two dipaths do correspond to real executions of a simple concur-
rent program (c being a very simple 2-place buffer, a and b being two shared scalar
variables). This implies we need new tools.

In fact, it is easy to build an analogue of a fundamental groupöıd, which will
only be a fundamental category in fact. It is obviously linked to the construction
of diconnected sets [15], and also to the recent constructions of S. Sokolowski (see
[64]), but there is still some work to be done in this direction (see [57, 31]).

Let X = (X,U , (6U )U∈U ) be a local po-space. We can define as usual, a compo-
sition operation between some of the dipaths of X, going from ~Pα,β

1 (X)× ~P β,γ
1 (X)

13#sem 2 means that c is a 2-semaphore. I have used in the sequel the syntax that my toy static
analyzer uses (see http://www.di.ens.fr/~goubault/analyse.html).
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to ~Pα,γ
1 (X) (with the same notations as we had with po-spaces, i.e., ~Pα,β

1 (X) is the
set of dipaths from α to β). It is not a commutative nor associative operation in
general, but neither is it in the classical case. Similarly to the classical case, this
operation induces a composition operation of classes of dipaths modulo dihomotopy
and then becomes associative.

We can then define the following category ~π1(X):

• its objects are the points of X,
• its morphisms are the dihomotopy classes of dipaths: a morphism from x to y

is a dihomotopy class [f ] of a dipath f going from x to y.

The composition defined earlier is an associative operation with identities (the
dihomotopy classes of constant dipaths), we use it as the composition of morphisms.

In fact, this construction even defines a functor from the category of local po-
spaces to the category of categories. Let f : X → Y be a dimap from a local
po-space X to a local po-space Y . We define ~π1(f) as a morphism from ~π1(X) to
~π1(Y ):

• on objects x of ~π1, ~π1(f)(x) = f(x),
• on morphisms [ω] of ~π1, with ω any dipath, ~π1(f)([ω]) = [f ◦ ω].

We have introduced in [15] the notion of “ diconnected components” to study the
dihomotopy classes of dipaths. This should be the natural counterpart of connected
components in usual topology, but as the relation xRy if there exists a dipath from
x to y is certainly not an equivalence relation (and we certainly do not want to
make it symmetric since this would mean we would study the arcwise connected
components), this is more complicated. In fact, this is linked to a certain category
of fractions of the fundamental category, see [31].

Definition 10. 1. The homotopy history of a maximal dipath14 α : I → X is

hα := { y ∈ X|∃ a dipath β
going through y and α ∼ β}

2. Two points are homotopy history equivalent of

x ∈ hα ⇔ y ∈ hα for all α ∈ ~P1(X).

3. The diconnected components of X are the connected components (in the clas-
sical sense) of the equivalence classes of dipaths modulo the homotopy history
equivalence in X.

For instance, the complement of the “Swiss flag” in ~I2 (see Figure 15) has 10
diconnected components. This example gives semantics to the program having as
parallel processes T1 = Pa.Pb.V b.V a and T2 = Pb.Pa.V a.V b (where a and b are
1-semaphores).

In region 1, we have all possible futures. In region 2, we can only go in the future
to regions 4 and 6, i.e., the program will deadlock or T2 will access to a and b before
T1. In region 6, we can only have come from 2 and go to 9: T2 accesses a and b

14When this exists, for instance when the space is compact.
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Figure 15: The “Swiss flag”.
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Figure 16: “Two ordered holes”.

before T1. In region 9, we can have “come” from the unreachable region 7 or from
6. In region 10, we can have come from any other region except 4.

The complement of the “two ordered holes” in ~I2 (see Figure 16), which gives
semantics to Pa.V a.Pb.V b | Pa.V a.Pb.V b) has 7 classes modulo the homotopy
history equivalence. One of these contains both the initial point 0, the final point 1,
and a region in the center of the Figure. This class is decomposed into 3 diconnected
components.

The “room with 3 barriers” example in ~I3 (see Ex. 13) has 8 classes modulo the
homotopy history equivalence. One of the classes (in the center) is decomposed into
two diconnected components.

This point of view has in particular made it possible to prove that the “2-phase
locking” protocol, which regulates the access to fields of a distributed database is
correct (i.e., is sequentialisable). We can find this proof, by M. Raussen, based on
ideas of [35], in the article [15]. The reader should notice that S. Sokolowski has
defined in [64] a quite similar point of view (about diconnected components) but
without discriminating the future of dipaths. This can be more interesting in some
situations (one of which might be when studying bisimulation equivalence, [50]).
The interested reader can look at his other papers, [62], [63] and [61].

The problem now is to get to calculate or characterize somehow these dangerous
regions etc. In Section 7 I discuss some ideas that have been used for this purpose.
It is to be noted that in the case of the regular expressions we had at the beginning,
we have a “critical point” approach to obstructions to dihomotopy, which is very
algorithmic in nature. We refer the reader to [14], [13] and [16] (for the detection
of deadlocks and unsafe regions), and [56] (for the classification of dipaths modulo
dihomotopy in such models). Let us concentrate on the more general models in the
following section.

7. Dihomotopy invariants

7.1. Homology
In algebraic topology, it is well known that homotopy is a subtle notion. It is

in general very hard to prove that two topological spaces are homotopy equivalent,
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i.e., that one is an “elastic” deformation of the other. Even homotopy groups, whose
isomorphism is necessary and sometimes sufficient15 to decide of the homotopy
equivalence are extremely hard to compute.

Nevertheless, there exist so called “homotopy invariants” which can be computed.
A homotopy invariant is a functor which to every topological space (or one in a
suitable sub-category) X associates a mathematical object S(X) such that if X
and Y are homotopically equivalent S(X) and S(Y ) are isomorphic.

My first idea, expressed in [30], was that it was better to consider some homo-
logical invariants to compute important properties of concurrent and distributed
systems.

To begin with, we can make a very simple remark: instead of starting with a con-
current program semantics expressed in the form of precubical sets M = (Mi)i∈IN,
we can use “bi-graded” precubical sets, i.e., sets

N = (Np,q)p,q∈IN

The start boundary operators d0
i are now going from Np,q to Np−1,q and the end

boundary operators d1
i are going from Np,q to Np,q−1. The sets Np,q are disjoint

only if the shape it models does not contain any “directed” cycle.
The crucial observation is:

Lemma 3. [26] Consider the following diagram of R-modules (R being an integral
domain, for instance ZZ or ZZ/2ZZ as in [30]):

A(Np,q)
∂0- A(Np−1,q) . . .

A(N) =
...

A(Np,q−1)

∂1

?
. . .

where A(Np,q) is the free R-module generated by Np,q and16

∂0 =
i=p+q−1∑

i=0

(−1)id0
i

∂1 =
i=p+q−1∑

i=0

(−1)id1
i

It is a (“weak”) bicomplex of modules, i.e., it satisfies the equalities: ∂0 ◦ ∂0 = 0,
∂1 ◦ ∂1 = 0, et ∂0 ◦ ∂1 + ∂1 ◦ ∂0 = 0.

For instance, the automaton:

15When the isomorphism is induced by a continuous map between CW-complexes for instance.
16In order to remember the dimension in which they act, we will sometimes write ∂p+q

0 and ∂p+q
1 .
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β

¡¡bµ @@
a′

R
1 γ

@@aR ¡¡
b′

µ

α

is represented by the bicomplex of ZZ-modules,

(a)⊕ (b)
∂0- (1)

(a′)⊕ (b′)
∂0- (α)⊕ (β)

∂1 ? ∂0- 0
∂1 ?

(γ)
∂1 ? ∂0 - 0

∂1 ? ∂0- 0
∂1 ?

with ∂0(a) = ∂0(b) = 1, ∂1(a) = ∂0(b′) = α, ∂1(b) = ∂0(a′) = β and ∂1(a′) =
∂1(b′) = γ.

The bicomplexes (or double complexes of modules) are very important objects
in homology, they have in fact very many interesting properties.

Let,

• Hi(N, ∂0) = Ker ∂i
0

Im ∂i+1
0

• Hi(N, ∂1) = Ker ∂i
1

Im ∂i+1
1

where Ker f (respectively Im f) is the kernel (respectively the image) of the lin-
ear application f . These form the “horizontal” (respectively “vertical”) homology
groups, which enable to determine the branchings (respectively confluences) of the
automata.

In the case of our example, we find easily, H0(M,∂0) = (α), H0(M, ∂1) = (1),
H1(M, ∂0) = (b − a), H1(M, ∂1) = (b′ − a′), and the other homology groups are
trivial. The generator (b − a) of the horizontal homology group of dimension one
expresses the fact that there is a non-deterministic choice between actions a and b.
The generator of the first vertical homology group (b′ − a′) shows that there is a
confluence between actions a′ and b′.

A typical branching in dimension two is for instance:
. - .

@@R @@R
. - .

.
? - .

?

@@R
.
?

where the three faces are filled in.
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The homology functors have nice computational properties (colimits, tensor prod-
uct [Künneth formula], Mayer-Vietoris long exact sequence etc.) which enables to
compute them inductively on the syntax of a parallel program, as was done in [26]
with the process algebra CCS.

The “total homology” functor, defined as the homology functor for the boundary
operator ∂0 − ∂1 gives also a homology theory for dipaths with fixed extremities
modulo dihomotopy (see [26] and [27]) - in fact unfortunately, it is also an invariant
of dipaths with fixed extremities modulo homotopy. This implies for instance that
these functors cannot separate the two dipaths of Example 13.

To correct this defect, it is necessary, first of all, to start with a better category
of cubical sets. Most of this part has been based on earlier work by R. Brown and
P. Higgins [7] and [6], and has been developed later by P. Gaucher. I will briefly
come back to this work in Section 8.2.

The theory I proposed in [27] defines homology groups in all dimensions indeed.
The goal was to be able to distinguish between the shape of Figure 11 representing
a 2-semaphore which is accessed by three processes, with a 3-semaphore in the
same situation. The difference between a 1-semaphore and a 2-semaphore which
two processes try to access can be noticed by examining the dihomotopy classes of
dipaths. In the first case, there is necessarily a mutual exclusion which serializes the
access to the shared object. In the second case, there is no serialization. When we
use n-semaphores with n > 1, we cannot distinguish the difference of behaviour by
looking at whether two consecutive actions (locks or unlocks) commute or not. The
only way is by looking at the difference of behaviour when there are at least n + 1
consecutive actions (accesses to the semaphore) in general.

In order to spot this difference geometrically, we must examine hypersurfaces of
dimension n modulo dihomotopy instead of just dipaths modulo dihomotopy. There
again, we must be cautious to fix the extremities of these hypersurfaces.

The idea of [27] was simple and can be found in different forms in more recent
work by S. Sokolowski [64] and P. Gaucher [21]. As can be seen on Figure 17 (at the
left hand side, in dimension 2, at the right hand side in dimension 3) by taking two
dihomotopic dipaths having the same source and target, we can consider the surfaces
on which we can deform one of these paths into the other by a homotopy. We then
say that two such surfaces are dihomotopic if there exists a dihomotopy between
each of the dihomotopies that define these surfaces. In Figure 17 the two surfaces
(one above the hole, the other below) are not continuously deformable one into the
other, whereas they would be if the cube were entirely filled in. Homologically (as in
[27]), we can look at the surfaces with fixed boundaries modulo the total homology.
We briefly get back to this, homotopically, in Section 9.

7.2. Achronal cuts
In the previous section, we have tried to go from a classification problem of

dipaths modulo dihomotopy to a simpler classification problem of dipaths modulo
homology.

There is of course another natural idea [15], that of taking “instant snapshots”
of the dynamics of dipaths and observe their evolution in time. In fact, this is fairly
close to methods used in fault-tolerant distributed systems theory [36].
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X= 3 faces above and behind
Y = 3 faces in front and below

X

p

p

1

2
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β

(i)                                                                                 (ii)

X

Y
a

b

c

Figure 17: Two surfaces having the same boundaries which are not dihomotopic.

Definition 11. Let (U, 6) be a partially ordered set. A subset V ⊂ U is called
achronal if for all x, y ∈ V : x 6 y ⇒ x = y (similarly to the notion in [53]).

Definition 12. [15] Let (X, 6) be a po-space.
1. (X, 6) is a parameterized po-space if there exists a dimap F : X → IR such

that Xt := F−1(t) is achronal for all t ∈ IR.
2. 6 is Euclidean, if there exists a finite number of dimaps fi : X → IR such that

∀x, y ∈ X : x < y ⇔ ∀i : fi(x) 6 fi(y);

∃i : fi(x) < fi(y).

3. A local partial order on a topological space X is parameterized, respectively
Euclidean if (one of its refinements) is a parameterized po-space, respectively,
Euclidean po-space.

A Euclidean partial order is in fact a transcription of the natural componentwise
ordering on an IRn (like the progress graphs we saw at the beginning): given two
points x = [x1, . . . , xn],y = [y1, . . . , yn] ∈ IRn,

x 6 y ⇔ ∀i : xi 6 yi.

In a parameterized po-space, we can always reparameterize the dipaths and the
dihomotopies, such that, for any dipath p and any t ∈ ~I, p(t) ∈ F−1(t).

Let H : J × I → X be a well-parameterized dihomotopy between two well-
parameterized dipaths α, α′ : ~I → X. Then for all t ∈ ~I, α(t) and α′(t) are in the
same connected component of Xt (which is the “cut at instant t of X).

This gives us a means, by the study (with standard homotopy theory) of cuts,
to determine the possible obstructions to dihomotopy, thus to find a subset of the
possible schedules.
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Unfortunately, this only gives us an approximation in general; let X be the subset
[0, 3]× [0, 3]× [0, 3]\ [1, 2]× [1, 2]× [0, 3] of IR3 with the natural partial order. There
are two dihomotopy classes of dipaths going from (0, 0, 0) to (3, 3, 3), but the cuts
induced by the “height function” F (x, y, z) = x + y + z are all connected.

Thus, to find all information about dihomotopy classes of dipaths, it is not enough
to consider only one family of cuts. In fact, it seems that we need all possible families
of cuts, in the general case of precubical sets. On the computer scientific side, this
only means that some asynchronous systems have no global clock.

8. Refinements of the framework

8.1. The ω-categorical point of view
The idea goes back to the article [54], and has been improved by P. Gaucher.

The interested reader can also read [8] where similar ideas, using pasting schemes,
have been developed.

A ω-category is a category with morphisms and compositions in all dimensions,
somehow coherent with one another. The idea for the modelisation of concurrency
is that objects, or 0-morphisms, represent states of an HDA, the 1-morphisms rep-
resent all possible paths of executions (all dipaths), and the higher-dimensional
morphisms represent the dihomotopies between morphisms of lesser dimension17.
In particular, the 2-morphisms represent the dihomotopies between paths of exe-
cution. The composition laws between higher-dimensional morphisms characterize
the compositions of dihomotopies of higher dimension.

As V. Pratt already noticed in [54], the axioms of ω-categories encode the com-
position properties of dipaths and of dihomotopies in an HDA. The interested reader
can find the exploitation of these ideas in [20], [19] and [22].

P. Gaucher in [22] and [21] uses the ω-category generated by a cubical set to con-
struct three homological theories, corresponding respectively to branchings, conflu-
ences and globes (or, computer-scientifically, mutual exclusions). This is constructed
through suitable nerve functors. This is made possible because of the choice of a nice
category of cubical sets first, and also because simplicial sets can be represented as
ω-categories as well (see [67]). In some ways, the branching and confluence nerves
describe simplicially all achronal cuts of HDA, as hinted at in Section 7.2.

These constructions have a number of advantages over the ones of [26]:

• They are more discriminating (for instance, the “room with three barriers”
example should be fully described by these homology theories)

• Concerning the branching and confluence homologies, they are not sensitive
to subdivision.

We should mention two other points: ω-categories seem to give the right structure
to the “dihomotopy sets” or at least what should be the algebraic counterpart in the
directed theory to the homotopy groups. The equivalence of categories between the
category of cubical categories with connections and compositions and the category
of ω-categories (see [12]) is certainly a step in this way. Other papers by R. Brown

17Precisely those introduced in Section 7.1.
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and P. Higgins (see [7] and [6]) also pave the way toward Seifert/van Kampen
theorems in the directed theory, probably in weaker forms though (I develop this a
little in Section 9).

8.2. Cubical sets
There exist several types of cubical sets. The first important remark is that, in

the category of precubical sets, morphisms are somehow too rigid.
Mathematically, it is easily seen that morphisms respect the dimension of cells

and length of dipaths (the number of segments they are composed of); this means in
particular that the orthogonal projection of a filled-in (and also of a hollow) square
onto one of its segments is not a morphism in this category.

Computer-scientifically, this implies that some important properties are not “nat-
ural”. We have to introduce some degeneracy operators; basically, what we need
here is to be able to consider any m-transition or hypercube of dimension m as a
n-transition (n > m). In computer scientific terms, the degeneracy operators will
allow us to consider any execution of m busy processors as an execution of n busy
processors where n−m processors are busy· · · doing nothing. In dimension one, this
is directly connected to the notion of “idle transition” in transition systems theory,
see [68] and [29].

Definition 13. A cubical set K is a precubical set (K, ∂α
i ) with degeneracy operators

εi : Kn−1 → Kn (0 6 i 6 n− 1) verifying the relations:

εiεj = εj+1εi (i 6 j)

∂α
i εj =





εj−1∂
α
i (i < j)

εj∂
α
i−1 (i > j)

Id (i = j)

R. Brown and P. Higgins have added later on [7] other special degeneracy oper-
ators called connections.

Also, we can define gluings of n-cubes or compositions, which can also reveal
important to the computer-scientific modelisation, if we want to be able to consider
dipaths algebraically (which are gluings of n-cubes indeed); they have been defined
as well by R. Brown and P. Higgins in [7].

From this, one could construct ω-cubical categories, which have been shown
equivalent quite recently to (see [12]) the category of ω-categories, whose use for the
modelisation of concurrent processes has been finally put together by P. Gaucher
[22].

In order to link the ω-categorical formulation of P. Gaucher, we have been com-
pelled to restrict the category of local po-spaces to consider. In fact, as in standard
algebraic topology, the category of topological spaces is far too big and contains far
too pathological elements to be the right object of study. In general, we restrict our-
self to topological spaces which have the homotopy type of a CW-complex [41]. P.
Gaucher and myself have introduced in [23] a particular kind of CW-complex, which
we called globular CW-complex, and which is essentially a CW-complex whose n-
cells are all directed. A n-cell is homeomorphic to ~I × In−1 quotiented by relations

(k, x1, . . . , xn−1) = (k, y1, . . . , yn−1)
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(k = 0, 1). The advantages of this category of local po-spaces are:
• It contains only the classical homotopy types,
• It allows to construct the homology theories of P. Gaucher (defined originally

on ω-categories) in a topological framework,
• It permits to define a notion of dihomotopy equivalence (which refine the usual

homotopy equivalence, i.e., the homotopy types). We hope that for the glob-
ular CW-complexes, this should coincide with a notion of weak dihomotopy
equivalence (as in the classical case).

8.3. Domain theory
There are links between the theories briefly described before and domain theory18

(for instance as developed in chapter VII of [38]), or of other older topological
considerations (the book [52] for instance).

L. Nachbin in [52] has studied some particular kind of topological spaces, the
so-called compact order-Hausdorff topological spaces. In fact, this is nothing but
compact po-spaces (for instance, finite progress graphs). One of the very interesting
results in the theory is that there is an adjunction between these compact po-spaces
and another type of topological space (no order there!), the stably-compact spaces.

We will write PO for the category of compact po-spaces. We need an intermediary
definition before defining the stably-compact spaces:

Definition 14. [38]
• A closed subset Q of a topological space (X, τ) is said to be irreducible if Q is

not the union of two proper closed subsets of Q,
• A subset S of a topological space (X, τ) is saturated if it is the intersection of

open subsets of (X, τ) containing S,
• (X, τ) is sober if for all irreducible subsets Q of (X, τ), there is a unique x ∈ X

such that the closure of {x} is Q.

We now define stably-compact spaces:

Definition 15. [11, 39] A stably-compact space is a topological space (X, τ) which
satisfies:
• (X, τ) is sober,
• (X, τ) is compact and locally compact,
• The intersection of two compact saturated subsets of (X, τ) is a compact sat-

urated subset of (X, τ).

In fact, see [40], a stably-compact space is a set X together with a topology τ on
X such that there exists another topology on X, τ∗ on X satisfying the following
conditions:
• τ ∪ τ∗ is compact,

18This is part of a talk delivered by the author in Dagstuhl seminar 00231/1 “Topology in Com-
puter Science”.
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• for all x 66 y19 in X, there exists an element O ∈ τ , an element O∗ ∈ τ∗ such
that x ∈ O, y ∈ O∗ and O ∩O∗ = ∅.

In some ways, (X, τ) is compact Hausdorff with the help of the topology τ∗.
We write SK for the category whose objects are the stably-compact spaces and

whose morphisms are continuous functions.

Proposition 2. [11, 39] Let (X, τ, 6) be a compact po-space (τ is the topology, 6
is the partial order). We build (X ′, τ ′) a topological space from (X, τ, 6) as follows:

• X ′ = X,

• τ ′, the set of opens, is composed of elements U of τ which are such that ∀x ∈ U ,
∀y > x, y ∈ U (“upper sets”).

Then (X ′, τ ′) is a stably-compact space.

Sketch of proof. It is a direct consequence of the local convexity theorem (see
[52] or [38], Theorem 1.4, Chapter VII, page 272) which states that sets of the form
U ∩ V , where U is an upper open set and V is a lower open set, form a base for
the topology of X. Thus it suffices to take for τ∗ the set of lower open sets. The
axiom of “weak separation” is exactly corollary 1.2, Chapter VII, page 271 of [38]. 2

Of course, (X ′, τ ′) is in general not at all Hausdorff.
Dimaps between compact po-spaces are naturally mapped under this transforma-

tion onto continuous maps between their stably-compact counterparts. This defines
a functor α from PO to SK which has a right-adjoint we will briefly describe:

Definition 16. [11, 39] Let (X, τ) be a topological space, A the set of its compact
saturated subsets, A∗ the set of complements (in the powerset ℘(X) of X) of ele-
ments of A. The “patch” topology on X is the topology κ(τ) generated by the base
C = {U ∩ V | U ∈ τ, V ∈ A∗}.
Proposition 3. [11, 39] Let (Y, σ) be a stably-compact space. We can associate
with it, a structure (X, τ, 6) = γ(Y, σ) with,

• X = Y ,

• τ = κ(σ),

• for all x, y ∈ X, x 6 y if for all U ∈ σ with x ∈ U , y is also in U20.

Then (X, τ, 6) is a compact po-space.

Moreover, γ defines a functor from SK to PO (transforming continuous functions
SK into dimaps of PO).

Consider now a dihomotopy H between two dipaths f and g with the same source
and target in X. It is simply a dimap from I × ~I to X such that H(0, .) = f and
H(1, .) = g.

19Where 6 is the specialization ordering of the topology τ , i.e., x 6 y if for all O ∈ τ , x ∈ O →
y ∈ O.
20So Y is Hausdorff is and only if 6 is the trivial order.
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Therefore α(H) is a continuous function from α(f) to α(g), which are themselves
continuous functions from α(I×~I) to α(X). But α(I×~I) = I×α(~I), because α(I) =
I (all open set of I is upper). We conclude that α(H) is a (classical) homotopy
between α(f) and α(g). We thus have proved a simple obstruction criterion to
dihomotopy:

Proposition 4. Let f and g be two dipaths in the compact po-space X. Then α(f)
and α(g) are not homotopic (in the classical sense) implies that f and g are not
dihomotopic.

Next question is, do we have a reciprocal to this? Let H ′ be a homotopy between
α(f) and α(g). At what condition is there a dihomotopy H between f and g? Do
we have α(H) = H ′?

The first natural idea to characterize the homotopies between α(f) and α(g),
given f and g two dipaths in a compact po-space X, is to study the group homo-
morphisms between the homotopy groups of α(~I) to the homotopy groups of α(X).
First of all, we notice that α(~I) is a compact and connected topological space.

As α(~I) is connected, we can define its fundamental group π1(α(~I)) by choosing
any basepoint, for instance 0. Unfortunately, the study of continous functions from
I to α(~I), reveals that they are the lower semi-continuous maps from I to I and that
α(~I) is a simply-connected topological space. This means that there is no interesting
group homomorphism to look for there from π1(α(~I)) to π1(α(X)).

Even worse, we can show that we can deform in a continuous manner (for the
topology of α(~I × ~I)) any maximal continuous path (for the topology of I × I) in
any other one, by going through discontinuous ones for the topology of I × I. This
entails that the homotopy between functions from α(~I) to α(~I × ~I) does not even
enable us to see the presence of a hole in the surface I × I!

In fact, the adjunction between stably-compact spaces and compact po-spaces
can be changed into an equivalence of categories. The way to do this is to consider
the subcategory of stably-compact spaces where we impose that the morphisms be
“perfect”, see [39]. Perfect maps are maps which are such that the inverse image
of a compact saturated set is a compact saturated set21. The question here is, can
we develop a practical homotopy theory on stably-compact spaces, with morphisms
somewhere between continuous functions and perfect maps, that would give us
enough information on dihomotopy? The other important question is: is there a
similar counterpart to the local po-spaces? I suspect that there are also strong links
with work by M. Grandis (see for instance [33]).

9. Some Desired Properties

Continuing our tour of classical notions that would be useful for concurrency
theory, it is natural to ask ourselves what should be the counterpart of homotopy

21This looks very much like proper maps, since the inverse image of a saturated set by a continuous
map is always saturated. The problem is that, as we are in a non-Hausdorff situation, proper maps
are not exactly the maps such that the inverse image of a compact is compact. They are, see [4],
closed maps such that the inverse image of singletons are compact sets.
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exact sequences etc. in the directed case.

9.1. Seifert/van Kampen

One of the very useful theorems in the classical theory is Seifert/van Kampen’s
theorem which relates the fundamental group of a space which is the (not necessarily
disjoint) union of two subspaces with the fundamental groups of these two subspaces,
under some mild hypotheses. This would have very interesting applications for the
“modular” or “compositional” analysis of concurrent systems.

Theorem 1. Let X be a local po-space, X1 and X2 two local po-spaces such that,

• X =
◦

X1 ∪
◦

X2,

• All continuous paths (not dipaths in general) in
◦

X1 ∩
◦

X2 are concatenations
of a finite number of dipaths and anti-dipaths (“zig-zag paths”).

Let j1 : X1 ∩ X2 → X1 (respectively j2 : X1 ∩ X2 → X2) and i1 : X1 → X
(respectively i2 : X2 → X) be the natural inclusion morphisms. Then the following
diagram,

~π1(X1 ∩X2)
~π1(j1)- ~π1(X1)

~π1(X2)

~π1(j2)

?

~π1(i2)
- ~π1(X)

~π1(i1)

?

is co-cartesian in the category of categories.

Proof. Consider first the following commutative diagram,

~π1(X1 ∩X2)
~π1(j1)- ~π1(X1)

A
A
A
A
A
A
A
A
A
A
A

f1

U

~π1(X2)

~π1(j2)

?

~π1(i2)
- ~π1(X)

~π1(i1)

?

HHHHHHHHHHH
f2

j
G

where G is a category. The question is whether one can complete this commutative
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diagram into the following one,

~π1(X1 ∩X2)
~π1(j1)- ~π1(X1)

A
A
A
A
A
A
A
A
A
A
A

f1

U

~π1(X2)

~π1(j2)

?

~π1(i2)
- ~π1(X)

~π1(i1)

?

HHHHHHHHHHH
f2

j

@
@

@
@

@

f

R
G

Looking at the diagram on objects of these categories, everything boils down to
the existence of a push-out in the category of sets, which of course holds. On the
objects, define f to be (for x ∈ X),

f(x) =
{

f1(x) if x ∈ X1

f2(x) if x ∈ X2

Now, let u : ~I → X be a dimap. u−1(
◦

X1), u−1(
◦

X2) form a open covering of ~I.
Let δ be its Lebesgue number, and let 0 = t0 < t1 < · · · < tk+1 = 1 be a subdivision
of the unit interval such that we have | tα+1 − tα |< δ for all α ∈ {0, · · · , k}. By
definition of Lebesgue numbers, for all α ∈ {0, · · · , k} we have an integer εα (being
1 or 2) such that u([tα, tα+1]) ⊆ Xεα . By reparameterisation, we consider u[tα,tα+1]

to be the same as a dimap uα : ~I → X. Now by definition of the composition in
~π1(X) we have,

[u] = ~π1(iεk
)[uk] ◦ . . . ◦ ~π1(iε0)[u0]

Therefore the morphism f we are looking for, if it exists, must necessarily satisfy:

f [u] = fεk
[uk] ◦ . . . ◦ fε0 [u0]

Let us define f this way and check that this is a correct definition.
First, we have to prove that this definition does not depend on the subdivision

0 = t0 < t1 < · · · < tk+1 = 1 that has been chosen.
Let 0 = t′0 < t′1 < · · · < t′k′+1 = 1 be another possible choice of subdivision.

Consider the new one, 0 < t′′0 < t′′1 < · · · < t′′k+k′+2 = 1 union of this subdivision
with 0 < t0 < · · · < tk+1. So, t′′i is some tj or t′j for some j (result of the merge
sort of t∗ with the t′∗). This means that for some ji and ji+1 we have t′′ji

= ti and
t′′ji+1

= ti+1. Let u′′j : [t′′j , t′′j+1] → Xε′′j be the corresponding restriction of dipath u.
We now prove that fεj (uj) = fε′′ji+1−1

(u′′ji+1−1)◦· · ·◦fε′′ji
(u′′ji

), by identifying u′′k with
their dihomotopic counterparts (by a reparameterization) u′′k : [0, 1] → Xε′′k . Notice
that u′′k has its values in Xε′′k ∩Xε0 . But as f ◦ j1 = f ◦ j2, fε0([u

′′
k ]) = fε′′j ([u′′k ]) so

fε′′ji+1−1
([u′′ji+1−1])◦· · ·◦fε′′ji

([u′′ji
]) = fε0([u

′′
ji+1−1])◦· · ·◦fε0([u

′′
ji

]) which is obviously
equal to fεj ([uj ]). This proves (by induction) that the definition of f does not depend
on the subdivision.
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Now we prove that f([u]) only depends on the class of u and not on u. Let
h : ~I × I → X be a dihomotopy linking the dipath u to the dipath v. Let δ be

the Lebesgue number of the covering of ~I × I by h−1(
◦

X1) and h−1(
◦

X2). Consider
subdivisions

0 = t0 < · · · < tk+1 = 1
0 = τ0 < · · · < τl+1 = 1

so that all squares [ti, ti+1]×[τj , τj+1] have diameter less than δ. Further subdivide so
that each τ → h(ti, τ) for τ ∈ [τj , τj+1] is a dipath or an anti-dipath (a dipath with
the reverse ordering on ~I). This is possible since these are continuous paths which
can be decomposed into a finite number of dipaths or anti-dipaths by hypothesis
on X.

Let u′(t) = h(t, τ1). If we prove f([u]) = f([u′]) then it follows by an easy
induction that f([u]) = f([v]). Let Pα be the rectangle between lines t = tα, t =
tα+1, τ = 0 and τ = τ1. Call,

uα : [tα, tα+1] → Xεα

u′α : [tα, tα+1] → Xεα

wα : [0, τ1] → Xεα

the functions uα(t) = h(t, 0), u′α(t) = h(t, τ1) and wα(τ) = h(tα, τ). We use the
same names for any reparameterization of these functions from [0, 1] to Xεα . Of
course w0 = [w0] = Id and wk+1 = [wk+1] = Id.

We now notice the following in ~π1(X) (since we have dihomotopies h on each
Pα):

• Suppose wα is a dipath,

– suppose wα+1 is a dipath, then it is easy to see that [u′α] ◦ [wα] =

[wα+1] ◦ [uα]


h′(x, t) =





h(0, 3x(1− t)) if x 6 1
3

h(3x− 1, 1− t) if 1
3 6 x 6 2

3
h(1, 3(x− 1)t + 1) if 2

3 6 x 6 1

is a dihomotopy between u′α ◦ wα and wα+1 ◦ uα




– suppose wα+1 is an anti-dipath, then w−1
α+1 defined as being w−1

α+1(t) =
wα+1(1− t), for t ∈ [0, 1], is a dipath and [u′α] ◦ [wα] = [w−1

α+1] ◦ [uα].
consider dihomotopy h′(x, t) =





h(0, 3xt)) if x 6 1
3

h(3x− 1, t) if 1
3 6 x 6 2

3
h(1, 3t(1− x)) if 2

3 6 x 6 1




• Similarly, suppose wα is an anti-dipath,

– suppose wα+1 is a dipath, then [uα] ◦ [w−1
α ] = [wα+1] ◦ [u′α].

– suppose wα+1 is an anti-dipath, then [uα] ◦ [w−1
α ] = [w−1

α+1] ◦ [u′α].

Consider now:
f([u]) = fεk

([uk]) ◦ · · · ◦ fε0([u0])
f(([u′]) = fεk

([u′k]) ◦ · · · ◦ fε0([u
′
0])
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We also have,

f([u]) = fεk
([wk+1]) ◦ fεk

([uk]) ◦ · · · ◦ fε0([u0])
f(([u′]) = fεk

([u′k]) ◦ · · · ◦ fε0([u
′
0]) ◦ fε0([w0])

We prove by induction on α that,

fεα
([u′α−1]) ◦ · · · ◦ fε0([u

′
0]) ◦ fε0([w0]) = fεα

([wjα
α ]) ◦ fεα−1([uα−1]) ◦ · · · ◦ fε0([u0])

with jα being −1 if wα is an anti-dipath, +1 otherwise.
This is a direct consequence of the remark above.

In [34], M. Grandis proves a general Seifert/van Kampen theorem for a form of
dihomotopy. In fact, in his case, dihomotopies are maps from ~I × ~I → X, so two di-
paths are equivalent modulo dihomotopy if there is a sequence of such dihomotopies
linking one with the other (giving these zig-zag dipaths as in the proof above). We
believe that in the case of the geometric realization of finite (pre) cubical sets, which
is then in particular compact, these two notions of fundamental categories coincide,
and that the general version of Seifert/van Kampen holds.

In fact, the Seifert/van Kampen theorem works right away in the combinatorial
case. In order to do this, we have to define an analogous to the fundamental category,
the edge-path category. We sketch the construction in the easier case of precubical
sets, but this can be done as well for cubical sets.

A dipath in a precubical set (M,d0, d1) is a finite sequence (k > 1)

p = (p1, · · · , pk)

where all pi are 1 dimensional such that d1
0(pi) = d0

0(pi+1) or the empty sequence
∅.

The initial state of a non-empty dipath p is s(p) = d0
0(p1) and its final state is

t(p) = d1
1(pk).

The composition ∗ (or concatenation) of dipaths is as follows. Let p = (p1, · · · , pk)
and let q = (q1, · · · , ql) be two non-empty dipaths such that the initial state of q is
the final state of p. Then p ∗ q = (p1, · · · , pk, q1, · · · , qk) (is a dipath indeed).

This composition is associative has as neutral element the empty dipath. Let [p]
denote the contiguity class of dipath p. Concatenation induces an operation, still
denoted by ∗, with [p] ∗ [q] = [p ∗ q].

Define the edge-path category E(M) of M as follows. Its objects are elements of
M0. Its morphisms from α ∈ M0 to β ∈ M0 are contiguity classes of dipaths from
α to β, or the empty dipath. The composition between morphisms is ∗ (we write
now [q] ◦ [p] = [p] ∗ [q]). This forms a category.

Let now f : M → N be a morphism of precubical sets. It is easy to see that f
maps dipaths of M to dipaths of N and that if p and q are two contiguous dipaths
in M , then f(p) and f(q) are two contiguous dipaths in N . Similarly, f(p ∗ q) =
f(p)∗f(q). Therefore f induces a transformation E(f) transforming objects of E(M)
into objects of E(N), morphisms of E(M) into E(N), respecting composition. Hence
E is a functor from the category of precubical sets to the category of categories.

Proposition 5. Let X = X1∪X2 be a finite precubical set, union of two precubical
sets. Call j1 : X1 ∩ X2 → X1 (respectively j2 : X1 ∩ X2 → X2) and i1 : X1 → X
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(respectively i2 : X2 → X) the natural inclusion morphisms. Then the following
diagram

E(X1 ∩X2)
E(j1)- E(X1)

E(X2)

E(j2)

?

E(i2)
- E(X )

E(i1)

?

is co-cartesian.

Proof. Same as above, but simpler in that, there is no Lebesgue number argument
(replaced by the finiteness argument), and all un-directed paths in X1 ∩ X2 are
now always compositions of a finite number of di- and anti-di- paths (no achronal
part!).

9.2. Higher-order homotopies
We are going to define inductively the notion of higher-order dihomotopy. We

call dihomotopy of order 0 between two point x and y any dipath from x to y.
A dihomotopy of order 1 is any dihomotopy between two dipaths with the same
ends. Now, suppose we have defined dihomotopies of order up to n (n > 1) between
dihomotopies of order n− 1 with end fixed (gathered in a set ~Pn(X)):

Definition 17. A dihomotopy of order n + 1 (n > 1) between dihomotopies H, G

of order n with equal ends is a dimap A : ~I×In+1 → X such that for all x ∈ ~I×In,
A(x, 0) = H(x) and A(x, 1) = G(x). The source of A is sn(A) = H and its target
is tn(A) = G. The set of such dihomotopies is noted ~Pn(X).

We can define compositions on the sets ~Pn(X) (n > 1) as follows; ∗n−1 : ~Pn(X)×
~Pn(X) → ~Pn(X) is defined for (f, g) such that tn(f) = sn(g):

(f ∗n−1 g)(x0, · · · , xn) =
{

0 6 xn 6 1
2 f(x0, · · · , xn−1, 2xn)

1
2 6 xn 6 1 g(x0, · · · , xn−1, 2xn − 1)

This naturally gives groupöıds πn for all dihomotopies of higher-dimension n > 2
modulo dihomotopies of dimension n + 1. Of course, if we take a base path and
look at loops around this base path we have π2 becoming a group, and πn (n > 3)
becoming abelian groups.

The question one has to solve now is: do we have exact sequences such as the
homotopy exact sequence of a pair? Do we have interesting spectral sequences? Does
all this come from a closed-model structure?

10. Conclusion and Future Work

The dihomotopy theory and applications to concurrency gradually developed
together, but there is much left to do as I tried to show throughout this text.



Homology, Homotopy and Applications, vol. 5(2), 2003 132

We would like to consider also other potential applications. In fact, there are a
certain number of other “geometric” theories which apply to computation models.
For instance, there are algebraic topological considerations in linear logics (see for
instance [48], [49], [2] and [3]) and in modal logics [32] which might be related to the
subject of this paper. More generally, linear logic [24] has a strong geometric flavour
and can be understood as a logic dealing with resources. There are also very nice
results in sequential computation relating topological invariants with computability
results, such as Squier’s theorem, see [66] for instance, and also some very important
applications of geometrical ideas to distributed computing, see for instance [36]. I
believe that some fruitful cross-fertilizations should bring exciting new results in
the years to come.
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