
Homology, Homotopy and Applications, vol.5(2), 2003, pp.137–209

ON THE GEOMETRY OF INTUITIONISTIC S4 PROOFS

JEAN GOUBAULT-LARRECQ and ÉRIC GOUBAULT

(communicated by Gunnar Carlsson)

Abstract
The Curry-Howard correspondence between formulas and

types, proofs and programs, proof simplification and program
execution, also holds for intuitionistic modal logic S4. It turns
out that the S4 modalities translate as a monoidal comonad on
the space of proofs, giving rise to a canonical augmented sim-
plicial structure. We study the geometry of these augmented
simplicial sets, showing that each type gives rise to an aug-
mented simplicial set which is a disjoint sum of nerves of fi-
nite lattices of points, plus isolated (−1)-dimensional subcom-
plexes. As an application, we give semantics of modal proofs
(a.k.a., programs) in categories of augmented simplicial sets
and of topological spaces, and prove a completeness result in
the style of Friedman: if any two proofs have the same denota-
tions in each augmented simplicial model, then they are con-
vertible. This result rests both on the fine geometric structure
of the constructed spaces of proofs and on properties of sub-
scone categories—the categorical generalization of the notion
of logical relations used in lambda-calculus.

1. Introduction

One of the most successful paradigms in modern theoretical computer science is
the so-called Curry-Howard isomorphism [29], an easy but surprising connection be-
tween proofs in intuitionistic logics and functional programs, which has far-reaching
consequences. One cardinal principle here is that logics help design well-crafted
programming constructs, with good semantical properties. In intuitionistic logic,
implications denote function spaces, conjunctions give rise to cartesian products,
disjunctions are disjoint sums, false is the empty type, true is the unit type, univer-
sal quantifications are polymorphic types, existential quantifications are abstract

The first author acknowledges GIE Dyade, a common venture between Bull S.A. and INRIA, where
part of this work was accomplished.
Received October 15, 2001, revised July 24, 2002; published on April 22, 2003.
2000 Mathematics Subject Classification: 03B45, 03B70, 18A25, 18C15, 18C50, 18D15, 18F20,
18G10, 18G30, 55U10, 68N18, 68Q55
Key words and phrases: comonads, completeness, Curry-Howard correspondence, distributivity
laws (for comonads), intuitionistic logic, lambda-calculus, logical relations, modal logic, presheaves,
resolution functors, S4, simplicial sets, subscones.

c© 2003, Jean Goubault-Larrecq and Éric Goubault. Permission to copy for private use granted.

Homology, Homotopy and Applications, vol. 5(2), 2003 138

data types. Classical logic in addition introduces the rich concept of continuation
[26, 42], while the modal logic S4 introduces a form of staged computation [44, 11].

Our aim in this paper is to show that S4 proofs are also geometric objects. To
be precise, S4 formulas correspond to augmented simplicial sets, and S4 proofs
correspond to maps between these spaces. In particular, this extends the Curry-
Howard picture to:

Logic Programming Geometry
Formulae = Types = Augmented Simplical Sets
Proofs = Programs = Augmented Simplicial Maps

Equality of Proofs = Convertibility = Equality of Maps

The = signs are exact, except possibly for the Programs=Augmented Simplicial
Maps one (we only get definable augmented simplicial maps). In particular, it is
well-known that equality of proofs, as defined by the symmetric closure of detour,
or cut-elimination [47], is exactly convertibility of terms (programs). We shall in
addition show that two (definable) augmented simplicial maps are equal if and only
if their defining terms are convertible, i.e., equal as proofs (bottom right = sign).
This will be Theorem 72 and Corollary 73, an S4 variant of Friedman’s Theorem
[16], which will constitute the main goal of this paper.

While Friedman’s Theorem in the ordinary, non-modal, intuitionistic case can
be proved in a relatively straightforward way using logical relations [40], the S4
case is more complex, and seems to require one to establish the existence of a
certain strong retraction of one augmented simplicial set Homb∆(S4 [F],S4 [G]) onto
another S4 [F ⊃ G] (Corollary 48). By the way, we invite the reader to check that
the existence of the corresponding strong retraction in the category of sets (as would
be needed to map our techniques to the non-modal case) is trivial. The existence
of the announced retraction in the category ∆̂ of augmented simplicial sets is more
involved, and prompts us to study the geometry of S4 proofs themselves.

The plan of the paper is as follows. After we review related work in Section 2,
we deal with all logical preliminaries in Section 3. We start by recalling some basic
concepts in logics in Section 3.1, and go on to the Curry-Howard correspondence
between types and formulae, proofs and programs, equality of proofs and convert-
ibility in Section 3.2. We also introduce the logic we shall use, namely minimal
intuitionistic S4, giving its Kripke semantics (Section 3.4) as well as a natural de-
duction system and a proof term language λS4, essentially due to [7], for it. This is
in Section 4.1, where we also prove basic properties about λS4—confluence, strong
normalization of typed terms—and study the structure of normal and so-called
η-long normal forms.

We come to the meat of this paper in Section 4, where we observe that each
type F induces an augmented simplicial set whose q-simplices are terms of type
¤q+1F modulo ≈. We characterize exactly the computation of faces and degen-
eracies on terms written in η-long normal form in Section 4.1, where they take a
particularly simple form. This allows us to study the geometry of these terms in a
precise way in Section 4.2. The crucial notion here is oriented contiguity, which is
an oriented form of path-connectedness. It turns out that this allows us to charac-
terize the simplicial part of these augmented simplicial sets as the nerve of its points

Homology, Homotopy and Applications, vol. 5(2), 2003 139

ordered by contiguity—this is an oriented simplicial complex. In dimension −1, we
get all connected components of these simplicial complexes, as we show in Sec-
tion 4.3. We also show that each non-empty connected component is a finite lattice
of points (0-simplices). In Section 4.4 we turn to another important construction in
these augmented simplicial sets, that of planes. Using the lattice structure, we are
able to show that there are augmented simplicial maps projecting the whole space
onto planes, under mild conditions. This is the essential ingredient in showing that
Homb∆(S4 [F],S4 [G]) strongly retracts onto S4 [F ⊃ G], as announced above.

Section 5 reverses the picture and shows that we may always interpret proofs
as augmented simplicial maps. In general, we may always interpret proofs in any
cartesian closed category (CCC) with a (strict) monoidal comonad—so-called strict
CS4 categories—, as shown in Section 5.1 and Section 5.2. We give examples of
strict CS4 categories in Section 5.1. In Section 5.2, we show additionally that the
typed λS4 calculus is a way of describing the free strict CS4 category on a given set
of base types. In particular, strict CS4 categories offer a sound and complete way
of describing λS4 terms and equalities between them. However, these categories are
general constructions that need to be made more concrete. We would like to be able
to compare proofs in S4 by looking at them not in any strict CS4 category, but in
more concrete ones, in particular in the category ∆̂ of augmented simplicial sets. We
show that λS4 terms still get interpreted faithfully in ∆̂ in Section 5.7—this is Fried-
man’s Theorem for S4, which we prove using a variant of Kripke logical relations
indexed over the category ∆, and using in an essential way the strong retraction
of Homb∆(S4 [F],S4 [G]) onto S4 [F ⊃ G] that we constructed in Section 4.4. We re-
view logical relations in Section 5.3, explain how they work and why they should
be generalized to some form of Kripke logical relation in our case. This is complex,
and better viewed from an abstract, categorical viewpoint: this is why we use sub-
scones (presented in Section 5.4), establish the Basic Lemma in Section 5.5 and
the Bounding Lemma in Section 5.6, the main two ingredients in the equational
completeness theorem of Section 5.7.

The proof of some minor theorems of this paper have been elided. Please refer
to the full report for fuller proofs [23].

2. Related Work

First, let us dispel a possible misunderstanding. The part of this paper concerned
with logic is about the proof theory of S4, that is, the study of proof terms as a
programming language, not about validity or provability. The reader interested in
categorical models of validity in the modal case is referred to [52] and the references
therein. In this line, a well-known topological interpretation of the ¤ modality
of S4, due to Kuratowski, is as follows: interpret each formula F as a subset of
some topological space, and ¤F as the interior of F . (In general, any coclosure
operator works here.) Note that this interpretation collapses ¤F with ¤¤F , while
our interpretations of ¤ will not. In fact no ¤pF can be compared with any ¤qF
in our interpretations unless p = q.

It is easier to reason on proof terms than directly on proofs. In particular, it

Homology, Homotopy and Applications, vol. 5(2), 2003 140

is more convenient to reason on Church’s λ-calculus than on natural deduction
proofs. This is why we use Bierman and de Paiva’s λS4 language [7] of proof terms
for S4. There would have been many other suitable proposals, e.g., [44, 11, 38].
In particular, [21] dispenses with boxes around terms to represent ¤-introduction
rules, by using operators with non-negative indices corresponding to dimensions.
The augmented simplicial structure of the language is apparent in the syntax of
this language; however λS4 turned out to be more convenient technically.

S4 proof terms have been used for partial evaluation [50], run-time program gen-
eration [11], in higher-order abstract syntax [34], etc. The idea is that whereas F
is a type of values, 2F is a type of delayed computations of values of type F , or
of terms denoting values of type F ; d evaluates these computations or these terms
to return their values, and s lifts any delayed computation M to a doubly delayed
computation whose value is M itself. This is similar to eval/quote in Lisp [35], or to
processes evolving through time, say, starting at t = 0 and homing in on their values
at t = 1, as argued in the (unpublished) paper [22]. This is also similar to the view-
point of Brookes and Geva [9], where comonads (2,d, s) are enriched into so-called
computational comonads, by adding a natural transformation γ from the identity
functor to 2 allowing to lift any value, not just any computation, to a computation;
γ must be such that d ◦ γF = idF and s ◦ γF = γ2F ◦ γF . In ∆̂, such a γ induces
a contracting homotopy s−1

q : Kq → Kq+1 for every q > −1, by s−1
q =̂2q+1(γK−1);

these are often used to build resolutions of chain complexes. While our comonads
need not be computational in this sense, the role of contracting homotopies should
become clearer by pondering over Proposition 67 and the construction of Lemma 46.

It is tempting to compare the computational comonads to E. Moggi’s computa-
tional λ-calculus, i.e. CCCs with a strong monad. [6] is a nice introduction to the
latter, and to their relation with Fairtlough and Mendler’s propositional lax logic.
According to Brookes and Geva, there is no special connection between computa-
tional comonads and strong monads. However, in a sense they do express similar
concerns in programming language theory. Moreover, as shown in [6], strong mon-
ads are best understood as the existential dual ♦ (“in some future”) to ¤ (“in all
futures”). Kobayashi [32] deals with a calculus containing both ¤ and ♦. Pfenning
and Davies [43] give an improved framework for combining both ¤ and ♦, and
show how lax logic is naturally embedded in it. While classical negation provides
a natural link between both modalities, in intuitionistic logic the link is more ten-
uous. Following R. Goré, there is a more cogent, intuitionistically valid connection
between an existential and a universal modality, provided the existential modality
is defined as a monad that is left-adjoint to ¤. In this sense, Moggi’s strong monad
should be written as the tense logic modality ¨ (“in some past”), so that ¨F ⊃ G is
provable if and only if F ⊃ ¤G is. This duality is reflected in programming-language
semantics, where ¤F is the type of computations whose values are in F , while ¨G
is the type of values produced by computations in G. Geometrically, ¨F builds a
space of cones over the space F (at least as soon as F is connected), and this may
be defined in categories of topological spaces or of augmented simplicial sets [46];
it turns out that the cone modality is indeed a strong monad. However existentials,
and therefore also ¨, are hard to deal with in establishing equational completeness

Homology, Homotopy and Applications, vol. 5(2), 2003 141

results, and this is why we won’t consider them in this paper. (The notion of logical
relation for strong monads developed in [24] may be of some help here.)

We hope that studies of the kind presented here will help understand connec-
tions between computation, logic and geometry. The relation to other geometric
ways of viewing computation, such as [27] on distributed computation, is yet to be
clarified. Another interesting piece of work at the intersection of logic (here, linear
logic) and simplicial geometry is [3, 4], which provides sophisticated models for
the multiplicative-exponential fragment of linear logic [17] based on affine simpli-
cial spaces with an extra homological constraint. Note that there are strong links
between S4 and linear logic, see e.g., [37].

3. Logics, the Curry-Howard Correspondence, and S4

3.1. Logics
Consider any logic, specified as a set of deduction rules. So we have got a notion

of formula, plus a notion of deduction, or proof. Those formulas that we can deduce
are called theorems. For example, in minimal propositional logic, one of the smallest
non-trivial logics, the formulas are given by the grammar:

F, G ::= A|F ⊃ G

where A ranges over propositional variables in some fixed set Σ, and⊃ is implication.
(This logic is called minimal because removing the only operator, ⊃, would leave
us with something too skinny to be called a logic at all.) The deductions in the
standard Hilbert system for intuitionistic minimal logic are given by the following
axioms:

F ⊃ G ⊃ F (1)
(F ⊃ G ⊃ H) ⊃ (F ⊃ G) ⊃ F ⊃ H (2)

where F , G, H range over all formulas, and ⊃ associates to the right, that is, e.g.,
F ⊃ G ⊃ H abbreviates F ⊃ (G ⊃ H); and the modus ponens rule:

F ⊃ G F
(MP)

G

which allows one to deduce G from two proofs, one of F ⊃ G, the other of F . Now
there is a third level, apart from formulas and proofs, namely proof simplifications.
Consider for example the following proof:

(1)
F ⊃ G ⊃ F

··· π1

F
(MP)

G ⊃ F

··· π2

G
(MP)

F

This may be simplified to just the proof π1. The idea that proofs may be simplified
until no simplification can be made any longer, obtaining equivalent normal proofs,
was pioneered by Gerhard Gentzen [48] to give the first finitist proof (in the sense
of Hilbert) of the consistency of first-order Peano arithmetic. If the logical system

Homology, Homotopy and Applications, vol. 5(2), 2003 142

is presented in a proper way, as with Gentzen’s sequent calculus, it is easy to see
that false has no normal proof (no rule can lead to a proof of false). So false has no
proof, otherwise any proof π of false could be simplified to a normal proof of false,
which does not exist. Hilbert systems as the one above are not really suited to the
task, and we shall instead use natural deduction systems [47] in Section 3.3.

3.2. The Curry-Howard Correspondence
Note that there is another reading of the logic. Consider any formula as being a

set: F ⊃ G will denote the set of all total functions from the set F to the set G. Then
proofs are inhabitants of these sets: interpret the one-step proof (1) as the function
taking x ∈ F and returning the function that takes y ∈ G and returns x, interpret
(2) as the more complex functional that takes x ∈ F ⊃ G ⊃ H, y ∈ F ⊃ G, and
z ∈ F , and returns x(z)(y(z)); finally, if π1 is a proof of F ⊃ G—a function from
F to G—and π2 is in F , then (MP) builds π1(π2), an element of G. Syntactically,
we build a programming language by defining terms:

M, N, P ::= K|S|MN

where K and S are constants and MN denotes the application of M to N . (This
language is called combinatory logic.) We may restrict to well-typed terms, where
the typing rules are: K has any type F ⊃ G ⊃ F , S has any type (F ⊃ G ⊃ H) ⊃
(F ⊃ G) ⊃ F ⊃ H, and if M has type F ⊃ G and N has type F , then MN has
type G. This may be written using typing judgments M : F , which assign each term
M a type F , using typing rules:

K : F ⊃ G ⊃ F (3)
S : (F ⊃ G ⊃ H) ⊃ (F ⊃ G) ⊃ F ⊃ H (4)

M : F ⊃ G N : F
(MP)

MN : G

Note the formal similarity with the proof rules (1), (2), and (MP). Any typing
rule can be converted to a proof, by forgetting terms. Conversely, any proof can
be converted to a typing derivation by labeling judgments with suitable terms.
Furthermore, given a typable term M , there is a unique so-called principal typing
from which all other typings can be recovered (Hindley’s Theorem). This consti-
tutes half of the so-called Curry-Howard correspondence between programs (terms)
and proofs. Subscripting K and S with the types they are meant to have at each
occurrence in a term even makes this an isomorphism between typable terms and
proofs.

Let us introduce the second half of the Curry-Howard correspondence: the proof
simplification steps give rise to program reduction rules; here, the natural choice is
KMN → M , SMNP → MP (NP). It turns out that these reduction rules give rise
to a notion of computation, where a term (a program) is reduced until a normal term
is reached. This reduction process is then exactly the proof simplification process
described above.

Homology, Homotopy and Applications, vol. 5(2), 2003 143

3.3. Natural Deduction and the Lambda-Calculus
The language of Hilbert systems and combinatory logic is not easy to work with,

although this can be done [28]. A more comfortable choice is given by Church’s
λ-calculus [2], the programming language associated with minimal logic in natural
deduction format [47]. Its terms are given by the grammar:

M, N, P ::= x|λx ·M |MN

where x ranges over variables, λx ·M is λ-abstraction (“the function that maps x
to M”, where M typically depends on x). For convenience, we write MN1N2 . . . Nk

instead of (. . . ((MN)N1)N2 . . .)Nk (application associates to the left), and λx1, x2,
. . . , xk ·M instead of λx1 · λx2 · . . . λxk ·M .

Typing, i.e., proofs, are described using sequents instead of mere formulae. A
sequent is an expression of the form x1 : F1, . . . , xn : Fn ` M : F , meaning that M
has type F under the assumptions that x1 has type F1, . . . , xn has type Fn. This
is needed to type λ-abstractions. In this paper, the context x1 : F1, . . . , xn : Fn

will be a list of bindings xi : Fi, where the xi’s are distinct. We shall usually write
Γ, Θ for contexts. The notation Γ, x : F then denotes x1 : F1, . . . , xn : Fn, x : F ,
provided x is not one of x1, . . . , xn. The typing rules are:

(Ax) (1 6 i 6 n)
x1 : F1, . . . , xn : Fn ` xi : Fi

Γ, x : F ` M : G
(⊃ I)

Γ ` λx ·M : F ⊃ G

Γ ` M : F ⊃ G Γ ` N : F
(⊃ E)

Γ ` MN : G

Finally, computation, i.e., proof simplification, is described by the β-reduction
rule (λx · M)N → M [x := N], where M [x := N] denotes the (capture-avoiding)
substitution of N for x in M . We may also add the η-reduction rule λx ·Mx → M ,
provided x is not free in M . Although this is not necessary for proof normalization,
η-reduction allows one to get an extensional notion of function, where two functions
are equal provided they return equal results on equal arguments. (This also corre-
sponds to reducing proofs of axiom sequents to proofs consisting of just the (Ax)
rule, proof-theoretically.)

3.4. Minimal Intuitionistic S4
The topic of this paper is the intuitionistic modal logic S4. For simplicity, we

consider minimal intuitionistic S4, which captures the core of the logic: formulae,
a.k.a. types, are defined by: F ::= A | F ⊃ F | ¤F where A ranges over a fixed set
Σ of base types. (While adding conjunctions ∧, and truth > do not pose any new
problems, it should be noted that adding disjunctions ∨, falsehood ⊥ or ¨ would
not be as innocuous for some of the theorems of this paper.)

The usual semantics of (classical) S4 is its Kripke semantics. For any Kripke
frame (W, D) (a preorder), and a valuation ρ mapping base types A ∈ Σ to sets of
worlds (those intended to make A true), define when a formula F holds at a world
w ∈ W in ρ, abbreviated w, ρ |= F : w, ρ |= A if and only if w ∈ ρ(A); w, ρ |= F ⊃ G
if and only if, if w, ρ |= F then w, ρ |= G; and w, ρ |= ¤F if and only for every
w′ D w, w′, ρ |= F . Think of ¤F as meaning “from now on, in every future F holds”.

Homology, Homotopy and Applications, vol. 5(2), 2003 144

The idea that the truth value of a formula F may depend on time is natural, e.g.
in physics, where “the electron has gone through the left slit” may hold at time t
but not at t′.

In intuitionistic S4 we may refine the semantics of formulae to include another
preordering > on worlds, accounting for intuitionistic forcing. Intuitively, > may be
some ordering on states of mind of a mathematician, typically the ⊇ ordering on
sets of basic facts that the mathematician knows (the analogy is due to Brouwer).
Then if the mathematician knows F ⊃ G when he is in some state of mind w
(abbreviated w |= F ⊃ G), and if he knows F , he should also know G. Further,
knowing F ⊃ G in state of mind w also means that, once the mathematician has
extended his state of mind to a larger w′, if this w′ allows him to deduce F , then he
should be able to deduce G in the w′ state of mind. The intuitionistic meaning of
F ⊃ G is therefore that w |= F ⊃ G if and only if, for every w′ > w, if w′ |= F then
w′ |= G. Knowing the negation of F in state of mind w not only means knowing
that F does not hold in w, but also that it cannot hold in any state of mind w′ > w,
i.e., any w′ extending w. One distinguishing feature of intuitionistic logic is that it
may be the case that there are formulae F such that neither F nor its negation hold
in some state of mind w—think of F as an unsolved conjecture—, so the classical
tautology F ∨ ¬F does not hold in general.

The Kripke semantics of intuitionistic S4 is as follows.

Definition 1 (Kripke Semantics). An intuitionistic Kripke frame is a triple (W,
D,>), where D and > are preorderings on W such that > ⊆ D.

A valuation ρ on W is a map from base types in Σ to upper sets of worlds in W;
an upper set is any subset of W such that whenever w ∈ W and w′ > w, w′ ∈ W .

The semantics of S4 formulas is given by:

w, ρ |= A iff w ∈ ρ(A)
w, ρ |= F ⊃ G iff for every w′ > w, if w′, ρ |= F then w′, ρ |= G

w, ρ |= ¤F iff for every w′ D w, w′, ρ |= F

An S4 formula F is valid, written |= F , if and only if w, ρ |= F in every frame
(W, D, >), for every w ∈ W, for every valuation ρ.

The resulting logic is called IntS4 in [51], and the condition relating > and D
there is (> ◦ D ◦ >) =D. In the S4 case where D is a preorder, this is equivalent to
our > ⊆ D.

For all our analogy with states of mind of a mathematician is worth, the condition
> ⊆ D intuitively states that you can only learn new basic facts (increase w.r.t. >)
while time passes (D), but time may pass without you learning any new facts.

We have mentioned the ¨ modality in Section 2. This would have the expected
semantics: w, ρ |= ¨F if and only if for some w′ with w D w′, w′, ρ |= F . The other
two modalities ¥ (“in all pasts”) and ♦ (“in some future”) are naturally defined
in intuitionistic modal logic by introducing a new binary relation E on W, which
needs not be the converse of D, letting w, ρ |= ¥F if and only if for every w′ E w,
w′, ρ |= F , and w, ρ |= ♦F if and only if for every w′ with w E w′, w′, ρ |= F [51].
The only constraints on >, D and E are that, in addition to > ⊆ D, we should have

Homology, Homotopy and Applications, vol. 5(2), 2003 145

> ⊆ E, E ⊆ (E∩Do)◦ >, and D ⊆ (D∩Eo)◦ >, where Ro denotes the converse of
relation R.

3.5. Natural Deduction for Intuitionistic S4
In this paper, we shall not be so much interested in validity of S4 formulas as in

actual proofs of S4 formulas. So let us talk about proofs.
We use λS4 as a language of proof terms for S4 [7]. The raw terms are:

M,N, P ::= x | MN | λx ·M | dM | M · θ
where θ is an explicit substitution, that is, a substitution that appears as an explicit
component of terms. A substitution θ is any finite mapping from variables xi to
terms Mi, 1 6 i 6 n, and is written {x1 := M1, . . . , xn := Mn}; its domain dom θ is
the set {x1, . . . , xn}. (We omit the type subscript of variables whenever convenient.)
The yield yld θ is defined as

⋃
x∈dom θ fv(θ(x)), mutually recursively with the set of

free variables fv(M) of the term M : fv(x)=̂{x}, fv(MN)=̂ fv(M) ∪ fv(N), fv(λx ·
M)=̂ fv(M) \ {x}, fv(dM)=̂ fv(M), fv(M · θ)=̂ yld θ. (We use =̂ for equality by
definition.) Moreover, we assume that, in any term M · θ, fv(M) ⊆ dom θ; we also
assume Barendregt’s naming convention: no variable occurs both free and bound,
or bound at two different places—bound variables are x in λx ·M and all variables
in dom θ in M · θ.

Our notations differ from [7]. There M · {x1 := N1, . . . , xn := Nn} is written
box M with N1, . . . , Nn for x1, . . . , xn. The new notation allows one, first, to ma-
terialize the explicit substitution more naturally, and second the frame notation
will be put to good use to explain what simplices look like. Also, dM is written
unbox M in [7]; we use dM because it is more concise and hints that some face
operator is at work.

Substitution application Mθ is defined by: xθ=̂θ(x) if x ∈ dom θ, xθ=̂x otherwise;
(MN)θ=̂(Mθ)(Nθ); (λx·M)θ=̂λx·(Mθ) provided x 6∈ dom θ∪yld θ; (dM)θ=̂d(Mθ);
(M · θ′)θ=̂ M · (θ′ · θ), where substitution concatenation θ′ · θ is defined as {x1 :=
M1, . . . , xn := Mn} · θ=̂{x1 := M1θ, . . . , xn := Mnθ}.

Terms are equated modulo α-conversion, the smallest congruence ≡ such that:

λx ·M ≡ λy · (M{x := y})
M · {x1 := N1, . . . , xn := Nn} ≡

M{x1 := y1, . . . , xn := yn} · {y1 := N1, . . . , yn := Nn}
provided y is not free in M in the first case, and y1, . . . , yn are not free in M and
are pairwise distinct in the second case, with identical type subscripts as x1, . . . ,
xn respectively.

The d operator is a kind of “eval”, or also of “comma” operator in the lan-
guage Lisp [35]. The M, θ 7→ M · θ operator is more complex. Let’s first look
at a special case: for any term M such that fv(M) = {x1, . . . , xn}, let M be

M · {x1 := x1, . . . , xn := xn}—or, more formally, M{x1 := x′1, . . . , xn := x′n} ·
{x′1 := x1, . . . , x

′
n := xn}. Then M behaves like “quote” M in Lisp, or more ex-

Homology, Homotopy and Applications, vol. 5(2), 2003 146

actly, “backquote” M ; and provided dom θ = fv(M), M ·θ is exactly
(

M
)

θ: this
is a syntactic closure in the sense of [5], namely a quoted term M together with an
environment θ mapping free variables of M to their values.

(Ax)
Γ, x : F, Θ ` x : F

Γ ` M : F ⊃ G Γ ` N : F
(⊃ E)

Γ ` MN : G

Γ, x : F ` M : G
(⊃ I)

Γ ` λx ·M : F ⊃ G

Γ ` M : ¤F
(¤E)

Γ ` dM : F

16i6n︷ ︸︸ ︷
Γ ` Ni : ¤Fi x1 : ¤F1, . . . , xn : ¤Fn ` M : G

(¤I)
Γ ` M · {x1 := N1, . . . , xn := Nn} : ¤G

Figure 1: Typing λS4 terms

The typing rules [7], defining a natural deduction system for minimal S4, are as
in Figure 1, where Γ, Θ, . . . , are typing contexts, i.e. lists of bindings x : F , where
x is a variable, F is a type, and no two bindings contain the same variable in any
given context. The exchange rule:

Γ, x : F, y : G,Θ ` M : H

Γ, y : G, x : F, Θ ` M : H

is easily seen to be admissible, so we can consider typing contexts as multisets
instead of lists. In particular, there is no choice to be made as to the order of the
variables x1, . . . , xn in the right premise of rule (¤I).

(β) (λx ·M)N → M{x := N} (d) d(M · θ) → Mθ

(gc) M · (θ, {x := N}) → M · θ provided x 6∈ fv(M)
(ctr) M · (θ, {x := N, y := N}) → M{y := x} · (θ, {x := N})
(¤) M · (θ, {x := N · θ′}) → M{x := N } · (θ, θ′)
(η) λx ·Mx → M provided x 6∈ fv(M) (η¤) dx · {x := N} → N

Figure 2: The reduction relation of λS4

Define the reduction relation → on λS4-terms as the smallest relation compatible
with term structure (i.e., if M → N then C[M] → C[N], where C[P] denotes any
term with a distinguished occurrence of P) defined in Figure 2 [7, 20]. Terms that
match the left-hand side of rules are called redexes (for reduction expression). The
convertibility relation ≈ is the smallest congruence extending →; in other words,
≈ is the reflexive symmetric transitive closure of →. In addition, we write →+ the
transitive closure of →, and →∗ its reflexive transitive closure.

Homology, Homotopy and Applications, vol. 5(2), 2003 147

Rule (d) is like Lisp’s rule for evaluating quoted expressions: evaluating M , by
d M , reduces to M . Rule (¤) can be seen either as an inlining rule, allowing one
to inline the definition of x as N inside the body M of the box M , or logically
as a box-under-box commutation rule. (gc) is a garbage collection rule, while (ctr)
is a contraction rule. We use a new notation in these rules: if θ and θ′ are two
substitutions with disjoint domains, then θ, θ′ denotes the obvious union.

The last two rules are so-called extensional equalities. Together with (gc), (η¤)
allows us to deduce dx · θ ≈ xθ, but not dM · θ ≈ Mθ for any term M : M has
to be a variable. For a discussion of this, see [21].

3.6. Standard Properties: Subject Reduction, Confluence, Strong Nor-
malization

We now prove standard properties of proof simplification calculi.
The following lemma is by a series of easy but tedious computations; it says that

reduction preserves typings, alternatively that it rewrites proofs to proofs of the
same sequents.

Lemma 2 (Subject Reduction). If the typing judgment Γ ` M : F is derivable
and M → N then Γ ` N : F is derivable.

Proposition 3 (Strong Normalization). If M is typable, then it is strongly
normalizing, i.e., every reduction sequence starting from M is finite.

Proof. By the reducibility method [18]. Let SN be the set of strongly normalizing
terms, and define an interpretation of types as sets of terms as follows:

• for every base type A, ||A||=̂SN ;
• ||F ⊃ G||=̂{M ∈ SN |whenever M →∗ λx ·M1

then for every N ∈ ||F ||,M1{x := N} ∈ ||G||};
• ||¤F ||=̂{M ∈ SN |whenever M →∗ M1 · θ then M1θ ∈ ||F ||}

Observe that:

(CR1) ||F || ⊆ SN for every type F ;
(CR2) For every M ∈ ||F ||, if M → M ′ then M ′ ∈ ||F ||. This is by structural

induction on F . This is clear when F is a base type. For implications, assume
M ∈ ||F ⊃ G|| and M → M ′; then M ′ ∈ SN , and if M ′ →∗ λx ·M1, then
M →∗ λx ·M1, so by definition of ||F ⊃ G||, M1{x := N} ∈ ||G|| for every
N ∈ ||F ||; therefore M ′ ∈ ||F ⊃ G||. The case of box types is proved similarly.

(CR3) For every neutral term M , if M ′ ∈ ||F || for every M ′ with M → M ′,
then M ∈ ||F ||. (Call a term neutral if and only if it is not of the form
λx ·M or M · θ.) This is again by structural induction on F . This is clear
when F is a base type. For implications, assume that every M ′ such that
M → M ′ is in ||F ⊃ G||, and show that M ∈ ||F ⊃ G||. Clearly M ∈ SN ,
since every reduction starting from M must be empty or go through some
M ′ ∈ ||F ⊃ G|| ⊆ SN by (CR1). So assume that M →∗ λx · M1. Since
M is neutral, the given reduction is non-empty, so there is an M ′ such that

Homology, Homotopy and Applications, vol. 5(2), 2003 148

M → M ′ →∗ λx ·M1. By assumption M ′ ∈ ||F ⊃ G||, so for every N ∈ ||F ||,
M1{x := N} ∈ ||G||. It follows that M ∈ ||F ⊃ G||. The case of box types is
similar.

Next we show that:

1. If M ∈ ||F ⊃ G|| and N ∈ ||F ||, then MN ∈ ||G||. By (CR1), M and N
are in SN , so we prove this by induction on the pair (M, N) ordered by →,
lexicographically. Note that MN is neutral, and may only rewrite in one step
to M ′N where M → M ′, or to MN ′ where N → N ′, or to M1{x := N} by
(β) (if M = λx ·M1). In the first two cases, M ′ ∈ ||F ⊃ G||, resp. N ′ ∈ ||F ||
by (CR2), so we may apply the induction hypothesis. In the third case, this
is by definition of ||F ⊃ G||. In each case we get a term in ||G||, so by (CR3)
MN ∈ ||G||.

2. If M{x := N} ∈ ||G|| for every N ∈ ||F ||, then λx · M ∈ ||F ⊃ G||. To
show this, we show the converse of 1: if for every N ∈ ||F ||, MN ∈ ||G||,
then M ∈ ||F ⊃ G||. Indeed, first M ∈ SN : take any variable x; x is in
||F || by (CR3), so Mx ∈ ||G|| by assumption, so Mx ∈ SN by (CR1), hence
M ∈ SN . Second, assume that M →∗ λx · M1, then for every N ∈ ||F ||,
MN →∗ M1{x := N} ∈ ||G|| by (CR2). So M ∈ ||F ⊃ G||.
Using this, assume that M{x := N} ∈ ||G|| for every N ∈ ||F ||, and show
that λx · M ∈ ||F ⊃ G||. It is enough to show that (λx · M)N ∈ ||G|| for
every N ∈ ||F ||. We do this by induction on (M, N) ordered by →, which is
well-founded: indeed, N ∈ ||F || ⊆ SN by (CR1), and M = M{x := x} ∈
||G|| ⊆ SN by (CR1), since x ∈ ||F || by (CR3). Since (λx ·M)N is neutral,
apply (CR3): (λx ·M)N may rewrite to (λx ·M ′)N with M → M ′ (this is in
||G|| by (CR2) and the induction hypothesis), or to (λx ·M)N ′ with N → N ′

(similar), or to M{x := N} by (β) (in ||G|| by assumption), or to M ′N by
(η) where M = M ′x, x not free in M ′ (then M ′N = M{x := N}, which is in
||G|| by assumption).

3. If M ∈ ||¤F ||, then dM ∈ ||F ||. This is by induction on M ordered by →,
which is well-founded since by (CR1) M ∈ SN . Now dM may rewrite either
to dM ′ with M → M ′ (then apply the induction hypothesis, noting that
M ′ ∈ ||¤F || by (CR2), so dM ′ ∈ ||F ||), or to M1θ, provided M = M1 · θ
(then M1θ ∈ ||F || by definition). Since dM is neutral, by (CR3) dM ∈ ||F ||.

4. If Mθ ∈ ||F || and θ maps each variable x ∈ dom θ to some strongly normalizing
term, then M · θ ∈ ||¤F ||. First we show the converse of 3: if dM ∈ ||F ||
then M ∈ ||¤F ||. First since dM ∈ ||F || ⊆ SN by (CR1), M ∈ SN . It
remains to show that whenever M →∗ M1 · θ then M1θ ∈ ||F ||. However
then dM →∗ M1θ must be in ||F || by (CR2).
Knowing this, let Mθ be in ||F || and θ map each variable x ∈ dom θ to some
strongly normalizing term. Let us show that M · θ ∈ ||¤F ||. By the converse
of 3 shown above, it is enough to show that d M · θ ∈ ||F ||. We shall prove
this using (CR3), since d M · θ is neutral. Letting θ be {x1 := N1, . . . , xn :=
Nn}, we show this by induction on, first, N1, . . . , Nn ordered by the multiset

Homology, Homotopy and Applications, vol. 5(2), 2003 149

extension [12] of → ∪., where . is the immediate superterm relation (it is
well-known that as soon as Ni is in the well-founded part of →, it is also in
the well-founded part of → ∪.; the multiset extension allows one to replace
any element Ni of the multiset by any finite number of smaller elements, and
is well-founded on all multisets of elements taken from the well-founded part
of the underlying ordering); and second on Mθ, lexicographically. Now d M ·θ
may rewrite in one step to:

• Mθ by (d); this is in ||F || by assumption.
• dN1 by (η¤), where M = dx1 and n = 1. Then dN1 = Mθ is in ||F || by

assumption.
• d M ′ · θ where M → M ′. By (CR2) M ′θ ∈ ||F ||, so we may apply the

induction hypothesis.
• d M ·θ′ where θ′ = {x1 := N1, . . . , xi := N ′

i , . . . , xn := Nn} and Ni → N ′
i .

Since N ′
i ∈ SN , we may apply the induction hypothesis.

• d M · θ′ where θ = θ′, {x := N} and x is not free in M by (gc). This is
by the induction hypothesis. The same argument applies for (ctr).

• d M{x := N } ·(θ1, θ
′) where θ = θ1, {x := N ·θ′} by (¤). We wish to

apply the induction hypothesis. For this, we have to check that M{x :=
N }(θ1, θ

′) is in ||F ||. But Mθ is in ||F || and equals M(θ1, {x := N ·θ′}.
The latter is equal or rewrites by (gc) to M(θ1, {x := (N)θ′}) = M{x :=
N }(θ1, θ

′), so the latter is in ||F || by (CR2).

We now check that, given any typing derivation π of x1 : F1, . . . , xn : Fn ` M : F ,
for every N1 ∈ ||F1||, . . . , Nn ∈ ||Fn||, M{x1 := N1, . . . , xn := Nn} ∈ ||F ||. This
is by structural induction on π. The (Ax) cas is obvious, while the other cases are
dealt with by using items 1–4 above. Since xi ∈ ||Fi|| by (CR3), it follows that
M ∈ ||F ||. By (CR1), M ∈ SN .

Proposition 4 (Confluence). If M is typable, and if M →∗ N1 and M →∗ N2,
then there is P such that N1 →∗ P and N2 →∗ P .

Proof. A long and uninteresting series of computations shows that all critical pairs
are joinable, hence λS4 is locally confluent [13]. This holds also on typable terms
because of Lemma 2. By Newman’s Lemma (every locally confluent and strongly
normalizing rewrite system is confluent) and Proposition 3, λS4 is confluent on typed
λS4-terms.

Corollary 5. Every typable λS4-term has a unique normal form.

3.7. The Shape of Normal Forms, η-Long Normal Forms
One way of describing normal forms for typed terms is by the typing system BN

of Figure 3.

Lemma 6. Call a term beta-normal if and only if it contains no (β), (d), (gc),
(¤) redex (i.e., no redex except possibly (ctr), (η) or (η¤) redexes).

Homology, Homotopy and Applications, vol. 5(2), 2003 150

(AxE)
Γ, x : F, Θ `E x : F

Γ `E M : F ⊃ G Γ `I N : F
(⊃ EE)

Γ `E MN : G

Γ `E M : F
(Flip)

Γ `I M : F

Γ `E M : ¤F
(¤EE)

Γ `E dM : F

Γ, x : F `I M : G
(⊃ II)

Γ `I λx ·M : F ⊃ G

16i6n︷ ︸︸ ︷
Γ `E Ni : ¤Fi

x1 : ¤F1, . . . , xn : ¤Fn

`I M : G
(¤II)

Γ `I M · {x1 := N1, . . . , xn := Nn} : ¤G
(fv(M) = {x1, . . . , xn})

Figure 3: Typing beta-normal forms: System BN

If Γ ` M : F and M is beta-normal, then Γ `I M : F . Moreover, if M is neutral,
i.e., not starting with a λ or a box, then Γ `E M .

Conversely, if Γ `I M : F or Γ `E M : F , then Γ ` M : F and M is beta-normal.

Proof. By structural induction on the given derivation of Γ ` M : F . The cases
M a variable, and M of the form λx · M1 are trivial. If M = M1M2, with Γ `
M1 : G ⊃ H and Γ ` M2 : G, then M1 must be neutral, otherwise by typing M1

would start with a λ, and then M would be a (β)-redex. So by induction hypothesis
Γ `E M1 : G ⊃ H. Since by induction hypothesis Γ `I M2 : G, it follows by rule
(⊃ EE) that Γ `E M : H. The case where M = dM1 is similar. Finally, when M is
of the form M1 · θ, with θ = {x1 : N1, . . . , xn : Nn}, Γ ` Ni : ¤Fi (1 6 i 6 n), and
x1 : ¤F1, . . . , xn : ¤Fn ` M1 : F , then by induction hypothesis x1 : ¤F1, . . . , xn :
¤Fn `I M1 : F . Moreover, since M is not a (gc) redex, fv(M) = {x1, . . . , xn}. Also,
every Ni must be neutral, otherwise by typing they would start with a box, which is
forbidden because M is not a (¤) redex, so by induction hypothesis Γ `E Ni : ¤Fi.
It follows that rule (¤II) applies, therefore Γ `I M : ¤F .

Conversely: if Γ `I M : F or Γ `E M : F , then it is obvious that Γ ` M : F :
erase all E and I subscripts, and remove all instances of (Flip). It remains to show
that M is beta-normal. Consider any subterm of M . If it is of the form M1M2,
then its type must have been derived using the (⊃ EE) rule, which implies that
M1 is typed as in Γ `E M1 : F ⊃ G; but no rule in BN (Figure 3) would allow
one to derive such a judgment if M1 began with λ; so M1M2 is not a (β)-redex.
Similarly, no subterm of M can be a (d) redex. The side-conditions on rule (¤II)
entail that no subterm of M is a (gc) redex, while the fact that Ni : ¤Fi must have
been derived using a `E judgment entails that no Ni starts with a box, hence that
no subterm of M is a (¤) redex. So M is beta-normal.

A more convenient form than normal forms is the η-long normal form, imitating
that of [30] in the non-modal case. In the S4 case, η-long normal forms are slightly

Homology, Homotopy and Applications, vol. 5(2), 2003 151

more complex, but can be described as follows, including an additional linearity
constraint on boxes.

Definition 7 (η-long normal form). Call a term M linear if and only if every
free variable of M occurs exactly once in M . Formally, define the notion of being
linear in W , where W is a finite set of variables, as follows. Every variable is linear
in W , λx ·M is linear in W provided M is linear in W \ {x}, MN is linear in W
provided M and N are and fv(M) ∩ fv(N) ∩W = ∅, ∂M is linear in W provided
M is, M · {x1 := N1, . . . , xn := Nn} is linear in W provided each Ni, 1 6 i 6 n,
is linear in W , and fv(Ni)∩ fv(Nj)∩W = ∅ for every 1 6 i 6= j 6 n. A term M is
linear provided it is linear in fv(M).

Call (Flip0) the rule (Flip) restricted to the case where F is in the set Σ of base
types, and (¤I0) the rule (¤II) restricted to the case where M is linear. Call BN0

the typing system BN where all instances of (Flip) are instances of (Flip0), and
all instances of (¤II) are instances of (¤I0).

A term M is said to be η-long normal of type F in Γ if and only if we can derive
Γ `I M : F in system BN0.

Lemma 8 (Weakening). For every BN derivation of Γ `∗ M : F (∗ ∈ {I, E}),
for every context Θ, there is a BN derivation of Γ,Θ `∗ M : F .

Proof. By structural induction on the given derivation. This is mostly obvious,
provided we assume all bound variables have been renamed so as to be distinct
from the ones in Θ.

Lemma 9. For every M such that Γ ` M : F , M has an η-long normal form η[M].
That is, there is a term η[M] such that M ≈ η[M] and Γ ` η[M] : F .

Proof. First by Proposition 3 and Lemma 6, we may assume that Γ `I M : F . The
idea is then, first, to rewrite every instance of (Flip) on non-base types F using
only instances of (Flip) on smaller types F , until all we get is instances of (Flip0).
This is done using the following two rules:

Γ `E M : F ⊃ G
(Flip)

Γ `I M : F ⊃ G
−→

Γ, x : F `E M : F ⊃ G

(AxE)
Γ, x : F `E x : F

(Flip)
Γ, x : F `I x : F

(⊃ EE)
Γ, x : F `E Mx : G

(Flip)
Γ, x : F `I Mx : G

(⊃ II)
Γ `I λx ·Mx : F ⊃ G

(5)

Γ `E M : ¤F
(Flip)

Γ `I M : ¤F
−→

Γ `E M : ¤F

(AxE)
x : ¤F `E x : ¤F

(¤EE)
x : ¤F `E dx : F

(Flip)
x : ¤F `I dx : F

(¤II)
Γ `I dx · {x := M} : ¤F

(6)

where in the right-hand side of the first rule, the derivation of Γ, x : F `E M :
F ⊃ G is obtained from the one of Γ `E M : F ⊃ G by weakening (Lemma 8).

Homology, Homotopy and Applications, vol. 5(2), 2003 152

This terminates, because the sum of the sizes of formulae on the right-hand sides
of judgments in (Flip) decreases (define the size |F | of a formula F by |A|=̂1,
|F ⊃ G|=̂|F |+ |G|+ 1, |¤F |=̂|F |+ 1).

On the other hand, we make every instance of (¤II) one of (¤I0) by linearizing
the term M . That is, for each free variable xi in M , 1 6 i 6 n, with ki > 1 distinct
occurrences in M , create ki fresh variables xi1, . . . , xiki , let M ′ be M where the jth
occurrence of xi is replaced by xij , for every 1 6 i 6 n, 1 6 j 6 ki, and rewrite the
derivation:

16i6n︷ ︸︸ ︷
Γ `E Ni : ¤Fi x1 : ¤F1, . . . , xn : ¤Fn ` M : F

(¤II)
Γ ` M · {x1 := N1, . . . , xn : Nn} : ¤F

(7)

into:
16i6n,16j6ki︷ ︸︸ ︷

Γ `E Ni : ¤Fi (xij : ¤Fi)16i6n,16j6ki
` M ′ : F

(¤I0)
Γ ` M ′ · {(xij := Ni)16i6n,16j6ki

} : ¤F

(8)

Lemma 10. Let Γ ` M : F . Then M has at most one η-long normal form of type
F in Γ.

Proof. Let M ′ be an η-long normal form of M . M ′ is beta-normal by construction.
Let Rη be the rewrite system consisting of rules (η) and (η¤). It is clear that
Rη terminates and rewrites beta-normal terms to beta-normal terms. Similarly the
rewrite system Rctr consisting of the sole rule (ctr) terminates and rewrites Rη-
normal beta-normal terms to Rη-normal beta-normal terms. Let M ′′ be any Rη-
normal form of M ′, and M ′′′ be any Rctr-normal form of M ′′. Then M ′′′ is Rctr-
normal, Rη-normal and beta-normal, hence normal.

Since M ′ is an η-long normal form of M , M ≈ M ′, so M ≈ M ′′′. By Proposition 4
and since M ′′′ is normal, M →∗ M ′′′. Summing up, M →∗ M ′′′

Rctr
∗ ← M ′′

Rη
∗ ←

M ′, where →R denotes rewriting by R.
Observe now that the rewrite system R−1

ctr on derivations defined by the trans-
formation M1{y := x} · (θ, {x := N}) → M1 · (θ, {x := N, y := N}) (where both
x and y are free in M1) is locally confluent. Moreover, whenever M1 is well-typed
and beta-normal, and rewrites to M2 by Rctr, then M2 rewrites to M1 by R−1

ctr .
Finally, R−1

ctr terminates: for any term M1, let µ(M1) be
∑

x∈fv(M1)
(n(x,M1) − 1)

where n(x,M1) is the number of occurrences of x in M1; by induction on µ(M1)
followed lexicographically by the multiset of the terms xθ, x ∈ dom θ ordered by
→R−1

ctr
, M1 · θ is R−1

ctr -terminating as soon as each xθ is, x ∈ dom θ; it follows by
structural induction on terms that every term is R−1

ctr -terminating.
Similarly, the rewrite system R−1

η on derivations defined by (5) and (6) is ter-
minating (as already noticed in Lemma 9), locally confluent, and whenever M1 is
well-typed and beta-normal, and rewrites to M2 by Rη, then M2 rewrites to M1 by
R−1

η

Homology, Homotopy and Applications, vol. 5(2), 2003 153

So if M ′ is any η-long normal form of M , then M →∗ M ′′′ →∗
R−1

ctr
M ′′ →∗

R−1
η

M ′.

In general, if M ′
1 and M ′

2 are two η-long normal forms of M , we get M →∗

M ′′′ →∗
R−1

ctr
M ′′

1 →∗
R−1

η
M ′

1 and M →∗ M ′′′ →∗
R−1

ctr
M ′′

2 →∗
R−1

η
M ′

2. Since R−1
ctr is

confluent and M ′′
1 and M ′′

2 are R−1
ctr -normal, M ′′

1 = M ′′
2 . Since R−1

η is confluent and
M ′

1 and M ′
2 are η-long normal, hence R−1

η -normal, M ′
1 = M ′

2.

Lemmas 9 and 10 entail:

Proposition 11 (η-long normalization). For every term M such that Γ ` M : F
is derivable, M has a unique η-long normal form of type F in Γ, which we write
η[M]. In particular, whenever Γ ` M : F and Γ ` M ′ : F , M ≈ M ′ if and only if
η[M] = η[M ′].

The value of η-long normal forms is that substituting terms Ni of a certain form
for variables in any η-long normal form yields an η-long normal form again:

Lemma 12. If x1 : F1, . . . , xn : Fn,Θ `∗ M : F (∗ ∈ {I, E}) and Γ `E Ni : Fi in
system BN0 for every i, 1 6 i 6 n, then Γ,Θ `∗ M{x1 := N1, . . . , xn := Nn} : F
in system BN0.

Proof. By structural induction on the given derivation of x1 : F1, . . . , xn : Fn,Θ `∗
M : F in BN0. If this was derived by (AxE), then ∗ = E; if M = xi for some
i, then F = Fi, M{x1 := N1, . . . , xn := Nn} = Ni and we may indeed deduce
Γ, Θ `E Ni : F , by weakening from Γ `E Ni : F (Lemma 8); otherwise let M
be variable x, then M{x1 := N1, . . . , xn := Nn} = x, and we get Γ, Θ `E x : F
by (AxE). If the last rule is (⊃ EE), (¤EE) or (Flip0), this is by the induction
hypothesis, straightforwardly. If the last rule is (⊃ II), then ∗ = I, M is of the form
λx ·M1, F is of the form G ⊃ H, and by induction hypothesis we have been able to
derive Γ, Θ, x : G `I M1{x1 := N1, . . . , xn := Nn} : H, from which we get Γ, Θ `I

M{x1 := N1, . . . , xn := Nn} : G ⊃ H by (⊃ II). Finally, if the last rule is (¤I0),
then ∗ = I, F is of the form ¤G, M is of the form M1 · {y1 := P1, . . . , yk := Pk},
fv(M1) = {y1, . . . , yk}, M1 is linear, and the typing derivation ends in:

16j6k︷ ︸︸ ︷
x1 : F1, . . . , xn : Fn,Θ `E Pj : ¤Gj y1 : ¤G1, . . . , yk : ¤Gk `I M1 : G

(¤I0)
x1 : F1, . . . , xn : Fn, Θ `I M1 · {y1 := P1, . . . , yk := Pk} : ¤G

By induction hypothesis, we have got a derivation in BN0 of Γ, Θ `E Pj{x1 :=
N1, . . . , xn := Nn} : ¤Gj . Together with the derivation above of y1 : ¤G1, . . . , yk :
¤Gk `I M1 : G, and since fv(M1) = {y1, . . . , yk}, M1 is linear, we may apply (¤I0)
and derive

Γ, Θ `I M1 · { y1 := P1{x1 := N1, . . . , xn := Nn},
. . . ,
yn := Pn{x1 := N1, . . . , xn := Nn}} : ¤G

But this is precisely Γ,Θ `I M{x1 := N1, . . . , xn := Nn} : ¤G.

Homology, Homotopy and Applications, vol. 5(2), 2003 154

Lemma 13. If M is η-long normal of type ¤F in Γ, then M is of the form M1 ·θ.
Moreover, η[dM] = M1θ.

Proof. The first part is obvious: Γ `I M : ¤F in system BN0, but only rule
(¤I0) can lead to this. Also, letting θ be {x1 := N1, . . . , xn := Nn}, we have
x1 : ¤F1, . . . , xn : ¤Fn `I M1 : F in BN0, and Γ `E Ni : ¤Fi in BN0 for each i,
1 6 i 6 n. By Lemma 12, Γ `I M1θ : F in BN0. Since dM ≈ M1θ, by Proposition 11
η[dM] = M1θ.

The crucial thing in Lemma 13 is not so much that dM ≈ M1θ, which is obvious.
Rather, it is the fact that once we have reduced d(M1 · θ) to M1θ by (d), we have
already reached its η-long normal form.

Similarly, we obtain:

Lemma 14. Let sM=̂ x · {x := M}. If M=̂ M1 · θ is η-long normal of type ¤F

in Γ, then η[sM] = M1 · θ.

Proof. First sM = x · {x := M1 · θ} ≈ M1 ·θ. Then since M is η-long normal,

letting θ be {x1 := N1, . . . , xn := Nn}, we have x1 : ¤F1, . . . , xn : ¤Fn `I M1 : F
in BN0, and Γ `E Ni : ¤Fi in BN0 for each i, 1 6 i 6 n. So we can produce the
following BN0 derivation:

16i6nz }| {
···

Γ `E Ni : �Fi

16i6nz }| {
(AxE)

x1 : �F1, . . . , xn : �Fn

`E xi : �Fi

···
x1 : �F1, . . . , xn : �Fn

`I M1 : F
(�I0)

x1 : �F1, . . . , xn : �Fn `I M1 : �F
(�I0)

Γ `I M1 · θ : ��F

so M1 · θ is η-long normal of type ¤¤F in Γ. The claim then follows by Propo-

sition 11.

4. The Augmented Simplicial Structure of λS4

We define an augmented simplicial set consisting of typed λS4-terms. Recall that:

Definition 15 (A.s. set, a.s. map). An augmented simplicial set K is a family
of sets Kq, q > −1, of q-simplices, a.k.a. simplices of dimension q, with face maps
∂i

q : Kq → Kq−1 and degeneracy maps si
q : Kq → Kq+1, 0 6 i 6 q, such that:

(i) ∂i
q−1 ◦ ∂j

q = ∂j−1
q−1 ◦ ∂i

q (ii) si
q+1 ◦ sj−1

q = sj
q+1 ◦ si

q (iii) ∂i
q+1 ◦ sj

q = sj−1
q−1 ◦ ∂i

q

(iv) ∂i
q+1 ◦ si

q = id (v) ∂i+1
q+1 ◦ si

q = id (vi) si
q−1 ◦ ∂j

q = ∂j+1
q+1 ◦ si

q

where 0 6 i 6 q in (iv), (v), and 0 6 i < j 6 q in the others.
An augmented simplicial map f : K → L is a family of maps fq : Kq → Lq,

q > −1, such that ∂i
q ◦ fq = fq−1 ◦ ∂i

q and si
q ◦ fq = fq+1 ◦ si

q, 0 6 i 6 q.

Homology, Homotopy and Applications, vol. 5(2), 2003 155

Subscripts start at −1, which is standard and allows one to have q match the
geometric dimension. We sometimes abbreviate “augmented simplicial” as “a.s.” in
the sequel. Also, when we run a risk of confusion, we write ∂i

Kq
for ∂i

q, and si
Kq

for
si

q.
The category ∆̂ of augmented simplicial sets as objects, and augmented simplicial

maps as morphisms (see [36], VII.5), can also be presented as follows. Let ∆ be
the category whose objects are finite ordinals [q]=̂{0, 1, . . . , q}, q > −1, and whose
morphisms are monotonic (i.e., non-decreasing) maps. This category is generated

by morphisms [q−1]
δi

q−→[q] (mapping j < i to j and j > i to j +1) and [q +1]
σi

q−→[q]
(mapping j 6 i to j and j > i to j − 1), and relations that are most succinctly
described as (i)–(vi) where ∂ is replaced by δ, s by σ, and composition order is
reversed. Then ∆̂ is the category of functors from the opposite category ∆o to the
category Set of sets.

In general, Ĉ denotes the category of functors from Co to Set, a.k.a. presheaves
over C. Ĉ is always an elementary topos [33], hence is a cartesian-closed category
(CCC). The terminal object 1 of ∆̂ is such that 1q is a singleton {∗} for every q >
−1. The product K×L is such that (K × L)q=̂Kq×Lq, ∂i

(K×L)q
(u, v)=̂(∂i

Kq
u, ∂i

Lq
v)

and si
(K×L)q

(u, v)=̂(si
Kq

u, si
Lq

v): i.e., product is component-wise.

The structure of exponentials, i.e., internal homs Hom∆̂(K,L) is given by gen-
eral constructions [33], which will be largely irrelevant here. For now, let us just
say that we have got a.s. application maps App : Homb∆(K,L) × K → L, and
an abstraction operator Λ on a.s. maps f : K × L → M , so that Λf is an a.s.
map from K to Homb∆(L,M), satisfying certain equations to be specified below.
Furthermore, (−1)-simplices of Homb∆(K, L) are just simplicial maps from K to
L, while 0-simplices are homotopies between maps, and q-simplices for q > 0 are
higher-dimensional homotopies.

In general, in any CCC C—not just ∆̂—, let ! denote the unique morphism

X
!−→1. For cartesian products, we have a pair X

〈f,g〉−→Y × Z for every X
f−→Y

and X
g−→Z, and projections X1 × X2

πi−→Xi, i ∈ {1, 2}. We also have internal

hom objects (exponentials) HomC(X,Y), application HomC(X, Y)×X
App−→Y , and

abstraction X
Λf−→HomC(Y, Z) for every X × Y

f−→Z. These obey the following
categorical combinator equations [10], where we omit types (objects) for the sake
of conciseness:

(a) id ◦ f = f (b) f ◦ id = f (c) f ◦ (g ◦ h) = (f ◦ g) ◦ h
(!) ∀f : X → 1 · f =! (e) π1 ◦ 〈f, g〉 = f (f) π2 ◦ 〈f, g〉 = f
(g) 〈π1, π2〉 = id (h) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉
(k) Λf ◦ h = Λ(f ◦ 〈h ◦ π1, π2〉) (l) App ◦ 〈Λf, g〉 (m) Λ(App ◦ 〈f ◦ π1, π2〉) = f

= f ◦ 〈id, g〉
For reasons of convenience, we shall abbreviate 〈f ◦ π1, g ◦ π2〉 as f × g. Then, the
following are derived equations:

(g′) id× id = id (h′) (f × g) ◦ (f ′ × g′) = (f ◦ f ′)× (g ◦ g′)
(k′) Λf ◦ h = Λ(f ◦ (h× id))
(l′) App ◦ 〈Λf ◦ h, g〉 = f ◦ 〈h, g〉 (l′′) App ◦ (Λf × id) = f (m′) Λ(App ◦ (f × id)) = f

Homology, Homotopy and Applications, vol. 5(2), 2003 156

4.1. The Augmented Simplicial Sets S4 [Γ ` F]
We observe that the S4 modality allows us to exhibit an augmented simplicial

structure. We shall see later on (Section 5.2) that this arises from a comonad through
the use of certain resolution functors. However, for now we prefer to remain syntactic
and therefore relatively concrete.

Definition 16 (S4 [Γ ` F]). For every context Γ, for every type F , let [Γ ` F] be
the set of all equivalence classes of λS4-terms M such that Γ ` M : F is derivable,
modulo ≈.

For every q > −1, let S4 [Γ ` F]q be [Γ ` ¤q+1F], and let S4 [Γ ` F] be the family
(S4 [Γ ` F]q)q>−1

.

For every function f from [Γ ` F1] × . . . × [Γ ` Fn] to [Γ ` G], define ¤f as
the function from [Γ ` ¤F1] × . . . × [Γ ` ¤Fn] to [Γ ` ¤G] that maps the tuple
(M1, . . . ,Mk) to f(dx1, . . . , dxk) · {x1 := M1, . . . , xk := Mk}.

Say that f is substitutive whenever f(M1, . . . ,Mk)θ ≈ f(M1θ, . . . ,Mkθ).
Finally, let ∂i

q be the function from S4 [Γ ` F]q to S4 [Γ ` F]q−1, 0 6 i 6 q, defined
by ∂i

qM=̂(¤id)M ; and let si
q be the function from S4 [Γ ` F]q to S4 [Γ ` F]q+1, 0 6

i 6 q, defined by si
qM=̂(¤is)M , where sM=̂ x · {x := M}.

Lemma 17. The following hold: 1. ¤id = id. 2. if f is substitutive, then ¤f ◦¤g =
¤(f ◦ g). 3. for every f , ¤f is substitutive. 4. ∂i

q and si
q are substitutive.

Proof. 1. ¤id(M) = dx · {x := M} ≈ M (by (η¤)), so ¤id = id.
2. For every functions f and g, provided f is substitutive, then

¤f(¤g(M)) = f(dx) · {x := g(dy) · {y := M}}

≈ f(dx){x := g(dy) } · {y := M} (by (¤))

≈ f(d g(dy)) · {y := M} (since f is substitutive)

≈ f(g(dy)) · {y := M} (by (d))

So ¤f ◦¤g = ¤(f ◦ g). 3. is obvious, and 4. follows from 3.

Proposition 18. For every Γ and F , the triple (S4 [Γ ` F], (∂i
q)06i6q

, (si
q)06i6q

) is
an augmented simplicial set.

Proof. Because of Lemma 17, it is enough to check (i)–(vi) in the case i = 0, as the
general case then follows immediately by induction on i:

(i) ∂0
q−1(∂

j
qM) = d(¤∂j−1

q−1M) = d ∂j−1
q−1(dx) · {x := M} ≈ ∂j−1

q−1(dM) (by (d))

= ∂j−1
q−1(∂0

qM).

Homology, Homotopy and Applications, vol. 5(2), 2003 157

(ii) s0
q+1(s

j−1
q M) = y · {y := sj−1

q M}, while sj
q+1(s

0
qM) = ¤sj−1

q (s0
qM)

= sj−1
q (dy) · {y := s0

qM} = sj−1
q (dy) · {y := x · {x := M}}

≈ sj−1
q (d x) · {x := M} (by (¤)) ≈ sj−1

q x · {x := M} (by (d)).

If j = 1, then s0
q+1(s

j−1
q M) = y · {y := x · {x := M}} ≈ x · {x := M}

(by (¤)) = s0
qx · {x := M}, and this is precisely sj

q+1(s
0
qM).

If j > 1, then it obtains s0
q+1(s

j−1
q M) = y · {y := sj−1

q M}
= y · {y := ¤sj−2

q−1M} = y · {y := sj−2
q−1(dx) · {x := M}}

≈ sj−2
q−1(dx) · {x := M} (by (¤)) = ¤sj−2

q−1x · {x := M}

= sj−1
q x · {x := M}, which is exactly sj

q+1(s
0
qM).

(iii) ∂0
q+1(s

j
qM) = d(¤sj−1

q−1M) = d sj−1
q−1(dx) · {x := M} ≈ sj−1

q−1(dM) (by (d))

= sj−1
q−1(∂

0
qM).

(iv) ∂0
q+1(s

0
qM) = d(x · {x := M}) ≈ M by (d).

(v) ∂1
q+1(s

0
qM) = ¤∂0

q (s0
qM) = d(dx) ·{x := y · {y := M}} ≈ d(d y) ·{y := M}

(by (¤)) ≈ dy · {y := M} (by (d)) ≈ M (by (η¤)).

(vi) s0
q−1(∂

j
qM) = s0

q−1(¤∂j−1
q−1M) = x · {x := ∂j−1

q−1(dy) · {y := M}}

≈ ∂j−1
q−1(dy) · {y := M} (by (¤)) = ∂j

qy · {y := M}, while on the other

hand ∂j+1
q+1(s0

qM) = ¤∂j
q(y · {y := M}) = ∂j

q(dx) · {x := y · {y := M}}
≈ ∂j

q(d y) · {y := M} (by (¤)) ≈ ∂j
qy · {y := M} (by (d)).

By Lemma 13, the η-long normal form of any term of type ¤q+1F in Γ can

be written in a unique way . . . M0 · θq · θq−1 . . . · θ0. Fix a variable x0, and let

θq+1 be {x0 7→ M0}. Then this is also . . . x0θq+1 · θq · θq−1 . . . · θ0. Therefore q-

simplices in S4 [Γ ` F] are basically sequences of q+2 substitutions, with additional
typing and linearity conditions and conditions on the domains of substitutions. Let
us compute faces and degeneracies as they act on η-long normal forms. For short,
call the η-long normal form of a q-simplex M in S4 [Γ ` F] the unique η-long normal
form of type ¤q+1F in Γ of M .

First the following lemma will help us compute η-long normal forms of ¤f applied
to arguments in η-long normal form themselves.

Homology, Homotopy and Applications, vol. 5(2), 2003 158

Lemma 19. Let f be any function from [Γ ` F1] × . . . × [Γ ` Fn] to [Γ ` G]. We
say that f is linearity-preserving if and only if for every η-long normal form M1 of
type F1 in Γ, . . . , for every η-long normal form Mn of type Fn in Γ, if M1, . . . , Mn

are linear, then the η-long normal form of f(M1, . . . ,Mn) of type G in Γ is linear,
too. By abuse, write f(M1, . . . ,Mn) this η-long normal form again.

Say that f is non-collapsing if and only if, for every η-long normal forms M1 of
type F1 in Γ, . . . , Mn of type Fn in Γ, then fv(f(M1, . . . ,Mn)) = fv(M1) ∪ . . . ∪
fv(Mn).

Let M1 · θ1, . . . , Mn · θn be η-long normal forms of respective types ¤F1,
. . . , ¤Fn in Γ. Assume without loss of generality that θ1, . . . , θn have pairwise
disjoint domains. If f is substitutive, linearity-preserving and non-collapsing, then
the η-long normal form of type G in Γ of ¤f(M1 · θ1, . . . , Mn · θn) is exactly

f(M1, . . . , Mn) · (θ1, . . . , θn).

Proof. ¤f(M1 · θ1, . . . , Mn · θn)

= f(dx1, . . . , dxn) · {x1 := M1 · θ1, . . . , xn := Mn · θn}
≈ f(dx1, . . . , dxn){x1 := M1 , . . . , xn := Mn } · (θ1, . . . , θn) (by (¤))

≈ f(d M1 , . . . , d Mn) · (θ1, . . . , θn) (since f is substitutive) ≈ f(M1, . . . , Mn) ·
(θ1, . . . , θn) (by (d)). It remains to show that the latter is η-long normal of type
¤G in Γ, which will allow us to use Proposition 11. We only have to check that
fv(f(M1, . . . ,Mn)) = dom θ1 ∪ . . . ∪ dom θn and that f(M1, . . . , Mn) is linear. The
former is because f is non-collapsing, and fv(Mi) = dom θi, 1 6 i 6 n. The latter
is because f is linearity-preserving, and each Mi is linear. Indeed, fv(Mi) = dom θi

and Mi is linear because Mi · θi is η-long normal.

Proposition 20. Let M ∈ S4 [Γ ` F]q, of η-long form . . . x0θq+1 · θq · θq−1 . . . ·

θ0. Then the η-long form of ∂i
qM is:

. x0θq+1 · θq · θq−1 . . . · θi+2 · (θi+1 · θi) · θi−1 . . . · θ0 (9)

and the η-long form of si
qM is:

. x0θq+1 · θq · θq−1 . . . · θi+1 · id · θi . . . · θ0 (10)

where id is the identity substitution on dom θi.

Homology, Homotopy and Applications, vol. 5(2), 2003 159

Proof. By induction on i, simultaneously with the fact that ∂i
q and si

q are substi-
tutive, linearity-preserving and non-collapsing. The inductive case is by Lemma 19.
In the base case, if i = 0, then (9) is by Lemma 13, and (10) is by Lemma 14.

The geometry of S4 [Γ ` F] is therefore very close to that of the nerve of a category
whose objects are contexts Γ, and whose morphisms Γ θ−→Θ are substitutions θ such
that, letting Θ be y1 : G1, . . . , ym : Gm, θ is of the form {y1 := M1, . . . , ym := Mm}
where Γ ` Mi : Gi is derivable for each i, 1 6 i 6 m. Identities are the identity
substitutions, composition is substitution concatenation. (It is not quite a nerve,
because of the added conditions on substitutions.) The connection with nerves will
be made precise in Theorem 30 below.

4.2. The Geometry of S4 [Γ ` F]
In Proposition 20, note that substitutions are taken as is, in particular not modulo

≈. This hints at the fact that S4 [Γ ` F] will in general not be a Kan complex: recall
that a nerve of a small category C is Kan if and only if C is a groupoid, i.e., if and
only if all morphisms in C are isomorphisms. In the category of substitutions above,
the only isomorphisms are renamings {x1 := y1, . . . , xn := yn}, where y1, . . . , yn are
pairwise distinct variables.

Proposition 21. S4 [Γ ` F] is not Kan in general.

Proof. Being Kan would imply in particular that given any two 1-simplices M0 and
M1 with ∂0

1M0 = ∂0
1M1, there should be a 2-simplex M such that ∂0

2M = M0

and ∂1
2M = M1. Write the η-long normal forms of M0 as x0θ2 · θ1 · θ0, of M1

as x0θ
′
2 · θ′1 · θ′0. The condition ∂0

1M0 = ∂0
1M1 means that x0θ2 · (θ1 · θ0) =

x0θ
′
2 · (θ′1 · θ′0). In particular, up to a renaming of the variables free in x0θ

′
2:

θ2 = θ′2, θ1 · θ0 = θ′1 · θ′0 (11)

If M exists, then M is of the form x0ϑ3 · ϑ2 · ϑ1 · ϑ0, and up to renamings

of bound variables, ∂0
2M = M0 entails:

ϑ3 = θ2, ϑ2 = θ1, ϑ1 · ϑ0 = θ0 (12)

and ∂1
2M = M1 entails:

ϑ3 = θ′2, ϑ2 · ϑ1 = θ′1, ϑ0 = θ′0 (13)

It follows that θ′1 must be an instance of θ1, in particular. (An instance of a substi-
tution θ is a substitution of the form θ · θ′.) But (11) does not guarantee this. For
example, take θ2=̂θ′2=̂{x0 := dx0}, θ′1=̂{x0 := x1}, θ1=̂{x0 := dx1}, θ0=̂{x1 := x1},
θ′0=̂{x1 := dx1}. It is easily checked that M0 and M1 are in S4 [Γ ` F]1, i.e., they
are of type ¤2F in Γ, for any formula F , where Γ=̂x1 : ¤2F .

This settles the case, at least when Γ contains at least one formula of the form
¤2F . When Γ is empty, it is easy to see that S4 [Γ ` F] is empty except possibly in

Homology, Homotopy and Applications, vol. 5(2), 2003 160

dimension −1, so this is trivially Kan—but the geometry of such simplicial sets is
uninteresting.

The following notion will be useful in studying the geometry of S4 [Γ ` F]:

Definition 22 (Contiguity). Let K be an augmented simplicial set. The q-simp-
lex x is one-step contiguous to the q-simplex y, in short x _ y, if and only if there
is a (q + 1)-simplex z in K, and two indices i, j with 0 6 i < j 6 q + 1 such that
∂j

q+1z = x and ∂i
q+1z = y, and x 6= y.

The q-simplex x is contiguous to y if and only if x _∗ y, and strictly contiguous
if and only if x _+ y. We say that x and y are contiguous if and only if x] y,
where] is the reflexive symmetric transitive closure of _.

Contiguity is usually presented a bit differently. In particular, it is usually not
required that j > i in one-step contiguity. Then _∗ is an equivalence relation.
However we shall need the finer notion of _ in the sequel.

The following lemma, for example, is unusual:

Lemma 23. The relation _ is well-founded on S4 [Γ ` F].

Proof. Define the following measure µ(M) for q-simplices M in S4 [Γ ` F]q. When-

ever M has η-long normal form . . . x0θq+1 · θq . . . ·θ0, let µ(M) be the (q+2)-tuple

(|θq+1|, |θq|, . . . , |θ0|), ordered lexicographically from left to right, where |θ| is the
size of θ, defined in any obvious way.

Let M and M ′ be two q-simplices in S4 [Γ ` F], and assume that M _ M ′. Then
there is a (q + 1)-simplex N , say:

. . . x0θq+2 · θq+1 . . . · θ1 · θ0

and i < j such that ∂j
q+1N = M , ∂i

q+1N = M ′. That is:

M = x0θq+2 · θq+1 . . . · (θj+1 · θj) · θj−1 . . . · θi+1 · θi . . . · θ0

M ′ = x0θq+2 · θq+1 . . . · θj+1 · θj . . . · θi+2 · (θi+1 · θi) . . . · θ0

Clearly µ(M) > µ(M ′). We claim that µ(M) > µ(M ′). Since the lexicographic
ordering on sizes is well-founded, this will establish the result.

Assume on the contrary that µ(M) = µ(M ′). Then, |θj+1 · θj | = |θj+1|, so up to
a renaming of bound variables, θj+1 · θj = θj+1, so θj = id. Then |θj | = |θj−1|, . . . ,
|θi+2| = |θi+1|, which imply that θj−1, . . . , θi+1 must map variables to variables.
By the linearity constraints on η-long normal forms, they must be one-to-one. So

Homology, Homotopy and Applications, vol. 5(2), 2003 161

up to renaming of bound variables, θj−1 = . . . = θi+1 = id. But then M = M ′,
contradicting M _ M ′.

Corollary 24. The relation _+ on S4 [Γ ` F] is a strict ordering.

Proof. If it were reflexive, then we would have M _+ M for some M , hence an
infinite decreasing chain M _+ M _+ M _+ . . .

Definition 25 (Vertices, Component). Let K be any augmented simplicial set.
Given any q-simplex x of K, q > 0, the vertices of x are those 0-simplices that are
iterated faces of x. The ith vertex of x, 0 6 i 6 q, is ði

qx=̂∂0
1 . . . ∂i−1

i ∂i+1
i+1 . . . ∂q

qx.
The component π0x is ∂0

0 . . . ∂i
i . . . ∂q

qx.

It is well-known that each q-simplex has exactly q + 1 vertices (possibly equal),
and these are ð0

qx, . . . , ðq
qx. Moreover, these vertices are contiguous:

Lemma 26. Let K be any augmented simplicial set. Given any q-simplex x of K,
q > 0,

ð0
qx _∗ ð1

qx _∗ . . . _∗ ðq
qx

Proof. To show that ði
qx _∗ ði+1

q x, let y be the 1-simplex ∂0
2 . . . ∂i−1

i+1∂i+2
i+2 . . . ∂q

qx.
Then ∂0

1y = ði+1
q x and ∂1

1y = ði
qx, so ði

qx _= ði+1
q x, where _= is _ ∪ =.

Observe that there is no need to take _+ instead of _ in the case of 0-simplices
in λS4:

Lemma 27. The relation _ is transitive on 0-simplices of S4 [Γ ` F].

Proof. Note that, if M and M ′ are two 0-simplices, then M _ M ′ means that for
some 1-simplex M1, ∂1

1M1 = M and ∂0
1M1 = M ′.

So assume that M _ M ′ _ M ′′. There is a 1-simplex N · θ1 · θ2 such that

M = Nθ1 · θ2 and M ′ = N · (θ1 · θ2). There is also a 1-simplex N ′ · θ′1 · θ′2
such that M ′ = N ′θ′1 · θ′2 and M ′′ = N ′ · (θ′1 · θ′2). Comparing both forms for M ′,
we must have, up to renaming of bound variables, N = N ′θ′1 and θ′2 = θ1 · θ2. So

M2=̂ N ′ · θ′1 · θ1 · θ2 is a valid 2-simplex. Take M1=̂∂1
2M2 = N ′ · (θ′1 · θ1) · θ2.

Then ∂1
1M1 = M and ∂0

1M1 = M ′′, so M _= M ′′. By Corollary 24, M _ M ′′.

The following lemma shows that, basically, if two λS4-simplices are contiguous,
then they are so in a unique way:

Lemma 28 (Two-face Lemma). Let M , M ′ be two q-simplices of S4 [Γ ` F],
q > 0. Then for any 0 6 i < j 6 q + 1, there is at most one (q + 1)-simplex N of
S4 [Γ ` F] such that ∂j

qN = M and ∂i
qN = M ′.

Homology, Homotopy and Applications, vol. 5(2), 2003 162

Proof. Assume N exists, and write it as:

. . . x0ϑq+2 · ϑq+1 . . . · ϑ1 · ϑ0

Also, write:

M = . . . x0θq+1 · θq . . . · θ1 · θ0

M ′ = . . . x0θ
′
q+1 · θ′q . . . · θ′1 · θ′0

Since ∂j
qN = M , up to renaming of bound variables, θ0 = ϑ0, . . . , θj−1 = ϑj−1,

θj = ϑj+1 · ϑj , θj+1 = ϑj+2, . . . , θq+1 = ϑq+2. And since ∂i
qN = M ′, up to

renaming of bound variables, θ′0 = ϑ0, . . . , θ′i−1 = ϑi−1, θ′i = ϑi+1 · ϑi, θ′i+1 = ϑi+2,
. . . , θ′q+1 = ϑq+2.

In particular, ϑ0 = θ0, . . . , ϑj−1 = θj−1, ϑi+2 = θ′i+1, . . . , ϑq+2 = θ′q+1. So ϑ is
determined uniquely as soon as j > i + 1. If j = i + 1, this determines ϑ uniquely,
except possibly for ϑj . Now we use the additional equations θj = ϑj+1 · ϑj and
θ′i+1 = ϑi+2. The latter means that θ′j = ϑj+1. Since every variable of dom ϑj is free
in some term in the range of ϑj+1, this determines ϑj uniquely.

In the case of S4 [Γ ` F], Lemma 26 is the only condition on vertices that needs
to be satisfied for them to be vertices of a q-simplex:

Proposition 29. Let M0, M1, . . . , Mq be q+1 0-simplices of S4 [Γ ` F]. If M0 _∗

M1 _∗ . . . _∗ Mq, then there is a unique q-simplex M such that ði
qM = Mi,

0 6 i 6 q.

Proof. By Lemma 27, M0 _= M1 _= . . . _= Mq.
We now show uniqueness by induction on q > 0. If q = 0, this is obvious.

Otherwise, by induction there is at most one (q − 1)-simplex M0 with vertices
M1 _= . . . _= Mq, and at most one (q − 1)-simplex Mq with vertices M0 _=

. . . _= Mq−1. If there is any q-simplex M with vertices M0, M1, . . . , Mq, then
∂0

qM = M0 and ∂q
qM = Mq, so there is at most one such M by Lemma 28.

Existence: write Mi as Ni · θi for each i, 0 6 i 6 q. Since for each i < q,

Mi _= Mi+1, there are (unique) 1-simplices N ′
i · ϑi

1 ·ϑi
0 such that, up to renaming

of bound variables, Ni = N ′
iϑ

i
1, θi = ϑi

0, Ni+1 = N ′
i , θi+1 = ϑi

1 · ϑi
0. Note that

Ni = Ni+1ϑ
i
1, and ϑi+1

0 = ϑi
1 · ϑi

0. So define:

M=̂ Nq · ϑq−1
1 . . . · ϑi−1

1 . . . · ϑ0
1 · ϑ0

0

In particular, ð0
qM = Nqϑ

q−1
1 . . . ϑi−1

1 . . . ϑ0
1 · ϑ0

0 = Nq−1ϑ
q−2
1 . . . ϑ0

1 · ϑ0
0 = . . . =

N0 · ϑ0
0 = M0. And for every i > 0, ði

qM = Nqϑ
q−1
1 . . . ϑi

1 · (ϑi−1
1 · . . . · ϑ0

1 · ϑ0
0)

Homology, Homotopy and Applications, vol. 5(2), 2003 163

= Ni · (ϑi−1
1 · . . . · ϑ1

1 · ϑ0
1 · ϑ0

0) = Ni · (ϑi−1
1 · . . . · ϑ1

1 · ϑ1
0) = . . . = Ni · ϑi

0 =
Mi.

To sum up, the non-augmented part of S4 [Γ ` F] can be characterized as a
particularly simple nerve:

Theorem 30 (Nerve Theorem). Let C[Γ ` F] be the partial order consisting of
the 0-simplices of S4 [Γ ` F], ordered by contiguity _∗. Then the (non-augmented)
simplicial set (S4 [Γ ` F]q)q∈N is (isomorphic to) the nerve N(C[Γ ` F]).

Proof. Recall that the nerve of a category C has diagrams:

A0

f1 Â A1

f2 Â . . .
fq−1Â Aq−1

fq Â Aq

as q-simplices, where f1, f2, . . . , fq are morphisms in C, and q > 0. The ith face is
obtained by removing Ai from the sequence, composing the neighboring arrows if
0 < i < q, and dropping them if i = 0 or i = q. The ith degeneracy is obtained by
duplicating Ai, adding an identity morphism.

By Lemma 26 and Proposition 29, q-simplices M are in bijection with ordered
sequences of 0-simplices M0 _∗ M1 _∗ . . . _∗ Mq. Moreover, for every j, 0 6 j 6
q − 1, the jth vertex of ∂i

qM is:

ðj
q∂

i
qM = ∂0

1 . . . ∂j−1
j ∂j+1

j+1 . . . ∂q−1
q−1∂i

qM =
{
ðj

qM if j < i
ðj+1

q M if j > i

That is, the vertices of ∂i
qM are those of M except ði

qM . Similarly, for every j,
0 6 j 6 q + 1, the jth vertex of si

qM is:

ðj
qs

i
qM = ∂0

1 . . . ∂j−1
j ∂j+1

j+1 . . . ∂q+1
q+1si

qM =




ðj

qM if j 6 i
ði

qM if j = i + 1
ðj−1

q M if j > i + 1

That is, the vertices of si
qM are those of M in sequence, with ði

qM occurring twice.

In other words, (S4 [Γ ` F]q)q∈N is an oriented simplicial complex. Recall that
an oriented simplicial complex is a family of linearly ordered sequences of so-called
points, containing all one-element sequences, and such that any subsequence of an
element of the family is still in the family. In fact, it is the full oriented simplicial
complex, containing all linearly ordered sequences of points.

It is futile to study the classical notions of loop homotopy in such an oriented
simplicial complex. Indeed, all loops are trivial: if the 1-simplex M is a loop, i.e.,
∂0
1M = ∂1

1M is some point N , then its sequence of vertices is N _∗ N , so M is
a degenerate 1-simplex. Homotopies of loops, and in fact the natural extension of
homotopies between 1-simplices, is trivial, too: let M, M ′ be two 1-simplices with
∂0
1M = ∂0

1M ′ = M0 and ∂1
1M = ∂1

1M ′ = M1; if there is a homotopy 2-simplex
P connecting them, then its faces are M , M ′ plus some degenerate 1-simplex, so
the sequence of vertices of P must be M1 _∗ M0 _∗ M0 or M1 _∗ M1 _∗ M0,
from which it follows that the homotopy is one of the two degeneracies of M = M ′.

Homology, Homotopy and Applications, vol. 5(2), 2003 164

In short, two 1-simplices are homotopic in the classical sense if and only if they
are equal, and all homotopies are degenerate. However, studying homotopies of
paths (not just loops) certainly remains interesting. In particular, the geometry of
preorders and lattices viewed through their order complexes is a rich domain [8].

4.3. Components
The last section closes the case for non-negative dimensions. In dimension −1,

recall that there are two extremal ways to build an augmentation of a simplicial set
(see e.g., [14]). One, exemplified by the nerve construction for augmented simplicial
sets, builds the augmentation of the simplicial set K, K−1, as a one-element set (an
empty set if K is empty), and ∂0

0 is the unique function K0 → K−1. The other builds
K−1 as the set of connected components of K0, that is, as the set of]-equivalence
classes of points. It turns out that the latter is how the augmentation is built in
S4 [Γ ` F], except that there might also be (−1)-simplices that are the component
of no q-simplex for any q > 0. In other words, the components are exactly the path
connected components, plus isolated (−1)-dimensional simplices. This is shown in
Proposition 32 below. First, we observe:

Proposition 31 (Lattice of points). Let M0 be a (−1)-simplex of S4 [Γ ` F].
The set C(M0) of 0-simplices M such that ∂0

0M = M0, equipped with the ordering
_∗, is empty or is a finite lattice.

Proof. Every such M can be written in a unique way N · θ, with Nθ = M0. But,
up to the names of free variables in N , there are only finitely many such N ’s and
θ’s. So C(M0) is finite.

In the rest of the proof, fix a typing of M0. This way, each subterm of M0 gets
a unique type. This will allow us to reason by induction on M0—in general, on
terms—instead on a BN0 derivation of Γ `I M0 : F .

Note that N · θ _∗ N ′ · θ′ if and only if N · θ _= N ′ · θ′ (by Lemma 27) if

and only if for some N0 · ϑ1 · ϑ0, N = N0ϑ1, θ = ϑ0, N ′ = N0, θ′ = ϑ1 · ϑ0 (up

to renaming of bound variables), if and only if N = N ′ϑ1 for some substitution ϑ1.
In other words, if and only if N is an instance of N ′.

Then every pair of points M1, M2 of C(M0) has a supremum M . That is, M _∗

M1, M _∗ M2 and for every M ′ such that M ′ _∗ M1 and M ′ _∗ M2, M _∗ M ′.
Write M1 as N1 · θ1, M2 as N2 · θ2, with N1θ1 = N2θ2. Then, if M exists, M
is a common instance of N1 and N2. It is easy to see that there is a least common
instance N1∧N2 of N1 and N2, i.e., one such that every other instance of N1 and N2

is an instance of N1 ∧N2. More generally, given any finite set W of variables (used
to collect λ-bound variables), call an instance of N away from W any term Nθ such
that dom θ∩W = ∅. Then if there is a common instance of N1 and N2 away from W ,
then there is a least one N1∧W N2, where N1 and N2 are linear, and it is computed
as in Figure 4. Then define N1 ∧N2 as N1 ∧∅ N2. Since N1θ = N2θ2 = M0, there is
a unique substitution θ with dom θ = fv(N1∧N2), and the free variables of N1∧N2

being free variables of N1 or N2, have boxed types. Therefore M=̂ N1 ∧N2 · θ is a
well-typed term, and M _∗ M1 and M _∗ M2, since N1 ∧N2 is both an instance

Homology, Homotopy and Applications, vol. 5(2), 2003 165

x1 ∧W N2 =̂ N2 (x1 6∈ W)
N1 ∧W x2 =̂ N1 (x2 6∈ W)

(N1N
′
1) ∧W (N2N

′
2) =̂ (N1 ∧W N2)(N ′

1 ∧W N ′
2)

(λx ·N1) ∧W (λx ·N2) =̂ λx · (N1 ∧W∪{x} N2)
dN1 ∧W dN2 =̂ d(N1 ∧W N2)

N · {x1 := N11, . . . , xn := Nn1} ∧W N · {x1 := N12, . . . , xn := Nn2}
=̂ N · {x1 := N11 ∧W N12, . . . ,

xn := Nn1 ∧W Nn2}

Figure 4: Least common instances

of N1 and an instance of N2. Moreover, by construction this is the least one, so M
is the supremum of M1 and M2. (This is unification [31]. The key here is that we
basically only need unification modulo an empty theory, instead of the theory of
the relation ≈.) We write M as M1 tM2.

Symmetrically, every pair of points M1, M2 of C(M0) has an infimum M . That
is, M1 _∗ M , M2 _∗ M and for every M ′ such that M1 _∗ M ′ and M2 _∗ M ′,
M ′ _∗ M . Write again M1 as N1 · θ1, M2 as N2 · θ2, with N1θ1 = N2θ2.
Calling a generalization of a term N (away from W) any term having N as instance
(away from W), we may compute a greatest common generalization N1 ∨W N2

away from W of N1 and N2 as in Figure 5, where N1θ1 = N2θ2. As above, letting

x1 ∨W N2 =̂ x1 (x1 6∈ W)
N1 ∨W x2 =̂ x2 (x2 6∈ W)

(N1N
′
1) ∨W (N2N

′
2) =̂ (N1 ∨W N2)(N ′

1 ∨W N ′
2)

(λx ·N1) ∨W (λx ·N2) =̂ λx · (N1 ∨W∪{x} N2)
dN1 ∨W dN2 =̂ d(N1 ∨W N2)

N · {x1 := N11, . . . , xn := Nn1} ∨W N · {x1 := N12, . . . , xn := Nn2}
=̂ N · {x1 := N11 ∨W N12, . . . ,

xn := Nn1 ∨W Nn2}

Figure 5: Greatest common generalizations

N1 ∨N2=̂N1 ∨∅N2, there is a unique substitution θ such that fv(N1 ∨N2) = dom θ

and (N1 ∨ N2)θ = M0, and M=̂ N1 ∨N2 · θ is a well-typed term, from which we
conclude that M is indeed the infimum of M1 and M2. Write M as M1 uM2.

It remains to show that, if C(M0) is not empty, then it has a least element ⊥ and
a greatest element >. This is obvious, as ⊥ can be defined as the (finite) infimum of

Homology, Homotopy and Applications, vol. 5(2), 2003 166

all elements of C(M0), and > as the (finite) supremum of all elements of C(M0).

Proposition 32. Given any two 0-simplices M1 and M2 of S4 [Γ ` F], M1] M2

if and only if ∂0
0M1 = ∂0

0M2.

Proof. Clearly, if M1 _= M2, i.e. if ∂1
1N = M1 and ∂0

1N = M2 for some 1-simplex
N , then ∂0

0M1 = ∂0
0∂1

1N = ∂0
0∂0

1N = ∂0
0M2. So if M1]M2, then ∂0

0M1 = ∂0
0M2.

Conversely, assume ∂0
0M1 = ∂0

0M2, and name M0 this (−1)-simplex. By Propo-
sition 31, there is an element M1 tM2 in C(M0), such that M1 tM2 _∗ M1 and
M1 tM2 _∗ M2. In particular M1]M2.

In other words, non-empty components C(M0) coincide with path-connected
components.

This generalizes to higher dimensions:

Proposition 33. For any two q-simplices M1 and M2 of S4 [Γ ` F], M1] M2 if
and only if π0M1 = π0M2.

Proof. Recall that π0M denotes the component of M (Definition 25).
If M1 _= M2, then there is a (q+1)-simplex N and j > i such that M1 = ∂j

q+1N ,
M2 = ∂i

q+1N . So π0M1 = π0N = π0M2.
Conversely, assume π0M1 = π0M2 = M0. So every vertex of M1 and M2 is in

C(M0). Using the Nerve Theorem 30, we equate q-simplices with ordered sequences
of q + 1 vertices. Then notice that the sequence N0 _= N1 _= . . . _= Ni _=

. . . _= Nq is contiguous to N0 _= N1 _= . . . _= N ′
i _= . . . _= Nq as soon as

Ni _= N ′
i . Indeed the former is the (i + 1)st face, and the latter is the ith face

of the sequence N0 _= N1 _= . . . _= Ni _= N ′
i _= . . . _= Nq. Iterating,

we obtain that the sequence N0 _= N1 _= . . . _= Nq is contiguous to N ′
0 _=

N ′
1 _= . . . _= N ′

q as soon as Ni _∗ N ′
i for every i, 0 6 i 6 q. Recall that

every vertex of M1 and M2 is in C(M0). Using Proposition 31, M1, viewed as the
sequence ð0

qM1 _∗ ð1
qM1 _∗ . . . _∗ ðq

qM1, is contiguous to (ð0
qM1 u ð0

qM2) _∗

(ð1
qM1 u ð1

qM2) _∗ . . . _∗ (ðq
qM1 u ðq

qM2). Similarly for M2. Since M1 and M2 are
contiguous to the same q-simplex, M1]M2.

4.4. Planes and Retractions
Next, we show that certains subspaces of S4 [Γ ` F] are retracts of the whole

space, under some mild conditions.

Definition 34 (Planes). Call a type boxed if and only if it is of the form ¤F .
Call Γ boxed if and only if it maps variables to boxed types.

Let Γ be a context, and Θ=̂y1 : ¤G1, . . . , yp : ¤Gp be a boxed subcontext of Γ.
The plane Θ⊥ of S4 [Γ ` F] is the set of 0-simplices of S4 [Γ ` F] having an η-long
normal form of the form N · θ such that

for every y ∈ dom θ · if yi ∈ fv(yθ) then yθ = yi (14)

for every i, 1 6 i 6 p.

Homology, Homotopy and Applications, vol. 5(2), 2003 167

(Note that the types of variables yj , 1 6 j 6 p, have to start with ¤ for this
definition to make sense. To be fully formal, we should mention Γ and F in the
notation for Θ⊥. However, Γ and F will be clear from context.) From the point of
view of Gentzen-style sequents, a term in the given plane corresponds to a proof
that ends in a ¤-introduction rule followed by series of cuts on formulae occurring
on the left of the ¤-introduction rule, none of which being any of the ¤Gis in Θ.

By extension, using Theorem 30 and Proposition 32, we define q-simplices of Θ⊥

as contiguous sequences of points M0 _∗ M1 _∗ . . . _∗ Mq of Θ⊥ for q > 0, and
as components of points of Θ⊥ if q = −1.

It is not hard to see that Θ⊥ = S4 [Γ ` F] if Θ is empty. On the other hand,
if Γ = Θ, then the points of Θ⊥ are of the form N , with component N . In this
case, any component N of the plane Θ⊥ contains exactly one point, namely N . It
follows that in this case Θ⊥ is a discrete collection of points.

Lemma 35. For any boxed subcontext Θ of Γ, Θ⊥ is a sub-a.s. set of S4 [Γ ` F].

Proof. Clearly every q-simplex of Θ⊥ is a q-simplex of S4 [Γ ` F]. That faces and
degeneracies of q-simplices of Θ⊥ are still in Θ⊥ is by construction.

Lemma 36. Let Θ be any boxed subcontext of Γ, and M0 ∈ S4 [Γ ` F]−1. For any
two 0-simplices M1 and M2 of C(M0):

1. if M1 _∗ M2 and M2 ∈ Θ⊥ then M1 ∈ Θ⊥.

2. if M1 and M2 are in Θ⊥ then so are M1 uM2 and M1 tM2.

Proof. 1. Let M1=̂ N1 · θ1 be in C(M0), and M2=̂ N2 · θ2 be in C(M0) and
in Θ⊥. So for every z ∈ dom θ2 such that yi, 1 6 i 6 p, is free in zθ2,
zθ2 = yi. Since M1 _∗ M2, not only is N1 an instance of N2, but there is also
a substitution ϑ such that θ2 = ϑ·θ1, dom ϑ = dom θ2 = fv(N2) and fv(N2ϑ) =
dom θ1. Assume that yi is free in yθ1 for some y ∈ dom θ1 = fv(N2ϑ). So y
occurs free in some zϑ, z ∈ fv(N2). In particular, yi is free in zϑθ1 = zθ2.
Therefore zθ2 = yi, recalling that M2 ∈ Θ⊥. In other words, zϑθ1 = yi. It
follows by standard size considerations that zϑ is a variable. Since y occurs
free in zϑ, it obtains zϑ = y. So yθ1 = yi.

2. Let M1=̂ N1 · θ1 and M2=̂ N2 · θ2 in Θ⊥. For simplicity, assume that Θ
contains exactly one variable y1. This entails no loss of generality, as in general
Θ⊥ is the intersection of all (yi : Fi)

⊥, yi ∈ dom Θ.
That M1 tM2 is in Θ⊥ follows from 1, since M1 tM2 _∗ M1.
On the other hand M1 uM2 is of the form N1 ∨N2 · θ where θ is the unique
substitution with domain fv(N1 ∨N2) such that (N1 ∨N2)θ = M0. In general,
we may compute θ as θ∅,M0(N1, N2), where θW,M0(N1, N2) is the unique substi-
tution with domain fv(N1∨W N2)\W such that (N1∨W N2)θW,M0(N1, N2) =
M0, provided N1 ∨W N2 exists and N1 and N2 are linear and have M0 as

Homology, Homotopy and Applications, vol. 5(2), 2003 168

common instance. This parallels the computation of N1 ∨W N2:

θW,M0(x1, N2)=̂{x1 := M0} (x1 6∈ W)
θW,M0(N1, x2)=̂{x2 := M0} (x2 6∈ W)

θW,M0M ′
0
(N1N

′
1, N2N

′
2)=̂θW,M0(N1, N2) ∪ θW,M ′

0
(N ′

1, N
′
2)

θW,λx·M0(λx ·N1, λx ·N2)=̂θW∪{x},M0(N1, N2)
θW,dM0(dN1, dN2)=̂θW,M0(N1, N2)

θ
W, N ·{x1:=M1,...,xn:=Mn}

(
N · {x1 := N11, . . . , xn := Nn1},

. . .

N · {x1 := N12, . . . , xn := Nn2}
)

=̂
⋃n

j=1 θW,Mj
(Nj1, Nj2)

Notice that unions of substitutions are well-defined because we assume N1 and
N2 are linear terms away from W (i.e., no two distinct subterms share any
free variable except possibly for variables in W).
Now, generalize the claim as follows. Assume that the common instance M0

of N1 and N2 away from W is M0 = N1θ1 = N2θ2 with dom θ1 = fv(N1),
dom θ2 = fv(N2). Assume also that for every variable z ∈ dom θi such that y1

is free in zθi then y1 = zθi, for every i ∈ {1, 2}. Then an easy induction on
terms shows that for every variable y ∈ fv(N1∨W N2)\W such that y1 is free in
yθW,M0(N1, N2), then yθW,M0(N1, N2) = y1. The crucial cases are the first two
of the definition, which are symmetric. In particular in the first case, assume
N1 = x1 6∈ W . By assumption x1θ1 = N2θ2 = M0; then θW,M0(x1, N2) =
{x1 := M0} is θ1 restricted to x1, therefore indeed yθW,M0(N1, N2) = y1,
whatever y may be.
The claim follows by taking W = ∅.

Proposition 37 (Projection). If Γ is boxed, then for any Θ ⊆ Γ, there is an
augmented simplicial map πΘ⊥ , projection onto Θ⊥, from S4 [Γ ` F] to its sub-a.s.
set Θ⊥, which coincides with the identity on Θ⊥.

Proof. Let us first define πΘ⊥ on 0-simplices. Using Proposition 31, define
πΘ⊥

(
N · θ

)
as the infimum

d
S of the set S of elements M ∈ Θ⊥ such that

M _∗ N · θ. Observe that, since Γ is boxed, Nθ is well-typed, hence is a valid
0-simplex. Moreover, it is clear that Nθ ∈ Θ⊥, and Nθ _∗ N · θ. So S is not
empty, therefore

d
S exists and is a 0-simplex of S4 [Γ ` F]. By Lemma 36 any fi-

nite non-empty infimum of elements of Θ⊥ is in Θ⊥. By Proposition 31 S4 [Γ ` F] is
finite, so S is a finite non-empty infimum of elements of Θ⊥. So πΘ⊥(N · θ) =

d
S

is in Θ⊥.
If N ·θ is already in Θ⊥, then it is in S. Since M _∗ N ·θ for every M in S by

construction, N ·θ is the minimal element of S, hence N ·θ =
d

S = πΘ⊥(N ·θ).
So πΘ⊥ indeed coincides with the identity on Θ⊥.

Homology, Homotopy and Applications, vol. 5(2), 2003 169

To show that πΘ⊥ extends to an a.s. map from S4 [Γ ` F] to Θ⊥, it remains to
show that πΘ⊥ preserves components (obvious) and contiguity (for dimensions > 1).
As far as the latter is concerned, let M1 _∗ M2 be 0-simplices in S4 [Γ ` F]. Since
M1 _∗ M2, {M ∈ Θ⊥|M _∗ M1} ⊆ {M ∈ Θ⊥|M _∗ M2}, so

d{M ∈ Θ⊥|M _∗

M1}_∗ d{M ∈ Θ⊥|M _∗ M2}. That is, πΘ⊥(M1) _∗ πΘ⊥(M2).

The projection construction can be used to show a connection between the syn-
tactic function space S4 [Γ ` F ⊃ G] and Homb∆(S4 [Γ ` F],S4 [Γ ` G]). The first
direction is easy:

Definition 38 (Syntactic application ?). The syntactic application map ? from
S4 [Γ ` F ⊃ G]×S4 [Γ ` F] to S4 [Γ ` G] (written infix) is defined by M ?−1N=̂MN ,
?q=̂¤q+1?−1.

Lemma 39. For every substitutive function f from [Γ ` F1] × . . . × [Γ ` Fn] to
[Γ ` F], the family of functions (¤q+1f)q>−1 is an a.s. map from S4 [Γ ` F1]× . . .×
S4 [Γ ` Fn] to S4 [Γ ` F].

Proof. Write fq for ¤q+1f . Recall (Lemma 17) that, as soon as f is substitutive,
then ¤f ◦¤g = ¤(f ◦ g).

Let M1 ∈ S4 [Γ ` F1]q, . . . , Mn ∈ S4 [Γ ` Fn]q. For any i with 0 6 i 6 q,
∂i

q(fq(M1, . . . , Mn)) = ¤id(¤q+1f(M1, . . . ,Mn)) = ¤i(d ◦ ¤q+1−if)(M1, . . . , Mn).
So ∂i

q ◦ fq = ¤i(d ◦¤q+1−if). But

d(¤q+1−if(N1, . . . , Nn)) = d ¤q−if(dx1, . . . , dxn) · {x1 := N1, . . . , xn := Nn}
≈ ¤q−if(dx1, . . . , dxn){x1 := N1, . . . , xn := Nn}
= ¤q−if(dN1, . . . , dNn) (since f is substitutive)

so d ◦¤q+1−if = ¤q−if ◦ d. Therefore ∂i
q ◦ fq = ¤i(d ◦¤q+1−if) = ¤i(¤q−if ◦ d) =

¤qf ◦¤id = fq−1 ◦ ∂i
q (using the fact that ¤q−if is substitutive).

Similarly, we claim that s0
q(¤k+1f(N1, . . . , Nn)) ≈ ¤k+2f(s0

qN1, . . . , s
0
qNn). It

will follow that si
q ◦ fq = fq+1 ◦ si

q. The claim is proved by induction on k > 0. If
k = 0, then

s0
q(¤f(N1, . . . , Nn)) = x · {x := f(dy1, . . . , dyn) · {y1 := N1, . . . , yn := Nn}}

≈ f(dy1, . . . , dyn) · {y1 := N1, . . . , yn := Nn}

Homology, Homotopy and Applications, vol. 5(2), 2003 170

while

¤2f(s0
qN1, . . . , s

0
qNn)

= ¤f(dx1, . . . , dxn) · {x1 := s0
qN1, . . . , xn := s0

qNn}

= f(dz1, . . . , dzn) · {z1 := dx1, . . . , zn := dxn}
{x1 := y1 · {y1 := N1}, . . . , xn := yn · {yn := Nn}}

≈ f(dz1, . . . , dzn) · {z1 := d y1 , . . . , zn := d yn } · {y1 := N1, . . . , yn := Nn}

≈ f(dz1, . . . , dzn) · {z1 := y1, . . . , zn := yn} · {y1 := N1, . . . , yn := Nn}

= f(dy1, . . . , dyn) · {y1 := N1, . . . , yn := Nn} (by α-renaming)

In the inductive case, s0
q(¤k+1f(N1, . . . , Nn)) = s0

q(¤(¤kf)(N1, . . . , Nn))
≈ ¤2(¤kf)(s0

qN1, . . . , s
0
qNn) (by the above, replacing f by ¤kf) = ¤k+2f(s0

qN1,
. . . , s0

qNn), as desired.

Corollary 40. The syntactic application map ? is an a.s. map.

The following shows how we may compute ?:

Lemma 41. Let M ∈ S4 [Γ ` F ⊃ G]q, N ∈ S4 [Γ ` F]q be η-long normal:

M=̂ . . . M1 · θq . . . · θ1 · θ0

N=̂ . . . N1 · θ′q . . . · θ′1 · θ′0

Then, provided dom θi ∩ dom θ′i = ∅ for every i, 0 6 i 6 q,

M ?q N ≈ . . . M1N1 · (θq, θ
′
q) . . . · (θ1, θ

′
1) · (θ0, θ

′
0)

Proof. This is clear if q = −1. If q = 0, M ?0 N = M1N1 · (θ0, θ
′
0) by Lemma 19.

Otherwise, this follows by the q = 0 case, using Theorem 30.

¿From Corollary 40, it follows that application is uniquely determined by its val-
ues on components (simplices of dimension −1) and points (dimension 0). It also fol-
lows that Λ(?) is an a.s. map from S4 [Γ ` F ⊃ G] to Homb∆(S4 [Γ ` F],S4 [Γ ` G]).

There is a kind of converse to syntactic application. Intuitively, in the λ-calculus
(the non-modal case), not only can you apply a term M to a term N , you can also
build λx · M from M : this term λx · M is such that, once applied to N , you get
M{x := N}. We can do almost the same thing here, except M has to be in some
plane for this to work.

Homology, Homotopy and Applications, vol. 5(2), 2003 171

Proposition 42. For any 0-simplex P in any a.s. set, define (P)q by

(P)−1=̂∂0
0P (P)0=̂P (P)q+1=̂s0

(
(P)q

)
(q > 0)

Say that a q-simplex M of S4 [Γ, x : ¤F ` G] is abstractable on x if and only if
π0M can be written as M0{y := dx} for some term M0 such that Γ, y : F ` M0 : G

is typable (in particular, x is not free in M0), and M is in the plane (x : ¤F)⊥ of
S4 [Γ, x : ¤F ` G].

Then there is an a.s. map from the sub-a.s. set of terms M in S4 [Γ, x : ¤F ` G]
that are abstractable on x to terms λxq ·M , such that (λxq ·M) ?q (x)q ≈ M .

Proof. Note that in syntactic a.s. sets as studied here, we may define (P)q more

synthetically as . . . dP . . . , where dP is enclosed in q + 1 boxes.
Case q = 0. Let us define λxq ·M when q = 0. Write the η-long normal form

of M as M1 · θ. Since M is in (x : ¤F)⊥, for every free variable z of M1 such
that x is free in zθ, zθ = x. Let x1, . . . , xk be those free variables of M1 such
that x1θ = . . . = xkθ = x. The restriction θ∗ of θ to the remaining variables maps
variables to terms where x is not free.

Moreover, by assumption M1θ = M0{y := dx}, so x only occurs as direct argu-
ment of d in M1θ. By the definition of x1, . . . , xk, there is a term M2, obtained from
M1 by replacing each dxi by y, such that M2θ

∗ = M0. Moreover, by construction
M2 is η-long normal of type G under Γ, y : F , so:

λx0 ·M=̂ λy ·M2 · θ∗ (15)

is a 0-simplex of the desired type. This is also η-long normal since fv(λy · M2) =
fv(M2) \ {y} = (fv(M1) \ {x1, . . . , xk} ∪ {y}) \ {y} = fv(M1) \ {x1, . . . , xk} =
dom θ \ {x1, . . . , xk} = dom θ∗, and λy ·M2 is linear since every free variable in M2

except possibly y occurs exactly once.
We check that (λx0 ·M) ?0 (x)0 ≈ M :

(λx0 ·M) ?0 (x)0 = dz(dz′) · {z := λx0 ·M, z′ := (x)0}

≈ d λy ·M2 (d dx) · (θ∗, {x := x}) (by (2))

≈ (λy ·M2)(dx) · (θ∗, {x := x}) (by (d))

≈ M2{y := dx} · (θ∗, {x := x}) (by (β))

≈ M1 · (θ∗, {x1 := x, . . . , xk := x}) (by (ctr))

= M1 · θ = M

General Case. To extend λxq · M to q = −1, use Proposition 32. To extend
this to q > 1, check that M 7→ λx0 · M is _∗-monotonic and use Theorem 30.
Assume indeed M _= M ′ are 0-simplices, where M=̂ M1 · θ and M ′=̂ M ′

1 · θ′.
Then there is a 1-simplex N · ϑ1 ·ϑ0 such that Nϑ1 = M1, ϑ0 = θ, and N = M ′

1,

Homology, Homotopy and Applications, vol. 5(2), 2003 172

ϑ1 ·ϑ0 = θ′. In other words, there is a 1-simplex M ′
1 · ϑ1 ·θ such that M ′

1ϑ1 = M1

and ϑ1 · θ = θ′.
Since M is in (x : ¤F)⊥, let x1, . . . , xk be the free variables of M1 such that

xiθ = x, 1 6 i 6 k, as above. Similarly, let x′1, . . . , x′k′ be the free variables of M ′
1

such that x′i′θ
′ = x, 1 6 i′ 6 k′.

Observe that for every i′ with 1 6 i′ 6 k′, x′i′ϑ1 is such that (x′i′ϑ1)θ = x′i′ϑ1θ =
x′i′θ

′ = x, so: (a) x′i′ϑ1 is some xi, 1 6 i 6 k. Conversely, if xi is free in some
z′ϑ1, z′ ∈ domϑ1, then x is free in z′ϑ1θ = z′θ′, so z′ is some x′i′ . In brief: (b) if
xi ∈ fv(z′ϑ1), z′ ∈ dom ϑ1, then z′ = x′i′ for some i′. So we may write ϑ1 as the
disjoint union of the restriction ϑ∗1 of ϑ1 to dom ϑ1 \{x′1, . . . , x′k′} with a one-to-one
(by (b)) substitution mapping each x′i′ to some xi (by (a)). In particular, k′ = k
and without loss of generality, we may assume x′iϑ1 = xi for every i, 1 6 i 6 k.
Moreover, by (b) no xi is free in any z′ϑ∗1, z′ ∈ dom ϑ∗1.

Let θ∗ be the restriction of θ to fv(M1)\{x1, . . . , xk}, θ′∗ be that of θ′ to fv(M ′
1)\

{x′1, . . . , x′k}. Let M2 be obtained from M1 by replacing each dxi by y, and M ′
2 be

obtained from M ′
1 by replacing each dx′i by y. Finally, let

P =̂ λy ·M ′
2 · ϑ∗1 · θ∗

We first claim that P is a valid 1-simplex. Indeed, λy ·M ′
2 is linear; fv(λy ·M ′

2) =
fv(M ′

2) \ {y} = fv(M ′
1) \ {x′1, . . . , x′k} = dom ϑ1 \ {x′1, . . . , x′k} = dom ϑ∗1; λy ·M ′

2 ·
ϑ∗1 is linear, since M ′

1 · ϑ1 is; and fv
(

λy ·M ′
2 · ϑ∗1

)
=

⋃
z′∈fv(λy·M ′

2)
fv(z′ϑ∗1) =⋃

z′∈fv(M ′
1)\{x′1,...,x′k} fv(z′ϑ∗1) =

⋃
z′∈fv(M ′

1)
fv(z′ϑ1) \ {x1, . . . , xk} (since ϑ1 is ϑ∗1]

{x′1 := x1, . . . , x
′
k := xk} and no xi is free in any z′ϑ∗1) = fv

(
M ′

1 · ϑ1

)
\{x1, . . . , xk}

= dom θ \ {x1, . . . , xk} = dom θ∗.
We then claim that ∂1

1P = λx0 ·M and ∂0
1P = λx0 ·M ′.

For the first claim, notice that M ′
2ϑ
∗
1 is obtained from M ′

1ϑ
∗
1 by replacing each dx′i

by y, so M ′
2ϑ1 is obtained from M ′

1ϑ1 by replacing each dxi by y. Since M ′
1ϑ1 = M1

and M2 is obtained by replacing each dxi in M1 by y, it follows that M ′
2ϑ1 = M2.

Therefore ∂1
1P = (λy ·M ′

2)ϑ
∗
1 · θ∗ = λy ·M ′

2ϑ1 · θ∗ = λy ·M2 · θ∗ = λx0 ·M .

For the second claim, since ϑ1 · θ = θ′ and ϑ1 = ϑ∗1] {x′1 := x1, . . . , x
′
k := xk},

θ = θ∗] {x1 := x, . . . , xk := x}, θ′ = θ′∗] {x′1 := x, . . . , x′k := x}, and no xi is
free in any z′ϑ∗1, z′ ∈ domϑ∗1, it follows that ϑ∗1 · θ∗] {x1 := x, . . . , xk := x} =
θ′∗] {x1 := x, . . . , xk := x}, whence ϑ∗1 · θ∗ = θ′∗. So ∂0

1P = λy ·M ′
2 · (ϑ∗1 · θ∗) =

λy ·M ′
2 · θ′∗ = λx0 ·M ′.

Therefore M _= M ′. It follows that M 7→ λx0 · M is indeed _∗-monotonic,
hence extends to a unique a.s. map in every dimension.

It can be shown that Λ(?)q is injective for every q, and we leave this to the reader.
But we can say more, at the price of considering slightly looser a.s. sets:

Homology, Homotopy and Applications, vol. 5(2), 2003 173

Definition 43 (S4 [F]). Let (S4 [F])q, q > −1, be the set of all ≈-equivalence classes
of λS4-terms M such that Γ ` M : ¤q+1F is derivable for some boxed context Γ.
This gives rise to an a.s. set S4 [F]=̂((S4 [F])q>−1, (∂

i
q)06i6q

, (si
q)06i6q

)
Then, the ? map extends naturally to an a.s. map, written ∗, from S4 [F ⊃ G]×

S4 [F] to S4 [G].

Note that we have defined simplices as typable λS4-terms, not typing derivations.
The difference can be illustrated as follows: the variable x for instance is one λS4-
term, while all typing derivations of Γ, x : F ` x : F by (Ax) when Γ varies are all
distinct. This will be made clearer, using categorical language, in Proposition 67.

The injectivity of Λ(∗) yields an embedding of S4 [F ⊃ G] into Homb∆(S4 [F],
S4 [G]). We shall show that this can be turned into the inclusion part of a strong
retraction of Homb∆(S4 [F],S4 [G]) onto S4 [F ⊃ G]. First, we note some general
results:

Definition 44 (Hull). Let K be an a.s. set, and A ⊆ K−1. The hull A is the a.s.
subset of K whose q-simplices are all q-simplices x of K such that π0x ∈ A.

This inherits face and degeneracy operators from K. Every a.s. set splits as a
sum of hulls:

Proposition 45. Every a.s. set K splits as a sum
∐

x∈K−1
{x}. In particular, for

every A ⊆ K−1, K = Aq (K−1 \A).

The following lemma is the first one where the change from S4 [Γ ` F] to S4 [F]
is required:

Lemma 46. Let A be any subset of S4 [F]−1, and assume that there is a 0-simplex
P in A.

Then there is a strong retraction rA of S4 [F] onto A. In other words, rA is an
a.s. map such that, for every M ∈ A, rA(M) = M .

Proof. For any q-simplex M of S4 [F], then either M is in
(
A

)
q

and we let rA(M)

be M , or M is in
(
S4 [F]−1 \A

)
q

by Proposition 45, and we let rA(M) be (P)q ∈
S4 [F]q. Note that rA(M) is always in the hull of A.

Clearly, for every M ∈ A, rA(M) = M . It remains to show that rA is a.s.
If M is in

(
A

)
q
, and 0 6 i 6 q, then ∂i

qM is in
(
A

)
q−1

, so ∂i
q(rA(M)) = ∂i

qM =

rA(∂i
qM). Otherwise M is in

(
S4 [F]−1 \A

)
q
, so ∂i

qM is in
(
S4 [F]−1 \A

)
q−1

, there-

fore ∂i
q(rA(M)) = ∂i

q(P)q ≈ (P)q−1 = rA(∂i
qM). Similarly for si

q.

Proposition 47. S4 [F ⊃ G] is a strong retract of ImΛ(∗)−1.
More precisely, there is an a.s. map R1

F⊃G from ImΛ(∗)−1 to S4 [F ⊃ G] such
that R1

F⊃G ◦ Λ(∗) = idS4 [F⊃G].

Proof. For every boxed context Γ, fix some variable ξΓ outside the domain of Γ.

Homology, Homotopy and Applications, vol. 5(2), 2003 174

Let f be any q-simplex of ImΛ(∗)−1. That is, first, f ∈ Homb∆(S4 [F],S4 [G])q,
and π0f = Λ(∗)−1(M) for some term M and some boxed context Γ such that
Γ `I M : F ⊃ G is derivable in BN0. Since M is η-long normal of type F ⊃ G, M
must be of the form λy ·M1, with Γ, y : F `I M1 : G derivable in BN0. To sum up:

Λ(∗)−1(λy ·M1) = π0f (16)

Now Appq(f, (ξΓ)q) is a q-simplex of S4 [G]. Its component is π0(Appq(f, (ξΓ)q)),
which equals App−1(π0f, dξΓ) = App−1(Λ(∗)−1(λy · M1), dξΓ) (by (16)) = (λy ·
M1) ∗−1 dξΓ (by the combinator equations, in particular (l)) = (λy · M1)(dξΓ) ≈
M1{y := dξΓ}.

As far as typing is concerned, since Γ, y : F `I M1 : G is derivable in BN0,
Γ, ξΓ : ¤F ` M1{y := dξΓ} is, too. So π0(Appq(f, (ξΓ)q)) is in S4 [Γ, ξΓ : ¤F ` G]−1,
from which it follows that Appq(f, (ξΓ)q) is in S4 [Γ, ξΓ : ¤F ` G]q.

Using Proposition 37, let M ′=̂π(ξΓ:�F)⊥(Appq(f, (ξΓ)q)). This is an element of
S4 [Γ, ξΓ : ¤F ` G]q. Since projection is a.s., it preserves components, so π0(M ′) =

π0(Appq(f, (ξΓ)q)) = M1{y := dξΓ}. By construction M ′ is in (ξΓ : ¤F)⊥, so
M ′ = π(ξΓ:�F)⊥(Appq(f, (ξΓ)q)) is abstractable on ξΓ. We may therefore use Propo-
sition 42, and let:

R1
F⊃G(f)=̂λqξΓ · π(ξΓ:�F)⊥(Appq(f, (ξΓ)q)) (17)

This is clearly a.s., as a composition of a.s. maps.
Check that R1

F⊃G is a left inverse to Λ(∗). It is enough to check this in dimension
0, by Theorem 30 and Proposition 32, since R1

F⊃G is a.s. So let f be any 0-simplex
in Im(Λ(∗)0), i.e., f = Λ(∗)0(P) with P ∈ S4 [F ⊃ G]0. Write P in a unique way as
the η-long normal form λy · P1 · θ. Then:

R1
F⊃G(f) = λ0ξΓ · π(ξΓ:�F)⊥(App0(f, (ξΓ)0))

= λ0ξΓ · π(ξΓ:�F)⊥(P ∗0 (ξΓ)0)

= λ0ξΓ · π(ξΓ:�F)⊥(P1{y := dξΓ} · θ)
= λ0ξΓ · P1{y := dξΓ} · θ (since P1{y := dξΓ} · θ is in (ξΓ : ¤F)⊥)

= λy · P1 · θ (by (15))

= P

where for readability we have not converted P1{y := dξΓ} · θ to its η-long normal
form as we ought to (P1{y := dξΓ} is in general not linear in ξΓ).

Combining Lemma 46 with A=̂ Im(Λ(∗)−1) and Proposition 47, we get:

Corollary 48 (Strong Functional Retraction). S4 [F ⊃ G] is a strong retract
of the a.s. set Homb∆(S4 [F],S4 [G]): there is an augmented simplicial map RF⊃G

from Homb∆(S4 [F],S4 [G]) to S4 [F ⊃ G] such that RF⊃G ◦ Λ(∗) = idS4 [F⊃G].

Proof. Take RF⊃G as R1
F⊃G◦rIm(Λ(∗)−1)

. Lemma 46 applies because there is indeed

a 0-simplex in Im(Λ(∗)−1), e.g., Λ(∗)0(x), where x : ¤(F ⊃ G) ` x : ¤(F ⊃ G), so
x ∈ S4 [x : ¤(F ⊃ G) ` F ⊃ G]0 ⊆ S4 [F ⊃ G]0.

Homology, Homotopy and Applications, vol. 5(2), 2003 175

5. Augmented Simplicial and Other Models

There is a natural interpretation of (non-modal) types and typed λ-terms in
the category Set of sets and total functions. Interpret base types as sets, interpret
F ⊃ G as the set of all total functions from F to G. Then λ-terms, or more precisely
derivations of x1 : F1, . . . , xn : Fn ` M : F , are interpreted as total functions
from F1 × . . . × Fn to F . The variable xi gets interpreted as the ith projection,
application of M to N is interpreted as the function mapping g ∈ F1 × . . .× Fn to
M(g)(N(g)), and abstraction λx ·M : F ⊃ G is interpreted as the function mapping
g ∈ F1 × . . . × Fn to the function mapping x ∈ F to M(g, x) (currying). This is
arguably the intended semantics of λ-terms.

In particular, if M and N are convertible λ-terms by the (β) and (η) rules
(they are βη-equivalent), then they have the same interpretation. However, this
interpretation is far from being onto: note that there are only countably many λ-
terms, while as soon as some base type A gets interpreted as an infinite set, A ⊃ A
will not be countable, and (A ⊃ A) ⊃ A will neither be countable nor even of the
cardinality of the powerset of N.

Nonetheless, it can be proved that this interpretation is equationally complete:

Theorem 49 ([16]). If the two typed λ-terms M and N , of the same type F , have
the same set-theoretic interpretation for every choice of the interpretation of base
types, then M and N are βη-equivalent.

In fact, there is even a fixed set-theoretic interpretation such that, if M and N
have the same value in this interpretation, then they are βη-equivalent. Extending
this result to the modal case will be the topic of Section 5.3 and subsequent ones.

5.1. The (¤,d, s) Comonad on ∆̂, and Strict CS4 Categories
In the S4 case, given the fact that S4 [Γ ` F] is an augmented simplicial set, it is

natural to investigate the extension of the above constructions to intuitionistic S4
on the one hand and the category of augmented simplicial sets on the other hand.

In general, intuitionistic S4 proofs can be interpreted in any CCC with a monoidal
comonad. While the CCC structure of ∆̂, accounting for the non-modal part of S4
proofs, was recalled in Section 4, the monoidal comonad we use is:

Definition 50 (¤ Comonad in ∆̂). For every a.s. set K, let ¤K denote the
a.s. set such that (¤K)q=̂Kq+1, ∂i

(�K)q
=̂∂i+1

Kq+1
, si

(�K)q
=̂si+1

Kq+1
. For any a.s. map

f : K → L, let ¤f : ¤K → ¤L be such that (¤f)q=̂fq+1. Let d : ¤K → K and
s : ¤K → ¤2K be the a.s. maps such that (d)q=̂∂0

Kq+1
and (s)q=̂s0

Kq+1
respectively,

q > −1.

CCCs with a monoidal comonad have already been argued to be the proper
categorical models of intuitionistic S4 [7]. While Bierman and de Paiva only show
that (β), (η), and (d) are sound, it is easy to check that the other equalities (gc),
(ctr), (¤) and (η¤) are also sound.

It is also easy to check that the monoidal comonad of Definition 50 satisfies
¤1 = 1, ¤(K × L) = ¤K × ¤L (up to natural isomorphisms that we will not

Homology, Homotopy and Applications, vol. 5(2), 2003 176

make explicit, for readability purposes), and the following so-called strict monoidal
comonad equations hold:

(n) �id = id (o) �(f ◦ g) = �f ◦�g (p) d ◦�f = f ◦ d (q) s ◦�f = �2f ◦ s
(r) �π1 = π1 (s) d ◦ s = id (t) �d ◦ s = id (u) �s ◦ s = s ◦ s
(v) �π2 = π2 (w) �〈f, g〉 = 〈�f,�g〉 (x) d ◦ 〈f, g〉 = 〈d ◦ f,d ◦ g〉

(y) s ◦ 〈f, g〉 = 〈s ◦ f, s ◦ g〉

Definition 51 (Strict CS4 Category). A strict CS4 category is any cartesian-
closed category C together with a strict monoidal comonad (¤,d, s).

Strict CS4 categories are the categories in which we can interpret typed λS4-
terms. Bierman and de Paiva considered non-strict CS4 categories [7]. We shall
only need the strict variant; this will make our exposition simpler. In particular ∆̂
with the comonad of Definition 50 is a strict CS4 category.

The ¤ functor on ∆̂ is related to Duskin and Illusie’s décalage functor ¥ [46].
Standardly, décalage is dual to ¤. For every a.s. set K, the converse K̆ of K is
obtained by letting (K̆)q=̂Kq, ∂i

K̆q
=̂∂q−i

Kq
, si

K̆q
=̂sq−i

Kq
. That is, K̆ is obtained from K

by reversing the order of faces. Then ¥K is the converse of ¤K̆. If ¤K in a sense
means “in every future, K”, then it is natural to think of ¥K as “in every past,
K”. As announced in Section 2, we shall leave the task of investigating such other
modalities to a future paper.

5.1.1. Topological Models
There are many other interesting strict CS4 Categories. Of interest in topology in the
category CGHaus of compactly generated topological spaces, a.k.a., Kelley spaces
([36] VII.8). (It is tempting to use the category Top of topological spaces, however
Top is not a CCC. It has sometimes been argued that CGHaus was the right
category to do topology in.) Recall that a Kelley space is a Hausdorff topological
space X whose closed subsets are exactly those subsets A whose intersection with
every compact subspace of X is closed in X. CGHaus has Kelley spaces as objects
and continuous functions as morphisms. Moreover, for every Hausdorff space X,
there is a smallest topology containing that of X that makes it Kelley. The resulting
Kelley space K(X) is the kelleyfication of X, and is obtained by adding as closed
sets every A ⊆ X whose intersection with every compact subspace of X is closed in
X. The terminal object 1 in CGHaus is the one-point topological space, while the
product of X and Y is the kelleyfication of the product of X and Y as topological
spaces, and the internal hom HomCGHaus(X,Y) is the kelleyfication of the space
of all continuous functions from X to Y with the compact-open topology. We may
equip CGHaus with a structure of strict CS4 category as follows:

Definition 52 (¤ Comonad in CGHaus). For every topological space X, the
path space ¤X over X is the disjoint sum

∐
x0∈X ¤x0X, where the ¤x0X is the

space of all continuous functions α from [0, 1] to X such that α(0) = x0, with the
compact-open topology.

For every continuous function f : X → Y , let ¤f : ¤X → ¤Y be the function
mapping each α ∈ ¤X to f ◦ α ∈ ¤Y .

Homology, Homotopy and Applications, vol. 5(2), 2003 177

The counit d maps every α ∈ ¤X to α(1) ∈ X.
The comultiplication s maps every α ∈ ¤X to the map t 7→ (t′ 7→ α(tt′)) in

¤2X.

This comonad is in fact related to the décalage functor, through singular simplex
and geometric realization functors. The path comonad is more often defined on
pointed topological spaces, as ¤x0X, where x0 ∈ X is the point in X; ¤x0X is itself
pointed, and the constant path at x0 is its point. This standard path comonad is
right-adjoint to the cone comonad, and is fundamental in homotopy and homology,
see e.g. [25]. We shall see that our path comonad is also right-adjoint to some cone
monad (Proposition 54).

In terms of processes, we may think of α ∈ ¤X as some process that starts at
time 0 and will produce a value at time 1. The counit d is the operator that extracts
the final value of the process α as argument.

Proposition 53. The construction (¤,d, s) of Definition 52 is a strict monoidal
comonad on CGHaus, making it a strict CS4 category.

Proof. First show that ¤x0X is Kelley. Since [0, 1] is compact, it is locally compact
Hausdorff; it is then well-known that the space of continuous functions from [0, 1]
to X is Kelley: this is HomCGHaus([0, 1], X). (In general HomCGHaus(Y, X) is
the kelleyfication of the space of continuous functions from Y to X, not the space
itself.) Since {x0} is closed in X, and the projection α 7→ α(0) is continuous, ¤x0X
is closed in HomCGHaus([0, 1], X). As a closed subset of a Kelley space, ¤x0X is
then Kelley, too. Since every coproduct of Kelley spaces is also Kelley, it follows
that ¤X is Kelley.

Next we must show that ¤f is continuous whenever f : X → Y is. We first show
the auxiliary:
Claim A. For every function f : X → ¤Y , f is continuous if and only if, for every
connected component C of X:
(i) for every x, y ∈ C, f(x)(0) = f(y)(0), and
(ii) the restriction f|C of f to C is continuous from C to HomCGHaus([0, 1], Y).

Only if: since C is connected, f(C) is connected. But each ¤x0X is both open and
closed in ¤X by construction, so f(C) ⊆ ¤x0X for some x0 ∈ X. By definition
of ¤x0X, this means that f(x)(0) = x0 for every x ∈ C, whence (i). On the other
hand, since f is continuous, f|C is also continuous from C to ¤x0X for the x0 above.
Since every subset of ¤x0X that is closed in HomCGHaus([0, 1], Y) is also closed
in ¤x0X by definition, (ii) holds. (We use the fact that f is continuous if and only
if the inverse image of every closed set is closed.)

If: let x0 be f(x)(0) for some (and therefore all, by (i)) x ∈ C. Then f(C) ⊆
¤x0X. By (ii), and since every closed subset of ¤x0X is closed in HomCGHaus([0, 1],
Y), f|C is continuous from C to ¤x0X, hence to ¤X. For every open O of ¤X,
f−1(O) is the union of f−1

|C (O) when C ranges over the connected components of X,
and is therefore open. So f is indeed continuous from X to ¤Y . Claim A is proved.

Now let f : X → Y be continuous; we claim that ¤f is continuous, too. Let C be
a connected component of ¤X. Since every ¤x0X is both open and closed in ¤X,

Homology, Homotopy and Applications, vol. 5(2), 2003 178

C is included in some ¤x0X. So for every α, β ∈ C, ¤f(α)(0) = f(α(0)) = f(x0) =
f(β(0)) = ¤f(β)(0), therefore (i) holds. Moreover f|C is trivially continuous from C
to HomCGHaus([0, 1], Y), since f ◦ is a continuous operation (this is the morphism
Λ(f ◦App) in CGHaus, which is a CCC). So Claim A applies, and ¤f is continuous.

Let us now show that d : ¤X → X is continuous. Let F be any closed subset
of X, then d−1(F) = {α ∈ ¤X|α(1) ∈ F} =

⋃
x0∈X{α ∈ ¤x0X|α(1) ∈ F} =⋃

x0∈X{α ∈ HomCGHaus([0, 1], X)|α(0) = x0 ∧ α(1) ∈ F}. Since the functions
from HomCGHaus([0, 1], X) to X mapping α to α(0) and α(1) respectively are
continuous, each {α ∈ HomCGHaus([0, 1], X)|α(0) = x0 ∧ α(1) ∈ F} is closed in
HomCGHaus([0, 1], X); hence in ¤x0X. Since a set is closed in a sum space if and
only if its intersection with every summand is closed in the summand, d−1(F) is
closed.

Let us show that s : ¤X → ¤2X is continuous. Let C be any connected compo-
nent of ¤X. In particular C ⊆ ¤x0X for some x0. So for every α ∈ C, α(0) = x0,
therefore s(α)(0) is the map t′ 7→ α(0t′), i.e., the constant map t′ 7→ x0. As this
is independent of α, (i) holds. On the other hand, let F be any closed subset of
HomCGHaus([0, 1],¤X). Then, letting f0 be the constant map t′ 7→ x0, s−1

|C (F) =
s−1
|C (F ∩¤f0¤X) = s−1

|C (F ∩¤f0¤x0X) is closed in HomCGHaus([0, 1], X). Indeed
¤f0¤x0X is closed in HomCGHaus([0, 1],HomCGHaus([0, 1], X)), and s|C is contin-
uous from HomCGHaus([0, 1], X) to HomCGHaus([0, 1],HomCGHaus([0, 1], X)),
as a composition of continuous maps. So s−1

|C (F) is also closed in C, hence (ii)
holds. By Claim A s is continuous.

We now claim that ¤ is strict monoidal. The terminal object ! in CGHaus is
any singleton {•}; ¤{•} is the space of all paths from • to • in {•}, and is therefore
also a singleton set. On the other hand, products are slightly harder to deal with.
Let X ∗ Y denote the product of X and Y as topological spaces; then X × Y is the
kelleyfication of X ∗ Y . We claim that the pair of functions:

F : ¤(X × Y) → ¤X ×¤Y

γ 7→ (π1 ◦ γ, π2 ◦ γ)
G : ¤X ×¤Y → ¤(X × Y)

(α, β) 7→ (t 7→ (α(t), β(t)))

defines a natural isomorphism between ¤(X × Y) and ¤X and ¤Y . That they are
inverse of each other is clear, it remains to show that they are continuous. For F ,
since × is a product in CGHaus, it is enough to show that γ 7→ π1 ◦γ is continuous
from ¤(X × Y) to ¤X, and similarly for γ 7→ π2 ◦ γ. Apply Claim A: let C be any
connected component of ¤(X × Y). Since each ¤(x0,y0)(X × Y) is both open and
closed in ¤(X×Y), C is included in some ¤(x0,y0)(X×Y) for some x0 ∈ X, y0 ∈ Y .
So γ 7→ π1 ◦γ maps any γ ∈ C to some path whose value at 0 is x0, and is therefore
independent of γ: (i) holds. And (ii) is obvious, so F is continuous. For G, this is
subtler, and we require to prove the following first:

Claim B. Every connected component C of X × Y is a subset of some product
A ∗ B, where A is a connected component of X and B a connected component of
Y .

Homology, Homotopy and Applications, vol. 5(2), 2003 179

Indeed, every connected component of X, resp. Y , is both open and closed in X,
resp. Y . So every product A ∗B is both open and closed in X ∗ Y , when A and B
are connected components. Since the topology of X ×Y is finer than that of X ∗Y ,
A ∗ B is also both open and closed in X × Y . Let S be the set of pairs (A,B) of
connected components such that C ∩ (A ∗B) 6= ∅. Note that the union of all A ∗B
for (A,B) ∈ S covers C. Since C ∩ (A ∗ B) is both open and closed in S and C is
connected, there can be at most one pair A,B of connected components such that
C ∩ (A ∗B) 6= ∅. It follows that C ⊆ A ∗B. Claim B is proved.

To show that G is continuous, apply Claim A. For every connected component C
of ¤X×¤Y , using Claim B, C is included in some product of connected components
of ¤X and ¤Y respectively. In particular C ⊆ ¤x0X ∗ ¤y0Y for some x0 ∈ X,
y0 ∈ Y . It follows that for every (α, β) ∈ C, G(α, β)(0) = (α(0), β(0)) = (x0, y0)
is independent of α and β. So (i) holds. Also, (ii) holds trivially. Therefore G is
continuous.

It remains to check equations (n)–(y), which are easy and left to the reader.

We have said that ¤ was dual to a cone functor. We let the reader check the
following, taking ¨X as ([0, 1] × X)/ !, where ! is the smallest equivalence
relation such that (0, x) ! (0, y) provided x and y lie in the same connected
component of X, and writing |t, x| for the equivalence class of (t, x), ¨f be the
function mapping |t, x| to |t, f(x)|, e map x to |1, x|, and m map |t1, |t2, x|| to
|t1t2, x|.

Proposition 54. There is a strong monad (¨, e, m) (the cone monad) on the cate-
gory CGHaus of Kelley spaces such that ¨ a ¤.

Recalling the discussion of Section 2, this gives a way of interpreting Moggi’s
computational lambda-calculus in labeled Kelley spaces, together with λS4, and
preserving a duality between the ¤ and ¨ forms of talking about computations and
values (the adjunction ¨ a ¤). Such a cone monad also exists in ∆̂, but is more
complex (it can be built as the join [14] from a one-point a.s. set, for example.)

It is instructive to see that if X is a space of points, ¤X is a space of paths,
then ¤2X is a space of singular 2-simplices, and in general ¤qX will be a space of
singular q-simplices.

Let’s examine ¤2X first. This is a space of paths β, such that each β(t), t ∈ [0, 1]
is itself a path, so β is a kind of square, up to deformation. However, β is continuous
and [0, 1] is connected, so the range of β is connected as well. But the range of β is a
subset of ¤X, which is the direct sum of spaces ¤x0X, x0 ∈ X. In any direct sum of
topological spaces, every summand is both open and closed, hence every connected
subspace is in fact a subspace of some summand. In our case, this means that the
range of β is a subset of some ¤x0X. In other words, β(t)(0) = x0 for every t, so
the range of β assumes the shape of a triangle, up to deformation: see Figure 6.

Note that this phenomenon is entirely due to the strange topology we take on
¤X, which separates completely paths α that do not have the same α(0). Had we
just taken ¤X to be the set of paths in X with the compact-open topology, ¤qX
would have been a set of cubes, not simplices.

Homology, Homotopy and Applications, vol. 5(2), 2003 180

2

t

α (0)

α (1)

β (0)

X XX (points) (paths)

α

(2−simplices)

β

β (1)

β (t)(1)

β (1) (1)

β (0) (1)

β (t)(0)

(for any t)

Figure 6: Extended singular simplices

In general, define XSingq(X), for q > −1, as the set of all extended singular
q-simplices in X:

Definition 55 (Extended Singular Simplices, XSing). For every q > −1,
the extended singular q-simplices are the continuous maps from ∆+

q to F , where
∆+

q=̂{(t0, . . . , tq) | t0 > 0, . . . , tq > 0, t0 + . . . + tq 6 1} is the standard extended
q-simplex.

∆+−1 is the singleton containing only the empty tuple (). Otherwise, ∆+
q is

a polyhedron whose vertices are (0, . . . , 0) first, and second the points e0, . . . , eq,
where ei=̂(t0, . . . , tq) with ti = 1 and tj = 0 for all j 6= i. This is analogous to
the more usual notion of standard q-simplices ∆q, for q > 0, which are the sub-
polyhedra with vertices e0, . . . , eq, namely ∆q=̂{(t0, . . . , tq) | t0 > 0, . . . , tq >
0, t0 + . . .+ tq = 1}. The singular q-simplices of X are the continuous maps from ∆q

to X. See Figure 7 for an illustration of what the standard simplices, and standard
extended simplices, look like.

∆ 0
+

∆ 0

0 1

(a segment)

(a point)

∆ 1
+

0 1

0

1

∆ 1

(a triangle)

(a segment)

∆ 2
+

∆ 2

(a tetrahedron)

(a triangle)

1

0

1

1

Figure 7: Standard and extended simplices

The topology on XSingq(X) is given as follows. When q = −1, XSingq(X) is
isomorphic to X. Otherwise, XSingq(X) is viewed as the topological sum of all
spaces XSingγ

q (X)=̂{f ∈ HomCGHaus(∆+
q, X) | f|∆q

= γ}, when γ ranges over

Homology, Homotopy and Applications, vol. 5(2), 2003 181

all singular q-simplices of X. We let the interested reader check that XSingq(X) is
in fact homeomorphic to ¤qX.

Note that (extended) simplices over a space of functions X → Y also have an
elegant geometric interpretation. While X → Y is a set of continuous functions,
¤(X → Y) is a set of continuous paths from functions f to functions g in X → Y ,
so ¤(X → Y) is a set of homotopies between continuous functions from X to Y .
The elements of ¤q(X → Y), q > 1, are then known as higher-order homotopies:
¤2(X → Y) is the set of homotopies between homotopies, etc. This is a classical
construction in algebraic topology [39].

In terms of proof theory, there is a translation of intuitionistic proofs to S4 proofs
which replaces every base type A by ¤A and every implication by a corresponding
boxed implication. At the level of proof terms, this yields the SKInT calculus of
[19], which interprets (slightly more than) Plotkin’s call-by-value λ-calculus [45].
The present constructions give rise to a model in terms of paths (elements of base
types) and homotopies (implications) for SKInT. This is left to the reader.

5.1.2. Models in Categories of Orders, Cpos, and Categories
More cogent to computer science are models of the λ-calculus based on complete
partial orders. Here, too, we may define strict monoidal comonads as follows. First
recall that Ord, the category whose objects are partial orders and whose morphisms
are monotonic functions, is a CCC. Similarly, Cat, the category of small categories,
is a CCC. The category Cpo of complete partial orders (cpos) has cpos as objects
and continuous functions as morphisms. Recall that a cpo is any partial order in
which every infinite increasing chain x0 6 x1 6 . . . 6 xi 6 . . . has a least upper
bound. (We don’t require our cpos to be pointed, i.e., to have a least element.) A
function is continuous provided it preserves all least upper bounds of increasing
chains; in particular, a continuous function is monotonic. Again, Cpo is a CCC. A
variant is the category DCpo of directed cpos, where it is instead required that all
non-empty directed subsets have a least upper bound; a directed subset E is one
where any two elements in E have a least upper bound in E. Continuous functions
are then required to preserve least upper bounds of all directed sets. Again, DCpo
is a CCC.

Definition 56 (¤ Comonad in Ord, Cpo, DCpo). For every partial order (X,
6), let ¤X be the set of all pairs (x0, x1) of elements of X such that x0 6 x1,
ordered by (x0, x1) 6 (y0, y1) if and only if x0 = y0 (not x0 6 y0) and x1 6 y1. For
every monotonic function f : X → Y (resp. continuous), let ¤f map (x0, x1) to
(f(x0), f(x1)).

The counit d : ¤X → X maps (x0, x1) to x1.
The comultiplication s : ¤X → ¤2X maps (x0, x1) to ((x0, x0), (x0, x1)).

It is easily checked that this defines a strict monoidal comonad on Ord, Cpo,
DCpo. As for the topological case, we may give a synthetic description of ¤qX:
this is isomorphic to the partial order (resp. cpo, resp. dcpo) of all chains x−1 6
x0 6 x1 6 . . . 6 xq of elements of X, ordered by:

(x−1, x0, . . . , xq) 6 (x′−1, x
′
0, . . . , x

′
q)

Homology, Homotopy and Applications, vol. 5(2), 2003 182

if and only if x−1 = x′−1, x0 = x′0, . . . , xq−1 = x′q−1, and xq 6 x′q. Just like iterating
¤ in the topological case allowed us to retrieve a form of of singular simplex functor,
we retrieve a form of nerve functor.

In passing, we invite the reader to check that there is also a cone monad ¨ in
Ord, Cpo and DCpo: ¨X is X with a new bottom element added below every
connected component of X. (Connected components are the equivalence classes of
the symmetric closure of 6.) The unit X → ¨X is the natural inclusion of orders.
The multiplication ¨2X → ¨X squashes the additional bottoms of ¨2X to the ones
just above that come from ¨X. Again, this is a strong monad left adjoint to ¤; in
pointed cpos, this is known as the lifting monad.

We leave it to the reader to check that similar constructions work in Cat: for
every small category C, let ¤C be the category of all morphisms of C; morphisms
from X → X0 to X → X1 are all commuting triangles:

X

²² !!CC
CC

CC
CC

X0
// X1

In short, ¤C is the coproduct of all coslices over C. The counit is given by: d
is the functor mapping X → X0 to X0, and the diagram above to the morphism
X0 → X1 in C. Comultiplication maps every object X → X0 in C to the obvious

commuting triangle X
→
→ X0, and morphisms as given by the triangle above to

commuting tetrahedra:

X //

!!CC
CC

CC
CC

²²

X1

X0
id

//

=={{{{{{{{
X0

OO

5.2. Interpreting S4 Proofs into CCCs with Monoidal Comonads
Fix an arbitrary strict CS4 category C, calling its strict monoidal comonad

(¤,d, s). Our prime example is ∆̂, but we do not restrict to it here. We reuse
the CCC notations of Section 4 and the strict monoidal comonad notations of Sec-
tion 5.1, together with equations (a)–(m) and (n)–(y).

Extend the set-theoretic interpretation of λ-terms to an interpretation of formu-
las as objects in C, and of terms as morphisms in C; this interpretation is shown
in Figure 8. This is parameterized by an environment ρ mapping each base type
A ∈ Σ to some object ρ(A). Our notations match standard meaning functions in
denotational semantics.

We let X1×. . .×Xn=̂(. . . (1×X1)×. . .×Xn−1)×Xn, and 〈f1, . . . , fn〉=̂〈〈. . . 〈!, f1〉
. . . , fn−1〉, fn〉. We actually make an abuse of language by considering that this is
an interpretation of typed λS4-terms instead of of typing derivations.

If Γ is x1 : F1, . . . , xn : Fn, we also let C JΓK ρ be the product C JF1K ρ × . . . ×
C JFnK ρ.

Homology, Homotopy and Applications, vol. 5(2), 2003 183

C JAK ρ=̂ρ(A) C JF ⊃ GK ρ=̂HomC(C JF K ρ, C JGK ρ) C J¤F K ρ=̂¤C JF Kρ

C JΓ ` xi : FiK ρ =̂ π2

n−i︷ ︸︸ ︷◦π1 ◦ . . . ◦ π1 where Γ=̂x1 : F1, . . . , xn : Fn

C JΓ ` MN : GK ρ =̂ App ◦ 〈C JΓ ` M : F ⊃ GK ρ, C JΓ ` N : F K ρ〉
C JΓ ` λx ·M : F ⊃ GK ρ =̂ Λ(C JΓ, x : F ` M : GK ρ)

C JΓ ` dM : F K ρ =̂ d ◦ C JΓ ` M : ¤F K ρ

C
r
Γ ` M · θ : ¤G

z
ρ =̂ ¤C JΘ ` M : GK ρ ◦ s

◦〈C JΓ ` N1 : ¤F1K ρ, . . . , C JΓ ` Nn : ¤FnK ρ〉
where Θ=̂x1 : ¤F1, . . . , xn : ¤Fn,

θ=̂{x1 := N1, . . . , xn := Nn}

Figure 8: Interpreting S4 proof terms

Lemma 57 (Soundness). The interpretation of Figure 8 is sound in every strict
CS4 category C: if Γ ` M : F is derivable, then C JMK ρ is a morphism from C JΓK ρ
to C JF K ρ; and if M ≈ N then C JMK ρ = C JNK ρ.

Proof. The typing part is immediate. For the equality part, standard arguments
[10] show that:

C JΓ ` M{x1 := N1, . . . , xn := Nn} : F K ρ (18)
= C Jx1 : F1, . . . , xn : Fn ` M : F K ρ

◦〈C JΓ ` N1 : F1K ρ, . . . , C JΓ ` Nn : FnK ρ〉
where the indicated sequents are derivable; and that:

C JΓ, x : F ` M : GK ρ = C JΓ ` M : GK ρ ◦ π1

if x is not free in M . By standard but tedious calculations, we then check that if
M → N then C JMK ρ = C JNK ρ, which entails the second claim.

If we are allowed to vary the strict CS4 category C, then there are converses to
Lemma 57. The idea is that we can always define a syntactic category C as follows:

Definition 58 (S4Σ Category). Let S4Σ be the category whose objects are contexts
mapping variables to types built on the set Σ of base types, and whose morphisms
are:

Γ=̂x1 : F1, . . . , xn : Fn

θ=̂{y1 := M1, . . . , ym := Mm}Â Θ=̂y1 : G1, . . . , ym : Gm

where θ is a substitution such that Γ ` Mj : Gj for every j, 1 6 j 6 m, modulo ≈.
The identity on Γ is the identity substitution idΓ=̂{x1 := x1, . . . , xn := xn}, and

composition θ ◦ θ′ is substitution concatenation θ · θ′.
This is a CCC with a strict monoidal comonad. The terminal object 1 is the

empty context, and the unique morphism Γ !−→1 is the empty substitution. To
define products, notice that contexts are isomorphic up to renaming of variables.
In other words, x1 : F1, . . . , xn : Fn is isomorphic to x′1 : F1, . . . , x

′
n : Fn. This

Homology, Homotopy and Applications, vol. 5(2), 2003 184

allows us to only define Γ× Γ′ when Γ and Γ′ have disjoint domains. Then Γ× Γ′

is the concatenation Γ, Γ′ of contexts, and for any Θ θ−→Γ and Θ θ−→Γ′, 〈θ, θ′〉 is the
morphism (θ, θ′). Projections are restrictions:

Γ× Γ′
π1=̂{x1 := x1, . . . , xn := xn} Â Γ

Γ× Γ′
π2=̂{x′1 := x′1, . . . , x

′
n′ := x′n′} Â Γ′

Given that Γ = x1 : F1, . . . , xn : Fn and Γ′ = x′1 : F ′1, . . . , x
′
n′ : F ′n′ , the internal

hom object HomS4Σ(Γ,Γ′) is the context z1 : F1 ⊃ . . . ⊃ Fn ⊃ F ′1, . . . , zn′ :

F1 ⊃ . . . ⊃ Fn ⊃ F ′n′ . Application HomS4Σ(Γ,Γ′) × Γ
App−→Γ′ is built from syntactic

application, as {x′1 := z1x1 . . . xn, . . . , x′n′ := zn′x1 . . . xn}, while abstraction is built

from λ-abstraction as follows. For every Θ× Γ θ−→Γ′, where Γ and Γ′ are as above,
and Θ=̂y1 : G1, . . . , ym : Gm,

Θ

{ z1 := λx1, . . . , xn · x′1θ,
. . . ,
zn′ := λx1, . . . , xn · x′n′θ }Â HomS4Σ(Γ, Γ′)

This only uses the non-modal part of S4, and in particular only the computation
rules (β) and (η).

The strict monoidal comonad (¤,d, s) on S4Σ is defined using the S4 ¤ modal-
ity: on objects, ¤(x1 : F1, . . . , xn : Fn) is defined as x1 : ¤F1, . . . , xn : ¤Fn; on
morphisms, for any θ as given in Definition 58, ¤θ is:

�Γ
�θ=̂{y1 := �M1, . . . , ym := �Mm} Â �Θ

where ¤M is M{x1 := dx1, . . . , xn := dxn} for any M such that Γ ` M : G is
derivable. The counit d is:

�Γ
d=̂{x1 := dx1, . . . , xn := dxn}Â Γ

while comultiplication is:

�Γ
s=̂{x1 := sx1, . . . , xn := sxn}Â �2Γ

Recall that sM is x · {x := M}.
It trivially follows:

Proposition 59 (Existential Completeness). Let ρ map every base type A ∈ Σ
to the context z : A. If there is a morphism from S4Σ JΓK ρ to S4Σ JF K ρ in S4Σ then
F is provable from Γ, i.e., there is a λS4-term M such that Γ ` M : F is derivable.

Proposition 60 (Evaluation Functor). For every strict CS4 category C, and
every ρ : Σ → C, C J K ρ extends ρ to a representation of strict CS4 categories from
S4Σ to C.
Proof. For every morphism

Γ=̂x1 : F1, . . . , xn : Fn

θ=̂{y1 := M1, . . . , ym := Mm} Â y1 : G1, . . . , ym : Gm

Homology, Homotopy and Applications, vol. 5(2), 2003 185

define C JθK ρ as 〈C JΓ ` M1 : G1K ρ, . . . , C JΓ ` Mm : GmK ρ〉. This is functorial: in-
deed C JidΓK ρ = 〈π2 ◦ πm−1

1 , . . . , π2 ◦ π1, π2〉 = id, and C J K ρ preserves composition
by (18). This preserves cartesian products by construction.

This preserves ¤. Indeed,

C J¤Γ ` ¤M : ¤F K ρ

= C
r
¤Γ ` M{x1 := dx1, . . . , xn := dxn} : ¤F

z
ρ

= ¤C JΓ ` M{x1 := dx1, . . . , xn := dxn} : F K ρ

◦s ◦ 〈π2 ◦ πm−1
1 , . . . , π2 ◦ π1, s ◦ π2〉

= ¤C JΓ ` M{x1 := dx1, . . . , xn := dxn} : F K ρ ◦ s

= ¤
(C JΓ ` M : F K ρ ◦ 〈d ◦ π2 ◦ πm−1

1 , . . . ,d ◦ π2 ◦ π1,d ◦ π2〉
) ◦ s

= ¤(C JΓ ` M : F K ρ ◦ d) ◦ s

= ¤C JΓ ` M : F K ρ ◦¤d ◦ s = ¤C JΓ ` M : F K ρ (by (t))

So:

C J¤θK ρ = 〈C J¤Γ ` ¤M1 : ¤G1K ρ, . . . , C J¤Γ ` ¤MmK ρ〉
= 〈¤C JΓ ` M1 : G1K ρ, . . . , ¤C JΓ ` Mm : GmK ρ〉
= ¤C JθK ρ (by (w))

C J K ρ preserves d:

C JdK ρ = 〈C J¤Γ ` dx1 : F1K ρ, . . . , C J¤Γ ` dxn : FnK ρ〉
= 〈d ◦ π2 ◦ πn−1

1 , . . . ,d ◦ π2 ◦ π1,d ◦ π2〉
= d ◦ 〈π2 ◦ πn−1

1 , . . . , π2 ◦ π1, π2〉 = d

C J K ρ preserves s. Indeed,

C qΓ ` sM : ¤2F
y

ρ = C qΓ ` x · {x := M} : ¤2F
y

ρ

= ¤C Jx : ¤F ` x : ¤F K ρ ◦ s ◦ C JΓ ` M : ¤F K ρ

= ¤id ◦ s ◦ C JΓ ` M : ¤F K ρ

= s ◦ C JΓ ` M : ¤F K ρ

So:

C JsK ρ = 〈s ◦ π2 ◦ πn−1
1 , . . . , s ◦ π2 ◦ π1, s ◦ π2〉

= s ◦ 〈π2 ◦ πn−1
1 , . . . , π2 ◦ π1, π2〉 = s

The functor C J K ρ also preserves internal homs, application App and abstraction
Λ. This is standard, tedious and uninstructive, hence omitted.

Proposition 61 (Free Strict CS4 Category). S4Σ is the free strict CS4 category
on Σ.

More precisely, for every set Σ of base types, seen as a discrete category, let
⊆ denote the natural inclusion functor of Σ into S4Σ. Then for every strict CS4
category C, for every functor ρ : Σ → C, there is a unique functor Φ that makes the

Homology, Homotopy and Applications, vol. 5(2), 2003 186

following diagram commute:

Σ
⊆ //

ρ

²²

S4Σ

Φ
~~||

||
||

||

C
Furthermore, Φ is exactly the C J K ρ functor as defined in Figure 8.

Proof. Uniqueness: assume Φ exists, we shall show that it is uniquely determined.
On objects, Φ must map every formula F to C JF K ρ, and in general every context Γ
to C JΓK ρ. On morphisms, since Φ must preserve products, Φ is uniquely determined
by the images of morphisms in S4Σ of the form

Γ=̂x1 : F1, . . . , xn : Fn

{y1 := M1, . . . , ym := Mm}Â Θ=̂y1 : G1, . . . , ym : Gm

with m = 1. In this case, equate the morphism with the judgment Γ ` M1 : G1.
Then Φ is uniquely determined by its values on typed λS4-terms. (For readability,
we make an abuse of language by equating terms with their typing derivations.)

Since Φ must preserve ¤ and s, we must have:

Φ
(

M{x1 := dx1, . . . , xn := dxn}
)

= ¤Φ(M)

Φ
(

x · {x := M}) = s ◦ Φ(M)

Since, using (2), (d), and possibly (gc):

M · {x1 := N1, . . . , xn := Nn}
≈

(
M{x1 := dx1, . . . , xn := dxn}

)
{x1 := y1 · {y1 := N1}, . . . ,

xn := yn · {yn := Nn}}
it follows that:

Φ
(

M · {x1 := N1, . . . , xn := Nn}
)

= ¤Φ(M) ◦ s ◦ 〈Φ(N1), . . . , Φ(Nn)〉
Similarly, since Φ must preserve d, we must have Φ(dM) = d◦Φ(M). We recognize
the clauses for C J K ρ for boxes and d terms given in Figure 8. The case of internal
homs, application and abstraction are equally easy and standard, whence Φ must
be C J K ρ.

Existence: taking Φ=̂C J K ρ, this is by Lemma 57 and Proposition 60.

Corollary 62. Let ⊆ denote the canonical inclusion Σ ⊆ S4Σ, mapping each base
type A to A, seen as a formula. Then S4Σ JΓ ` M : F K (⊆) ≈ M .

Proof. Apply Proposition 61 with C=̂S4Σ, ρ=̂(⊆).

Corollary 62 immediately implies:

Proposition 63 (Equational Completeness). Let M , N be two λS4-terms such
that Γ ` M : F and Γ ` N : F are derivable.

If S4Σ JΓ ` M : F K (⊆) = S4Σ JΓ ` N : F K (⊆), then M ≈ N .

Homology, Homotopy and Applications, vol. 5(2), 2003 187

While S4Σ is characterized as the free strict CS4 category, we end this section by
elucidating the construction of the augmented simplicial set S4 [F] of Definition 43
from a categorical point of view. First, we note:

Lemma 64. There is a functor S4 [] mapping every formula F to S4 [F], and more
generally every context Γ=̂x1 : F1, . . . , xn : Fn to S4 [Γ]=̂S4 [F1]× . . .× S4 [Fn], and
every morphism

Γ=̂x1 : F1, . . . , xn : Fn

θ=̂{y1 := M1, . . . , ym := Mm}Â Θ=̂y1 : G1, . . . , ym : Gm

to the morphism S4 [θ] in ∆̂ which, as an augmented simplicial map, sends (N1, . . . ,
Nn) ∈ S4 [Γ]q to (¤q+1M1ϕ, . . . , ¤q+1Mmϕ), where ϕ=̂{x1 := N1, . . . , xn := Nn}.

Moreover, S4 [] is faithful, preserves all finite products and the given comonads
in the source and target categories.

Proof. That it is a functor follows from equations (n) and (o). It clearly preserves
all finite products and maps the syntactic comonad (¤,d, s) to the (dual) décalage
comonad (¤,d, s) in ∆̂, as an easy check shows. Finally, it is faithful: in the definition
of S4 [θ] above, we retrieve θ uniquely from S4 [θ] by looking at the image of the tuple
(x1, . . . , xn) by S4 [θ]−1.

We can give an even more abstract description of S4 [] as follows, which is essen-
tially a way of generalizing the familiar hom-set functor HomC(,) to the augmented
simplicial case. In this way, we shall see that it is related to the standard resolution
of any comonad ([36], VII.6):

Definition 65 (Resolution Functor Res). Let (C,¤,d, s) be any strict CS4 cat-
egory. There is a resolution functor ResC : Co×C → ∆̂ which maps every pair A,B
of objects in C to the augmented simplicial set ((HomC(A,¤q+1B))q>−1, ∂

i
q=̂(¤id ◦

), si
q=̂(¤is ◦)), and every pair of morphisms A′

f−→A, B
g−→B′ to the a.s. map

ResC(f, g) given in dimension q > −1 by ResC(f, g)q(a)=̂¤q+1g ◦ a ◦ f for every
a ∈ HomC(A, ¤q+1B).

For instance, ResS4Σ(1, F) is the augmented simplicial set of ground λS4-terms of
type ¤q+1F , q > −1. (A term is ground provided it has no free variable.) However
we have seen in Lemma 46 that this would not be enough for our purposes. The
minimal augmented simplicial set that seems to work is as follows:

Definition 66 (Contracting Resolution Functor CRes). Let (C,¤,d, s) be a
small strict CS4 category. Then the contracting resolution functor CResC : C → ∆̂
is the colimit Lim

−→
(Λ(ResC) ◦ ¤) in the category HomCat(C, ∆̂) of functors from C

to ∆̂.

This definition makes sense, provided we take Λ as meaning abstraction in Cat:
while CResC is a functor from Co × C to ∆̂, Λ(CResC) is a functor from Co to
HomCat(C, ∆̂); since ¤ is an endofunctor in C, it also defines an endofunctor
in Co. Finally, the indicated colimit exists because HomCat(C, ∆̂) = HomCat(C,
HomCat(∆o,Set)) ∼= HomCat(C × ∆o,Set) is a category of presheaves, hence a
topos, hence is small cocomplete; and C, therefore also Co is small.

Homology, Homotopy and Applications, vol. 5(2), 2003 188

Geometrically, the idea is that instead of taking resolutions from a one-point
space 1 (as in ResC(1,)), we take all resolutions from enough spaces with a con-
tracting homotopy, properly amalgamated. Recall that a contracting homotopy on
an augmented simplicial set K=̂(Kq)q>−1 is an a.s. map from K to ¤K that is a

right inverse to d in ∆̂. More concretely, this is a family of maps s−1
q : Kq → Kq+1,

q > −1, such that s−1
q+1 ◦sj

q = sj+1
q+1 ◦s−1

q and s−1
q−1 ◦∂j

q = ∂j+1
q+1 ◦s−1

q , for all 0 6 j 6 q,
and ∂0

q+1 ◦ s−1
q = id. (This is exactly what is needed to build the more standard no-

tion of contracting homotopy in simplicial homology.) Then a trivial way of ensuring
that ResC(A,B) has a contracting homotopy is to take A of the form ¤A′: indeed,
for any f ∈ ResC(¤A′, B)q = HomC(¤A′, ¤q+1B), we may then define s−1

q (f) as
¤f ◦ s.

Proof-theoretically, when C is S4Σ, s−1
q (M) is the term M . This is the manifes-

tation of the (¤I) rule. At the level of programs, this is Lisp’s quote operator.

Proposition 67. For every context Θ, the a.s. set S4 [Θ] is exactly CResS4Σ(Θ).

Proof. We deal with the case where Θ is of the form z : F for a single formula F ,
for readability purposes. The general case is similar.

Colimits in functor categories are taken pointwise, so CResS4Σ(F) is the colimit of
the functor that maps every context Γ to the a.s. set ResS4Σ(¤Γ, F) of all λS4-terms
M such that ¤Γ ` M : ¤q+1F , modulo ≈. On the one hand, S4 [F] is the apex of
a cocone consisting of morphisms ResS4Σ(¤Γ, F) −→ S4 [F] that map each typing
derivation of ¤Γ ` M : ¤q+1F to the term M itself. On the other hand, we claim
that S4 [F] is universal among all such apexes. Let indeed K be any a.s. set such

that there are morphisms ResS4Σ(¤Γ, F)
fΓ−→K, where Γ ranges over contexts; and

such that these morphisms define a cocone: whenever Γ θ−→Γ′ is a morphism in S4Σ,
for every q > −1, (¤Γ′ M−→F) ∈ ResS4Σ(¤Γ′, F)q, fΓ′(¤Γ′ M−→F) = fΓ(¤ΓM ·�θ−→ F).
Taking for θ all substitutions mapping variables to variables, and noticing that for
any variable x, ¤x = dx ≈ x, it follows that fΓ depends only on M , not on

¤Γ′ M−→F : this defines the unique morphism from S4 [F] to K. Therefore S4 [F] is a
colimit of the desired functor. By the uniqueness of colimits (up to isomorphism),
the result obtains.

5.3. A Review of Logical Relations
While the C J K interpretation is complete when we are allowed to take S4Σ for

C, we are interested in taking more geometrical categories for C, in particular ∆̂.
Let us first review the standard way of proving Friedman’s Theorem 49 ([40],

Chapter 8) using logical relations. We shall then discuss why this proof cannot be
replayed directly in our case, and do appropriate modifications.

Friedman’s result is for the non-modal part of λS4, the λ-calculus with βη-
equality, interpreted in Set. Let us spell out the relevant part of the interpreta-
tion of Figure 8 in detail. Given a map from base types A ∈ Σ to sets ρ(A),
let Set JF ⊃ GK ρ be the set of all functions from Set JF K ρ to Set JGK ρ. Then
Set JΓK ρ, where Γ=̂x1 : F1, . . . , xn : Fn, is a mapping from each variable xi to
Set JFiK ρ: this is a Γ-environment ε. The interpretation in Set then maps every

Homology, Homotopy and Applications, vol. 5(2), 2003 189

typing derivation of a λ-term M of type F in Γ, and every Γ-environment ε to an
element Set JΓ ` M : F K ρε (for short, Set JMK ρε) of Set JF K ρ: Set JxK ρε is ε(x),
Set JMNK ρε is Set JMK ρε applied to Set JNK ρε, and Set JΓ ` λx ·M : F ⊃ GK ρε
is the function that maps each v ∈ Set JF K ρ to Set JMK ρ(ε[x 7→ v]).

Let Set[F] be defined as the set of all λ-terms of type F , modulo βη-conversion.
We get an interpretation of λ-terms in the free CCC over Σ by mapping every term
M to Set[M]θ=̂Mθ, where the Γ-environment θ is just a substitution.

A logical relation is a family of binary relations RF indexed by formulae F ,
between Set[F] and Set JF K ρ, such that M RF⊃G f if and only if MN RG f(a) for
every M and a such that N RF a. (In general, logical relations are relations indexed
by types between Henkin models, or between CCCs. We specialize the notion to our
problem at hand.) The fundamental lemma of logical relations (the Basic Lemma
of [40]) states that, when ε is a Γ-environment (Γ=̂x1 : F1, . . . , xn : Fn) and θ a
substitution mapping each xi to a term of type Fi, whenever xiθ RFi ε(xi) for each
i, then Set[M]θ RF Set JMK ρε for any term M of type F in Γ. In other words, as
soon as environments are related through the logical relation, then so are the values
of any term in both models.

To show that Set J K ρ is equationally complete, it is enough to show that we can
build a functional logical relation, i.e., one such that for every a ∈ Set JF K ρ, there
is at most one M ∈ Set[F] (up to ≈) such that M RF a. Note that any logical
relation is uniquely determined by the relations RA with A ∈ Σ. The trick is to
choose RA so that not only RA but every RF is functional. It turns out that asking
that RF be functional only does not carry through, and we must require RF to be
functional and onto: for every M ∈ Set[F], there must be at least one a ∈ Set JF K ρ
such that M RF a. Under these assumptions, RF⊃G is then functional and onto as
soon as RF and RG are. First, it is functional: choose f ∈ Set JF ⊃ GK ρ, a function
from Set JF K ρ to Set JGK ρ, then every term M such that M RF⊃G f must be
such that for every N RF a, MN RG f(a). Using the Axiom of Choice and the
fact that RF is onto, we may define a function iF : Set[F] → Set JF K ρ such that
N RF iF (N). Then M must be such that for every N , MN RG f(iF (N)). Since RG

is functional, we may define a projection pG : Set JF K ρ → Set[F] such that P RG a
implies P = pG(a) (when there is no P such that P RG a, pG(a) is arbitrary). So
M must be such that for every N , MN = pG(f(iF (N))). This determines MN
uniquely, hence M too, provided it exists. So RF⊃G is functional. To show that it
is onto, map M ∈ Set[F ⊃ G] to the function f ∈ Set JF ⊃ GK ρ mapping a to
iG(M pF (a)).

This is essentially the line of proof that we shall follow. However, in our case
Set is replaced by ∆̂, where the Axiom of Choice is invalid: if p : K → L is an
epi in ∆̂, there is no a.s. map i : L → K in general such that p ◦ i = id. Therefore
we have to build iF and pF explicitly by induction on formulae. The important
property that needs to be preserved for each formula F is what we shall call the
Bounding Lemma: if a = iF (M) then M RF a, and if M RF a then M = pF (a).
Retracing the argument above, we find that this requires us to define iF⊃G(M)
as the function mapping a to iG(M pF (a)), however the obvious definition for
pF⊃G: pF⊃G(f)=̂λx · pG(f(iF (x))) is wrong. This is because this is incompatible

Homology, Homotopy and Applications, vol. 5(2), 2003 190

with α-renaming in general, and therefore does not map functions to ≈-classes of λ-
terms. Indeed, compatibility with α-renaming imposes that λx ·pG(f(iF (x))) = λy ·
pG(f(iF (x))){x := y}, but there is no reason why pG ◦f ◦ iF should be substitutive.
The solution is to define pF⊃G by pF⊃G(f)=̂RF⊃G(N 7→ pG(f(iF (N)))), where
RF⊃G is a retraction of the set of functions from Set[F] to Set[G] onto the syntactic
function space Set[F ⊃ G]—retraction meaning that RF⊃G(N 7→ MN) should be
the term M exactly. This is exactly what we have taken the pain of constructing in
the augmented simplicial case in Corollary 48.

One final note before we embark on actually proving the theorem. The right
notion of logical relation here is one of Kripke logical relation, a more complex
notion than ordinary logical relations. Moreover, contrarily to more usual cases, the
set of worlds we use for this Kripke logical relation cannot just be a preorder: it has
to be a category, in fact the augmented simplicial category ∆. Concretely, we have
to use families of relations RF

q indexed by both formulae F and dimensions q > −1,
such that:

(a.s.) for every a, a′, if a RF
q a′ then, for every i, 0 6 i 6 q, ∂i

qa RF
q−1 ∂i

qa
′ and

si
qa RF

q+1 si
qa
′;

(¤ logical) for every a, a′, a R�F
q a′ if and only if a RF

q+1 a′.

(⊃ logical) for every f, f ′, f RF⊃G
q f ′ if and only if for every monotonic function

µ : [p] → [q], for every a, a′ such that a RF
p a′,

¤p+1App(µ̂(f), a) RG
p ¤p+1App(µ̂(f ′), a′)

where µ̂ is defined in the unique way so that δ̂i
q = ∂i

q, σ̂i
q = si

q, îd = id, and
µ̂ ◦ µ′ = µ̂′ ◦ µ̂.

The latter condition is particularly unwieldy. We prefer to use a more categorical
notion, which will factor out all irrelevant details. It turns out that logical relations
and Kripke logical relations are special cases of subscones [41, 1]: these are the
right notion here.

5.4. Scones and Subscones
Given any two categories C and D having all finite cartesian products, and such

that D has all pullbacks, given any functor F : C → D that preserves all finite
cartesian products, the subscone D�∩F [41] has as objects all triples (d, c,m) where
d is an object of D, c is an object of C, and

d ⊂ m Â F(c)

is mono in D. The scone D ↓ F is defined similarly, only without the requirement
that m be mono.

Let C be any strict CS4 category. Given any set Σ of base types, and a mapping
that assigns each base type an object in C (this can be seen as a functor from Σ, seen
as the trivial category with elements of Σ as objects and only identity morphisms):

Σ
ρ Â C

Homology, Homotopy and Applications, vol. 5(2), 2003 191

there is a unique representation of strict CS4 categories C J K ρ from the free strict
CS4 category S4Σ on Σ to C:

Σ
⊆ //

ρ

²²

S4Σ

CJ Kρ
~~||

||
||

||

C

where ⊆ denotes the canonical inclusion functor from Σ to S4Σ.
If, in the diagram above, we replace C by a subscone category D�∩F, we get a

diagram:

Σ
⊆ //

ρ̃

²²

S4Σ

(D�∩F)J Kρ̃||yy
yy

yy
yy

D�∩F

(19)

for each given ρ̃, and where (D�∩F) J K ρ̃ is uniquely determined as a representation
of strict CS4 categories: this will be the right notion of Kripke logical relation.

It is well-known ([41], Proposition 4.2) that, provided that C and D are cartesian-
closed, and D has equalizers (i.e., D is finitely complete), and provided F preserves
finite products, then D�∩F is a CCC, and the forgetful functor U : D�∩F −→ C,
which maps every object (d, c, m) to c, is a representation of CCCs. (Similarly for
the scone D ↓ F.) We make explicit the construction of terminal objects, products
and internal homs in D�∩F:

5.4.0.1. Terminal object. This is (1D,1C , id).

5.4.0.2. Binary products. The product of (d, c,m) with (d′, c′,m′) is (d×d′, c×
c′, m×m′).

5.4.0.3. Internal homs. Build (d′′, c′′,m′′) = HomD�∩F((d, c, m), (d′, c′,m′))
as follows. (The careful reader will note that the construction is the same in the
scone D ↓ F.) First, c′′=̂HomC(c, c′).

Then, we build two morphisms. We build the first one from:

F(HomC(c, c
′))× d

id×mÂ F(HomC(c, c
′))× F(c)

F(App) Â F(c′)

by currying, getting:

F(HomC(c, c
′))

Λ(F(App) ◦ (id×m)) Â HomD(d, F(c′)) (20)

The second one is built from:

HomD(d, d′)× d
App Â d′ ⊂

m′
Â F(c′)

again by currying:

HomD(d, d′)
Λ(m′ ◦App) Â HomD(d, F(c′)) (21)

Homology, Homotopy and Applications, vol. 5(2), 2003 192

We claim that this morphism is mono. Indeed, consider two morphisms f , g such
that Λ(m′ ◦App)◦f = Λ(m′ ◦App)◦g. Applying App◦ (× id) on the left-hand side,
we get App ◦ ((Λ(m′ ◦App) ◦ f)× id) = App ◦ (Λ(m′ ◦App ◦ (f × id))× id) (by (k′))
= m′ ◦App ◦ (f × id) (by (l′′)). Applying to both sides of the equation, we therefore
get m′ ◦App◦ (f × id) = m′ ◦App◦ (g× id), therefore App◦ (f × id) = App◦ (g× id),
because m′ is mono. Applying Λ on both sides, the left-hand side simplifies to f
and the right-hand side to g by (m′), therefore f = g. So Λ(m′ ◦ App) is indeed
mono.

We now build (d′′, c′′,m′′) by the following pullback diagram:

d′′ ⊂
m′′

Â F(HomC(c, c
′))

HomD(d, d′)

s

g
⊂ Λ(m′ ◦App)

(21)
Â HomD(d, F(c′))

Λ(F(App) ◦ (id×m)) (20)

g

where the upper morphism m′′ is mono because pullbacks preserve monos.
Application in the subscone is given by the pair of morphisms App◦ (s× id) from

d′′ × d to d′ and App from c′′ × c to c′.
Conversely, given any morphism (u, v) in the subscone from (d0, c0, m0)×(d, c,m)

to (d′, c′,m′), we build its curried morphism from (d0, c0,m0) to (d′′, c′′,m′′) as
follows. Recall that since (u, v) is a morphism, the following square commutes:

d0 × d ⊂ m0 ×mÂ F(c0)× F(c)

d′

u

g
⊂ m′

Â F(c′)

F(v)

g

The curried version of the morphism (u, v) is then (û, Λ(v)), where û is given as
the unique morphism that makes the following diagram commute:

d0

Λ(u)

¾¾8
88

88
88

88
88

88
88

88
û

%%J
J

J
J

J
J

m0 // F(c0)

F(Λ(v))

²²
d′′

m′′ //

s

²²

F(c′′)

Λ(F(App)◦(id×m))

²²
HomD(d, d′)

Λ(m′◦App)

// HomD(d, F(c′))

where the bottom pullback diagram is given by the definition of internal homs in the
subscone. (The outer diagram commutes: Λ(m′ ◦App)◦Λ(u) = Λ(m′ ◦App◦(Λ(u)×
id)) [by (k′)] = Λ(m′ ◦u) [by (l′′)] = Λ(F(v) ◦ (m0×m)) since (u, v) is a morphism,
while Λ(F(App)◦(id×m))◦F(Λ(v))◦m0 = Λ(F(App)◦(id×m)◦((F(Λ(v))◦m0)×id))
[by (k′)] = Λ(F(App)◦(F(Λ(v))×id)◦(m0×m)) = Λ(F(App◦(Λ(v)×id))◦(m0×m))
[because F is a functor that preserves products] = Λ(F(v) ◦ (m0 ×m)) [by (l′′)].)

Homology, Homotopy and Applications, vol. 5(2), 2003 193

5.4.0.4. Comonad (¤,d, s). Whereas there is at most one CCC structure on any
given category, there are in general many choices for a strict monoidal comonad. A
standard choice for defining a comonad on D�∩F based on a given comonad (¤,d, s)
on C works by defining ¤(d, c, m) as (d′, ¤c, m′), where d′ and m′ are given by the
pullback diagram:

d′
m′
Â F(�c)

d
g
⊂

m
Â F(c)

F(d)

g

This would not work for our purposes: intuitively, if (d, c, m) represents a relation
RF , defining R�F this way as (d′, ¤c,m′) would mean replacing the (¤ logical)
condition by: for every a, a′, a R�F

q a′ if and only if ∂0
qa RF

q ∂0
qa′. However with this

definition R�F would be too large, and the second implication M RF a =⇒ M =
pF (a) of the Bounding Lemma would not hold in general. Note that this would also
be unsatisfying as this definition does not use the comonad we may have on D.

Instead, we notice that there is a simpler solution as soon as D also comes
equipped with a comonad, provided F preserves ¤, d and s (we shall say that F
preserves the comonad (¤,d, s)), and also that ¤ preserves monos. Then letting
¤(d, c, m) be (¤d, ¤c, ¤m) defines an object in the subscone. Indeed, ¤m is a
morphism from ¤d to ¤F(c) = F(¤c), and is mono since m is and ¤ preserves
monos. This is what will work here. (In the case of scones, the requirement that ¤
preserves monos is not necessary.)

This simple case will work for completeness in the augmented simplicial case,
which is the only case we shall deal with here. Let us just mention here the right
construction to use in more general cases where F(¤c) and ¤F(c) are not isomorphic.
In particular in the case of topological spaces, we shall only have a mono Ic from
F(¤c) to ¤F(c) for each object c. We then insist on the condition that I is a
distributivity law for comonads (the name is by analogy with distributivity laws for
monads as in [24]; they originated in [49]), and that ¤ preserves pullbacks along
the distributivity law. The role of such distributivity laws will be apparent from the
proof of Proposition 69.

This appeal to distributivity law subsumes the above, simple case where F pre-
serves the comonad ¤: just take Ic to be the identity. This is clearly a distributivity
law, and pullbacks will be preserved vacuously.

Definition 68 (Distributivity Law). Let C and D are strict CS4 categories, and
F : C → D a functor.

A distributivity law of F with respect to the two comonads ¤ on C and D is a
natural transformation I from F¤ to ¤F such that the following equations hold:

d ◦ Ic = F(d) (22)
s ◦ Ic = ¤Ic ◦ I�c ◦ F(s) (23)

Homology, Homotopy and Applications, vol. 5(2), 2003 194

In diagrams:

F(�2c)

I�c

²²
F(�c)

F(s)
::uuuuuuuuu

F(d)

||xxxxxxxx
Ic

²²

�F(�c)

�Ic

²²
F(c) �F(c)

d
oo

s
// �2F(c)

We say, additionally, that ¤ preserves pullbacks along I, if and only if for each
object c of C, for every pullback:

d′
m′
Â F(�c)

�d

s

g
�m
Â �(F(c))

Ic

g

the following commuting square is again a pullback:

�d′
�m′

Â �F(�c)

�2d

�s

g

�2m
Â �2(F(c))

�Ic

g

Proposition 69. Assume that C and D are strict CS4 categories, that F : C → D
preserves finite products, that D is finitely complete, that ¤ preserves monos and
pullbacks along I, where I is a distributivity law of F wrt. ¤.

Then the subscone D�∩F is a strict CS4 category when equipped with the comonad
(¤,d, s) defined by:

• On objects, ¤(d, c, m) is given as the unique morphism (d′, ¤c,m′) that makes
the following a pullback diagram:

d′
m′
Â F(�c)

�d

m̂

g
�m

Â �F(c)

Ic

g

(24)

On morphisms, if (u, v) is a morphism from (d1, c1,m1) to (d2, c2, m2), then
¤(u, v) is the unique morphism (û, ¤v) that makes the following diagram com-

Homology, Homotopy and Applications, vol. 5(2), 2003 195

mute:

d′1
m′1 //

m̂1

²²

û
!!

F(�c1)

Ic1

F(�v)

$$IIIIIIIII

d′2
m′2 //

m̂2

²²

²²

F(�c2)

Ic2

²²

�d1

�u !!DDDDDDDD
�m1 // �F(c1)

�F(v)

$$JJJJJJJJJ

�d2

�m2 // �F(c2)

(25)

where the front face defines ¤(d2, c2,m2), the back face defines ¤(d1, c1,m1),
the bottom face is by the definition of (u, v) as a morphism, the right face is
by naturality of I, and û is then determined uniquely by the fact that the front
face is a pullback.

• The counit d from ¤(d, c, m) to (d, c,m) is (d ◦ m̂,d), where m̂ is given as in
Diagram (24).

• Comultiplication s is (s̄, s) where s′ is uniquely determined so that the following
diagram commutes:

d′

m̂

²²

m′ //

s̄

!!B
B

B
B

B F(�c)

F(s)

²²
d′′

m′′ //

m̂′

²²

F(�2c)

I�c

²²
(26.1)

�d′
�m′ //

�m̂

²²

�F(�c)

�Ic

²²
(26.2)

�d s
// �2d �2m

// �2
F(c)

(26)

where (26.1) is the defining square for ¤(d′,¤c,m′) = ¤2(d, c, m) and (26.2)
is the image under ¤ of the defining square for ¤(d, c, m).

Moreover, the forgetful functor U : D�∩F −→ C mapping every object (d, c, m) in
the scone (resp. subscone) to c and every morphism (u, v) to v is a representation
of strict CS4 categories.

Proof. The CCC structure on D ↓ F (resp. D�∩F) as well as the fact that U is a
representation of CCCs is well-known. Let us check the comonad.

First, in Diagram (24) since m is mono, ¤m is, too, because ¤ preserves monos;
so m′ must be mono, since pullbacks preserve monos. It follows that (d′, ¤c,m) is
indeed an object in D�∩F.

Homology, Homotopy and Applications, vol. 5(2), 2003 196

We claim that ¤ is a functor: this is because ¤ on morphisms is defined as the
solution to a universal problem. Moreover, U(¤(d, c, m)) = ¤c, so U preserves ¤.

Then, d = (d ◦ m̂,d) is well-defined. Indeed, pile the definition (24) of ¤(d, c,m)
atop the square saying that d ◦¤m = m ◦ d:

d′
m′
Â F(�c)

�d

m̂

g
�m

Â �F(c)

Ic

g

d

d

g
m

Â F(c)

d

g

Since d◦Ic = F(d) by (22), this implies that m◦ (d◦ m̂) = F(d)◦m′, which means
exactly that (d ◦ m̂,d) is a morphism from (d′,¤c,m′) to (d, c, m). Also, U maps
d = (d ◦ m̂,d) to d in C: U preserves d.

To show that s is well-defined is a bit more intricate. Since ¤ preserves pullbacks
along I, (26.2) is a pullback diagram, so the square obtained by piling (26.1) above
(26.2) is again a pullback square. Then s̄ will be uniquely defined as soon as we
show that the outer square commutes. Indeed, the leftmost path from d′ to ¤2F(c)
is ¤2m◦s◦m̂ = s◦¤m◦m̂ by (q), while the rightmost path is ¤Ic◦I�c◦F(s)◦m′ =
s ◦ Ic ◦m′ by (23). These two are equal since ¤m ◦ m̂ = Ic ◦m′ by the definition of
¤(d, c, m) (Diagram (24)). Moreover, U(s) = s, as Diagram (26) indicates.

It remains to check the comonad equations (n)–(y). We have already checked (n),
(o); (r), (v), (w), (x), (y) follow from the fact that ¤ and F preserve finite products.
The others are all checked in the same fashion.

Let us check (p): d ◦¤f = f ◦ d. Write the morphism f as (u, v), from (d, c,m)
to (d′, c′, m′). Then ¤f is given by (û, ¤v) as shown in Diagram (25). Writing the
top face of the latter diagram above the square saying that d is a morphism in
the subscone yields the diagram below (left), where we have taken the notations of
Diagram (25). On the other hand, putting the definition of d in the subscone atop
the defining square for (u, v) yields the diagram on the right:

d′1
m′

1Â F(�c1) d′1
m′

1Â F(�c1)

d′2

û

g
m′

2Â F(�c2)

F(�v)

g
d1

d ◦m̂1

g m1Â F(c1)

F(d)

g

d2

d ◦ m̂2

g
m2

Â F(c2)

F(d)

g
d2

u

g
m2

Â F(c2)

F(v)

g

Homology, Homotopy and Applications, vol. 5(2), 2003 197

Since d◦¤v = v◦d, the righmost paths from d′1 to F(c2) in each diagram are equal,
so the leftmost ones are equal, too. Since m2 is mono, the left vertical paths (from
d′1 to d2) are equal. This means exactly that (d ◦ m̂2) ◦ û = u ◦ (d ◦ m̂1), therefore
d ◦¤(u, v) = (u, v) ◦ d in the subscone.

Equations (q), (u) are checked similarly.
Equation (s) follows from the diagram:

d′
m′
Â F(�c)

d′′

s̄

g
m′′
Â F(�2c)

F(s)

g

d′

d ◦ m̂′

g

m′Â F(�c)

F(d)

g

where the lower square is the definition of d from ¤2(d, c, m) = ¤(d′, ¤c,m′) =
(d′′,¤2c,m′′) to ¤(d, c,m) = (d′, ¤c,m′). The rightmost path from F(¤c) to F(¤c)
is F(d) ◦ F(s) = F(d ◦ s) = F(id) = id. So m′ = m′ ◦ (d ◦ m̂′) ◦ s̄. Since m′ is mono,
(d ◦ m̂′) ◦ s̄ = id, so d ◦ s = id in the subscone.

Equation (t) is dealt with similarly.

5.5. The Basic Lemma
The argument here is the same as [41]. Given any functor Σ

ρ̃−→D�∩F, we get
a functor from Σ to C by composition with U . By the freeness of S4Σ, there are
unique functors C J K ρ (where ρ=̂U ◦ ρ̃) and (D�∩F) J K ρ̃ which make the upper
left and upper right triangles in the following diagram (which is a diagram in the
category Cat of categories) commute:

Σ
⊆ //

ρ̃

²²

ρ

DDDDDDDD S4Σ

CJ Kρ

²²

(D�∩F)J Kρ̃
{{

{

}}{{
{{

{{
{{

{{
{{

!!B
BB

BB
BB

B

D�∩F
U

// C

Since U is a representation of strict CS4 categories, U ◦ (D�∩F) J K ρ̃, too, therefore
by the uniqueness of the C J K ρ arrow on the right as a representation of strict CS4
categories, we get:

Lemma 70 (Basic Lemma). U ◦ (D�∩F) J K ρ̃ = C J K (U ◦ ρ̃)

5.6. The Bounding Lemma
Now we consider the case where C is of the form C1 ×D, and F=̂F1 ⊗ id, where

F1 : C1 → D is a functor that preserves all finite products, and I1 is a distributivity

Homology, Homotopy and Applications, vol. 5(2), 2003 198

law of F1 wrt. ¤. (Whenever F1 : C1 → D, F2 : C2 → D, we let F1 ⊗ F2 be the
functor mapping C1, C2 to F1(C1)× F2(C2).)

Typically, C1 will be S4Σ, F1=̂CResS4Σ , D=̂∆̂, and I(c1,d)=̂(I1
c1

, idd)—in this case
I1

c1
will be an identity morphism, and therefore I(c1,d) as well.

We shall prove:

Lemma 71 (Bounding Lemma). Let C1 and D be strict CS4 categories, F1 :
C1 → D preserve finite products. Assume also that D is finitely complete and
that ¤ preserves monos in D as well as pullbacks along some distributivity law I1

of F1 wrt. ¤. Fix ρ1 : Σ → C1. Assume finally that for every formulae F and
G, HomD(F1(C1 JF K ρ1), F1(C1 JGK ρ1)) retracts strongly onto F1(C1 JF ⊃ GK ρ1),
meaning that there is a family of morphisms RF⊃G in D such that the following
diagram commutes:

HomD(F1(C1 JF K ρ1), F1(C1 JGK ρ1)) ≺Λ(F1(App))
F1(C1 JF ⊃ GK ρ1)

HomD(F1(C1 JF K ρ1), F1(C1 JGK ρ1))

id

g

RF⊃G

Â F1(C1 JF ⊃ GK ρ1)

id

g

(27)

and similarly, that for every formula F , ¤F1(C1 JF K ρ1) retracts strongly onto
F1(C1 J¤F K ρ1), meaning that there is a family of morphisms R�F such that the
following diagram commutes:

�F1(C1 JF K ρ1) ≺
I1
C1JF Kρ1

F1(C1 J�F K ρ1)

�F1(C1 JF K ρ1)

id

g R�F Â F1(C1 J�F K ρ1)

id

g

(28)

Let ρ2 : Σ → D be F1 ◦ ρ1, and ρ̃ : Σ → D�∩(F1 ⊗ id) map every A ∈ Σ to
(ρ2(A), (ρ1(A), ρ2(A)), 〈id, id〉).

For every formula F , write (D�∩(F1 ⊗ id)) JF K ρ̃ as (DF , (C1 JF K ρ1,D JF K ρ2),
〈m′

F ,m′′
F 〉).

Then there are families of morphisms iF and pF in D, and monos h1
F and h2

F
that make the following diagrams commute for each formula F :

F1(C1 JF K ρ1)

F1(C1 JF K ρ1)

id

77nnnnnnnnnnnn
/� � h1

F /

iF ''PPPPPPPPPPPP DF

m′F

OO

/� � h2
F /

m′′F
²²

D JF K ρ2

pF

ggNNNNNNNNNNN

idxxppppppppppp

D JF K ρ2

(29)

Proof. We first build iF and pF for each formula F so that pF ◦ iF = id. This is
indeed required for the result to hold, since Diagram 29 implies pF ◦ h2

F ◦ h1
F = id

and id ◦ h2
F ◦ h1

F = iF .

Homology, Homotopy and Applications, vol. 5(2), 2003 199

When F is a base type A ∈ Σ, define iA and pA in D so that the following
diagrams commute:

ρ2(A) = F1(ρ1(A)) ≺iA F1(ρ1(A))

ρ2(A)

id

g

pA

Â ρ2(A) = F1(ρ1(A))

id

g

by just taking iA and pA to be id.
When F = ¤G, let i�G=̂¤iG ◦ I1

C1JGKρ1
, p�G=̂R�G ◦ ¤pG, so p�G ◦ i�G =

R�G ◦¤pG ◦¤iG ◦I1
C1JGKρ1

= R�G ◦¤(pG ◦ iG)◦I1
C1JGKρ1

= R�G ◦¤id◦I1
C1JGKρ1

=
R�G ◦ I1

C1JGKρ1
= id.

When F is of the form G ⊃ H, we build iF and pF in the unique type-consistent
way. I.e., we have the following diagram:

D JHK ρ2 ≺ iH
F1(C1 JHK ρ1)

HomD(F1(C1 JGK ρ1), F1(C1 JHK ρ1))
×D JGK ρ2 id× pG

Â HomD(F1(C1 JGK ρ1), F1(C1 JHK ρ1))
×F1(C1 JGK ρ1)

App

f

using iH and pG from the induction hypothesis. Apply Λ to the resulting composite
morphism, and compose with Λ(F1(App)); this yields iG⊃H , defined as:

D JG ⊃ HK ρ2 ≺ Λ(iH ◦App

◦(id× pG))

HomD(F1(C1 JGK ρ1),
F1(C1 JHK ρ1))

≺Λ(F1(App))
F1(C1 JG ⊃ HK ρ1)

Similarly, we define a morphism pG⊃H from D JG ⊃ HK ρ2 to F1(C1 JG ⊃ HK ρ1) as
the composite:

D JG ⊃ HK ρ2

Λ(pH ◦App

◦(id× iG))
Â HomD(F1(C1 JGK ρ1),

F1(C1 JHK ρ1)) RG⊃H

Â F1(C1 JG ⊃ HK ρ1)

Superposing both diagrams, together with (27), we get:

D JG ⊃ HK ρ2 ≺ Λ(iH ◦App

◦(id× pG))

HomD(F1(C1 JF K ρ1),
F1(C1 JGK ρ1))

≺Λ(F1(App))
F1(C1 JF ⊃ GK ρ1)

D JG ⊃ HK ρ2

id

g Λ(pH ◦App

◦(id× iG))
Â HomD(F1(C1 JF K ρ1),

F1(C1 JGK ρ1))

id
g

RF⊃G

Â F1(C1 JF ⊃ GK ρ1)

id

g

where iG⊃H is the top line, pG⊃H is the bottom line, the right square commutes by
(27), and the left square commutes, as calculation shows (left to the reader; hint:
use pH ◦ iH = id, pG ◦ iG = id). So pG⊃H ◦ iG⊃H = id.

We now build h1
F and h2

F . Note that as soon as Diagram 29 commutes, h1
F and h2

F

will automatically be mono. Indeed, since pF ◦iF = id, iF is mono; as iF = m′′
F ◦h1

F ,
h1

F will be mono, too. Similarly, since 〈m′
F ,m′′

F 〉 is a mono (because it is part of the

Homology, Homotopy and Applications, vol. 5(2), 2003 200

definition of an object in the subscone), and 〈m′
F ,m′′

F 〉 = 〈pF , id〉 ◦ h2
F , h2

F will be
a mono, too.

Also, that h1
F and h2

F are mono will imply that h̃1
F =̂(h1

F , id) and h̃2
F =̂(h2

F , id)
will be mono in (D�∩(F1 ⊗ id)) JF K ρ̃. Therefore, that Diagram 29 is commutative is
equivalent to showing the existence of the following diagram in D�∩(F1 ⊗ id):

ĨF
⊂ (h1

F , id)Â (D�∩(F1 ⊗ id)) JF K ρ̃ ⊂(h
2
F , id) Â P̃F

where

ĨF =̂(F1(C1 JF K ρ1), (C1 JF K ρ1,D JF K ρ2), 〈id, iF 〉)
P̃F =̂(D JF K ρ1, (C1 JF K ρ1,D JF K ρ2), 〈pF , id〉)

We build h1
F and h2

F by structural induction on F .
If F is a base type A, notice that iA = pA = m′

A = m′′
A = id, so take h1

A=̂h2
A=̂id.

If F is a box formula ¤G. Recall first that p�G = R�G◦¤pG, and i�G = ¤iG◦I1

(we drop indices to I1 to avoid clutter). On the other hand, the definition of ¤ in
the subscone is by the following pullback diagram:

D�G

〈m′
�G, m′′

�G〉Â F1(C1 J�GK ρ1)×D J�GK ρ2

�DG

\〈m′
G, m′′

G〉
g

〈�m′
G,�m′′

G〉
Â �F1(C1 JGK ρ1)×�D JGK ρ2

I1 × id

g
(30)

This allows us to define h1
�G by the universal property of the pullback:

F1(C1 J�GK ρ1

〈id,�iG◦I1〉

,,YYYYYYYYYYYYYYYYYYYYYYYYYY

h1
�G &&M

M
M

M
M

�h1
G◦I1

¼¼3
33

33
33

33
33

33
33

33
33

33
33

D�G

〈m′�G
,m′′�G

〉
//

\〈m′
G

,m′′
G
〉

²²

F1(C1 J�GK ρ1)×D J�GK ρ2

I1×id

²²
�DG 〈�m′G,�m′′G〉

// �F1(C1 JGK ρ1)×�D JGK ρ2

The upper triangle is exactly the left part of the diagram we are looking for:

F1(C1 J�GK ρ1)

F1(C1 J�GK ρ1)

id

66mmmmmmmmmmmmm h1
�G //

i�G ((QQQQQQQQQQQQQ
D�G

m′�G

OO

m′′�G

²²
D J�GK ρ2

Homology, Homotopy and Applications, vol. 5(2), 2003 201

On the other hand, the right part is given by h2
�G=̂m′′

�G, provided we can show
that p�G ◦m′′

�G = m′
�G. To show this, note that we can rewrite Diagram (30) as:

F1(C1 J�GK ρ1) ≺
m′
�G D�G

m′′
�GÂ D J�GK ρ2

�F1(C1 JGK ρ1)

I1

g
≺
�m′

G

�DG

\〈m′
G, m′′

G〉
g

�m′′
G

Â D J�GK ρ2

id

g

Since by induction hypothesis pG ◦ m′′
G = m′

G, adding the morphism ¤pG from
the lower right D J¤GK ρ2 to the lower left ¤F1(C1 JGK ρ1) makes another com-
mutative diagram. It follows that (reading from the topmost D�G to the lower left
¤F1(C1 JGK ρ1) in two different ways) ¤pG◦m′′

�G = I1◦m′
�G. Composing with R�G

on the left we get R�G ◦¤pG ◦m′′
�G = R�G ◦I1 ◦m′

�G, that is, p�G ◦m′′
�G = m′

�G,
as desired. This terminates the box case.

If F is an arrow type G ⊃ H. We first build h1
G⊃H . Construct the morphism:

F1(C1 JG ⊃ HK ρ1)× F1(C1 JGK ρ1) ≺id×m′
G

F1(C1 JG ⊃ HK ρ1)×DG

F1(C1 JHK ρ1)

F1(App)

g h1
H Â DH

in D. For short, let us call this morphism u temporarily.
Also construct the morphism v=̂(App,App) from (C1 JG ⊃ HK ρ1,D JG ⊃ HK ρ2)

× (C1 JGK ρ1,D JGK ρ2) to (C1 JHK ρ1,D JHK ρ2) in C1 ×D.
We claim that (u, v) is a morphism in D�∩(F1 ⊗ id) (if so, this is from ĨG⊃H ×

(D�∩(F1 ⊗ id)) JGK ρ̃ to (D�∩(F1 ⊗ id)) JHK ρ̃). This requires us to show that the fol-
lowing diagram commutes (where we have split products so as to increase readabil-
ity):

F1(C1 JG ⊃ HK ρ1)
×F1(C1 JGK ρ1)

≺id×m′
G F1(C1 JG ⊃ HK ρ1)

×DG

iG⊃H

×m′′
G

Â D JG ⊃ HK ρ2

×D JGK ρ2

F1(C1 JHK ρ1)

F1(App)

g
≺

m′
H

DH

u

g
m′′

H

Â D JHK ρ2

App

g
(31)

The left square of (31) commutes because m′
H ◦ h1

H is the identity on DH , by
induction hypothesis, so

m′
H ◦ u = m′

H ◦ h1
H ◦ F1(App) ◦ (id×m′

G) = F1(App) ◦ (id×m′
G)

For the right square of (31), note that App ◦ (iG⊃H × id) = iH ◦ F1(App) ◦ (id ×
pG), by the definition of iG⊃H . Composing with id × m′′

G on the right, it follows
App ◦ (iG⊃H ×m′′

G) = iH ◦ F1(App) ◦ (id× (pG ◦m′′
G)). However pG ◦m′′

G = m′
G by

Homology, Homotopy and Applications, vol. 5(2), 2003 202

induction hypothesis. So we get:

App ◦ (iG⊃H ×m′′
G) = iH ◦ F1(App) ◦ (id×m′

G)

Since m′′
H ◦h1

H = iH by induction hypothesis, the right-hand side is exactly m′′
H ◦u,

so the right square of (31) commutes.

As (31) commutes, (u, v) is indeed a morphism in D�∩(F1 ⊗ id). We may then
curry it in D�∩(F1 ⊗ id), getting a morphism from ĨG⊃H to the internal hom ob-
ject HomD�∩(F1⊗id)((D�∩(F1 ⊗ id)) JGK ρ̃, (D�∩(F1 ⊗ id)) JHK ρ̃), that is, from ĨG⊃H

to (D�∩(F1 ⊗ id)) JG ⊃ HK ρ̃.

Let us call this latter morphism h̃1
G⊃H . As recalled in Paragraph 5.4.0.3, this

morphism is of the form (û,Λ(v)), where Λ(v) is taken in the product category
C1 × D. Since v was application is this category, Λ(v) = id. So h̃1

G⊃H is of the
required form (h1

G⊃H , id); i.e., we let h1
G⊃H be û. Because this is a morphism in

D�∩(F1 ⊗ id), the following diagram commutes:

F1(C1 JG ⊃ HK ρ1)
〈id, iG⊃H〉 Â F1(C1 JG ⊃ HK ρ1)×D JG ⊃ HK ρ2

DG⊃H

h1
G⊃H

g
〈m′

G⊃H , m′′
G⊃H〉

Â F1(C1 JG ⊃ HK ρ1)×D JG ⊃ HK ρ2

id

g

This is exactly the left part of the desired diagram:

F1(C1 JG ⊃ HK ρ1)

F1(C1 JG ⊃ HK ρ1)

id

55kkkkkkkkkkkkkk

iG⊃H))SSSSSSSSSSSSSS

h1
G⊃H // DG⊃H

m′G⊃H

OO

m′′G⊃H

²²
D JG ⊃ HK ρ2

Let us now build h2
G⊃H . Define h2

G⊃H=̂m′′
G⊃H . Adapting the definition of internal

homs to the subscone category D�∩(F1 ⊗ id), and using a few trivial isomorphisms,
(D�∩(F1 ⊗ id)) JG ⊃ HK ρ̃ is given by the following pullback diagram:

DG⊃H

〈m′
G⊃H , m′′

G⊃H〉 Â F1(C1 JG ⊃ HK ρ1)
×D JG ⊃ HK ρ2

HomD(DG, DH)

sG⊃H

g

〈Λ(m′
H ◦App), Λ(m′′

H ◦App)〉 Â HomD(DG, F1(C1 JHK ρ1))
×HomD(DG,D JHK ρ2)

Λ(F1(App) ◦ (id×m′
G))× Λ(App ◦(id×m′′

G))
g

Homology, Homotopy and Applications, vol. 5(2), 2003 203

Splitting products, we may rewrite this as:

F1(C1 JG ⊃ HK ρ1) ≺ m′
G⊃H

DG⊃H

m′′
G⊃H Â D JG ⊃ HK ρ2

HomD(DG, F1(C1 JHK ρ1))

Λ(F1(App) ◦ (id×m′
G))

g
≺Λ(m′

H

◦App)
HomD(DG, DH)

sG⊃H

g Λ(m′′
H

◦App)
Â HomD(DG,D JHK ρ2)

Λ(App ◦ (id×m′′
G))

g

Take the product with DG:

F1(C1 JG ⊃ HK ρ1)
×DG

≺ m′
G⊃H × id

DG⊃H ×DG

m′′
G⊃H × id Â D JG ⊃ HK ρ2

×DG

HomD(DG,
F1(C1 JHK ρ1))

×DG

Λ(F1(App) ◦(id×m′
G))× idg

≺ Λ(m′
H◦

App)× id

HomD(DG, DH)
×DG

sG⊃H × id
g

Λ(m′′
H◦

App)× id
Â

HomD(DG,
D JHK ρ2)
×DG

Λ(App ◦ (id×m′′
G))× idg

Putting this above the following diagram:
HomD(DG,

F1(C1 JHK ρ1))
×DG

≺ Λ(m′
H◦

App)× id

HomD(DG, DH)
×DG

Λ(m′′
H◦

App)× id
Â

HomD(DG,
D JHK ρ2)
×DG

F1(C1 JHK ρ1)

App

g
≺

m′
H

DH

App

g
m′′

H

Â D JHK ρ2

App

g

which is easily seen to commute, we obtain:

F1(C1 JG ⊃ HK ρ1)
×DG

≺m
′
G⊃H × id

DG⊃H ×DG

m′′
G⊃H × idÂ D JG ⊃ HK ρ2

×DG

F1(C1 JHK ρ1)

F1(App) ◦ (id×m′
G)

g
≺

m′
H

DH

sG⊃H

g
m′′

H

Â D JHK ρ2

App ◦ (id×m′′
G)

g
(32)

Indeed, the leftmost vertical morphism is App ◦ (Λ(F1(App) ◦ (id ×m′
G)) × id) =

F1(App) ◦ (id×m′
G), while the rightmost vertical morphism is obtained similarly.

By induction hypothesis m′
H = pH ◦m′′

H . So we may complete Diagram (32) by
adding a pH arrow from the lower right D JHK ρ2 to the lower left F1(C1 JHK ρ1),
and get a commutative diagram again. Looking at the leftmost and the rightmost
paths from the upper DG⊃H ×DG to the lower left F1(C1 JHK ρ1), it follows:

F1(App) ◦ (id×m′
G) ◦ (m′

G⊃H × id) = pH ◦App ◦ (id×m′′
G) ◦ (m′′

G⊃H × id)

Composing with id×h1
G on the right and simplifying, we obtain F1(App)◦(m′

G⊃H×
(m′

G◦h1
G)) = pH ◦App◦(m′′

G⊃H×(m′′
G◦h1

G)). By induction hypothesis m′
G◦h1

G = id,
and m′′

G ◦ h1
G = iG, so:

F1(App) ◦ (m′
G⊃H × id) = pH ◦App ◦ (m′′

G⊃H × iG) (33)

Homology, Homotopy and Applications, vol. 5(2), 2003 204

This entails that Λ(pH ◦ App ◦ (id × iG)) ◦ m′′
G⊃H = Λ(pH ◦ App ◦ (id × iG) ◦

(m′′
G⊃H × id)) = Λ(pH ◦ App ◦ (m′′

G⊃H × iG)) = Λ(F1(App) ◦ (m′
G⊃H × id)) (using

(33)) = Λ(F1(App))◦m′
G⊃H . Composing with RG⊃H on the left, remembering that

RG⊃H ◦ Λ(F1(App)) = id (Diagram (27)), it obtains:

RG⊃H ◦ Λ(pH ◦App ◦ (id× iG)) ◦m′′
G⊃H = m′

G⊃H

That is, pG⊃H ◦m′′
G⊃H = m′

G⊃H .
On the other hand, recall that h2

G⊃H = m′′
G⊃H . So we have got the right part of

the desired diagram:

F1(C1 JG ⊃ HK ρ1)

DG⊃H

m′G⊃H

OO

h2
G⊃H //

m′′G⊃H

²²

D JG ⊃ HK ρ2

pG⊃H

hhRRRRRRRRRRRRR

idvvlllllllllllll

D JG ⊃ HK ρ2

This terminates the implication case.

5.7. Equational Completeness
We can now prove:

Theorem 72 (Equational Completeness). Let D be a strict CS4 category, F1 :
S4Σ → D preserve finite products. Assume also that D is finitely complete, that ¤
preserves monos in D as well as pullbacks along some distributivity law I1 of F1 wrt.
¤, and that for every formulae F and G, HomD(F1(S4Σ JF K (⊆)), F1(S4Σ JGK (⊆)))
retracts strongly onto F1(S4Σ JF ⊃ GK (⊆)), and ¤F1(S4Σ JF K (⊆)) retracts strongly
onto F1(S4Σ J¤F K (⊆)), where ⊆ is the canonical inclusion of Σ into S4Σ.

Assume finally that F1 is faithful on morphisms with domain the empty context.
Then there is a valuation ρ2 : Σ → D such that, for every λS4-terms M and N

of type F under Γ, M ≈ N if and only if D JMK ρ2 = D JNK ρ2.

Proof. The only if direction is soundness (Lemma 57). Let us deal with the if
direction. Without loss of generality, assume M and N ground, and Γ the empty
context: if Γ is not empty, say Γ=̂x1 : F1, . . . , xn : Fn, we reduce to the empty
case by reasoning on λx1, . . . , xn · M and λx1, . . . , xn · N instead of M and N .
Take C1=̂S4Σ, ρ1 be ⊆. As in Lemma 71, let ρ2 be F1 ◦ ρ1, and ρ̃ map A ∈ Σ to
(ρ2(A), (ρ1(A), ρ2(A)), 〈id, id〉).

By the Basic Lemma (Lemma 70),

U((D�∩(F1 ⊗ id)) JF K ρ̃) = (S4Σ JF K ρ1,D JF K ρ2)

where the forgetful functor U maps each morphism (u, v) in the subscone to v.
Expanding the definition of U in this case, for every type derivation of ` M : F , the
morphism (D�∩(F1 ⊗ id)) JMK ρ̃ from 1 to (D�∩(F1 ⊗ id)) JF K ρ̃ can be written (u, v),
where the Basic Lemma demands that v = S4Σ JMK ρ1 ×D JMK ρ2. Since (u, v) is a

Homology, Homotopy and Applications, vol. 5(2), 2003 205

morphism in D�∩(F1 ⊗ id), the following diagram commutes:

1 ⊂ id Â 1

DF

u

g
⊂

〈m′
F , m′′

F 〉
Â F1(S4Σ JF K ρ1)×D JF K ρ2

F1(S4Σ JMK ρ1) ×D JMK ρ2

g

That is,
m′

F ◦ u = F1(S4Σ JMK ρ1) m′′
F ◦ u = D JMK ρ2

By the Bounding Lemma (Lemma 71, Diagram (29)), pF ◦m′′
F = m′

F , so:

F1(S4Σ JMK ρ1) = pF ◦ D JMK ρ2

As this holds for every M such that ` M : F is derivable, it follows immediately
that if we take any two such terms M and N , such that D JMK ρ2 = D JNK ρ2, then
F1(S4Σ JMK ρ1) = F1(S4Σ JNK ρ1). Since F1 is faithful on morphisms with domain
the empty context, S4Σ JMK ρ1 = S4Σ JNK ρ1. Since ρ1 = (⊆), by Proposition 63,
M ≈ N .

Corollary 73 (Equational Completeness in ∆̂). There is a valuation ρ2 : Σ
→ ∆̂ such that, for every λS4-terms M and N of type F under Γ, M ≈ N if and
only if ∆̂ JMK ρ2 = ∆̂ JNK ρ2.

Proof. Let us check all hypotheses. First, ∆̂ is a strict CS4 category using Defini-
tion 50. Take F1=̂S4 [] (alternatively, the contracting resolution functor CResS4Σ).
By Lemma 64, F1 preserves all finite products and the (¤,d, s) comonad (so the
canonical isomorphism from F1(¤c) to ¤F1(c) is a distributivity law I1 of F1 wrt.
¤ along which ¤ preserves all pullbacks, too), and is faithful. ∆̂ is finitely com-
plete (in fact a topos). And ¤ preserves monos: recall that a mono in ∆̂ is an
a.s. map (fq)q>−1 such that every fq is one-to-one ([15] 1.462); it follows that

¤, which maps (fq)q>−1 to (fq+1)q>−1, preserves monos in ∆̂. ¤F1(S4Σ JF K (⊆))
retracts strongly onto F1(S4Σ J¤F K (⊆)), because they are canonically isomorphic.
Finally, by Corollary 48, Homb∆(F1(S4Σ JF K (⊆)),F1(S4Σ JGK (⊆))) retracts strongly
onto F1(S4Σ JF ⊃ GK (⊆)) (observe that F1(S4Σ JF K (⊆)) = S4 [F], and similarly for
G).

The case of topological models, or variants thereof, is still open.

Acknowledgments

The first author wishes to thank the people attending the Types’98 workshop,
where he talked about a few ideas that eventually led to this work; among which
Michael Mendler, Healfdene Goguen and James McKinna. We would also like to
thank Tim Porter and Rajeev Goré for fruitful discussions, and Dana Scott, Sergei
Artëmov, Eugenio Moggi, Grigori Mints and Valeria de Paiva, and the anonymous

Homology, Homotopy and Applications, vol. 5(2), 2003 206

referees on an earlier version of this work for their remarks. We acknowledge Paul
Taylor, whose diagrams package was used to draw the diagrams in this paper.

References

[1] Moez Alimohamed, A characterization of lambda definability in categorical
models of implicit polymorphism, Theoretical Computer Science 146 (1995),
no. 1–2, 5–23.

[2] Henk Barendregt, The lambda calculus, its syntax and semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103, North-Holland Publish-
ing Company, Amsterdam, 1984.

[3] Kalyan Basu, The geometry of sequential computation I: A simplicial geome-
try of interaction, Institutsbericht, Technische Universität München, Institut
für Informatik, August 1997.

[4] , The geometry of sequential computation II: Full abstraction for PCF,
Institutsbericht, Technische Universität München, Institut für Informatik,
August 1997.

[5] Alan Bawden and Jonathan Rees, Syntactic closures, 1988 ACM Conference
on Lisp and Functional Programming, 1988, pp. 86–95.

[6] P. Nick Benton, Gavin M. Bierman, and Valeria C. V. de Paiva, Computa-
tional types from a logical perspective, Journal of Functional Programming 8
(1998), no. 2, 177–193.

[7] Gavin M. Bierman and Valeria de Paiva, Intuitionistic necessity revisited,
Logic at Work (Amsterdam, the Netherlands), 1992, Revised version, Tech-
nical Report CSR-96-10, University of Birmingham, June 1996.

[8] Anders Björner, Topological methods, Handbook of Combinatorics (R. Gra-
ham, M. Grötschel, and L. Lovász, eds.), vol. 2, Elsevier Science B.V., 1995,
pp. 1819–1872.

[9] Stephen Brookes and Shai Geva, Computational comonads and intensional
semantics, Applications of Categories in Computer Science, Proceedings of
the LMS Symposium (Durham) (M. P. Fourman, P. T. Johnstone, and A. M.
Pitts, eds.), London Mathematical Society Lecture Notes, 1991.

[10] Pierre-Louis Curien, Categorical combinators, sequential algorithms, and
functional programming, 2nd ed., Progress in Theoretical Computer Science,
Birkhäuser, Boston, 1993.

[11] Rowan Davies and Frank Pfenning, A modal analysis of staged computation,
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 21–24 January 1996, pp. 258–270.

[12] Nachum Dershowitz, Termination of rewriting, Journal of Symbolic Compu-
tation 3 (1987), 69–116.

[13] Nachum Dershowitz and Jean-Pierre Jouannaud, Rewrite systems, Handbook
of Theoretical Computer Science (Jan van Leeuwen, ed.), Elsevier Science
Publishers b.v., 1990, pp. 243–320.

Homology, Homotopy and Applications, vol. 5(2), 2003 207

[14] Philip J. Ehlers and Tim Porter, Joins for (augmented) simplicial sets, Ban-
gor Maths Preprint 98.07, Bangor University, February 1998, Submitted to
the Journal of Pure and Applied Algebra.

[15] Peter J. Freyd and Andre Scedrov, Categories, allegories, North-Holland
Mathematical Library, vol. 39, North-Holland, Amsterdam, 1990.

[16] Harvey Friedman, Equality between functionals., Logic Colloquium 1972-73
(Rohit Parikh, ed.), Lecture Notes in Mathematics, vol. 453, Springer-Verlag,
1975, pp. 22–37.

[17] Jean-Yves Girard, Linear logic, Theoretical Computer Science 50 (1987), 1–
102.

[18] Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and types, Cambridge
Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press,
1989.

[19] Healfdene Goguen and Jean Goubault-Larrecq, Sequent combinators: A
Hilbert system for the lambda calculus, Mathematical Structures in Computer
Science 10 (2000), no. 1, 1–79.

[20] Jean Goubault-Larrecq, On computational interpretations of the modal logic
S4 I. Cut elimination, Interner Bericht 1996-35, University of Karlsruhe, 1996.

[21] , On computational interpretations of the modal logic S4 II. The
λ ev Q-calculus, Interner Bericht 1996-34, University of Karlsruhe, 1996.

[22] Jean Goubault-Larrecq and Éric Goubault, Order-theoretic, geometric and
combinatorial models of intuitionistic S4 proofs, Presented at the 1st Work-
shop on Intuitionistic Modal Logics and Applications, Trento, Italy; also at
the 1st Workshop on Geometric Methods in Concurrency Theory, Aalborg,
Denmark. Available at http://www.dyade.fr/fr/actions/vip/jgl/top.ps.gz, June
1999.

[23] , On the geometry of intuitionistic S4 proofs, Research Report LSV-
01-8, Laboratoire Spécification et Vérification, ENS Cachan, France, Novem-
ber 2001, 107 pages, available at http://www.lsv.ens-cachan.fr/Publis/
RAPPORTS LSV/rr-lsv-2001-8.rr.ps.

[24] Jean Goubault-Larrecq, SÃlawomir Lasota, and David Nowak, Logical relations
for monadic types, Proceedings of the 16th International Workshop on Com-
puter Science Logic (CSL’02) (Edinburgh, Scotland), Springer-Verlag Lecture
Notes in Computer Science, 2002, To appear.

[25] Marco Grandis, Homotopical algebra in homotopical categories, Applied Cat-
egorical Structures 2 (1994), 351–406.

[26] Timothy G. Griffin, A formulas-as-types notion of control, Proceedings of
the 17th Annual ACM Symposium on Principles of Programming Languages
(San Francisco, California), January 1990, pp. 47–58.

[27] Mauric Herlihy and Sergio Rajsbaum, Algebraic topology and distributed
computing—A primer, Computer Science Today, Recent Trends and Devel-
opments (Jan van Leeuwen, ed.), Lecture Notes in Computer Science, vol.
1000, Springer-Verlag, 1995, pp. 203–217.

Homology, Homotopy and Applications, vol. 5(2), 2003 208

[28] Jonathan P. Hindley and J. Roger Seldin, Introduction to combinators and
λ-calculus, London Mathematical Society Student Texts, vol. 1, Cambridge
University Press, 1988.

[29] William A. Howard, The formulae-as-types notion of construction, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J. R.
Hindley and J. P. Seldin, eds.), Academic Press, 1980, pp. 479–490.

[30] Gérard P. Huet, A unification algorithm for typed λ-calculus, Theoretical
Computer Science 1 (1975), 27–57.

[31] Jean-Pierre Jouannaud and Claude Kirchner, Solving equations in abstract
algebras: a rule-based survey of unification, Tech. report, LRI, CNRS UA
410: Al Khowarizmi, March 1990.

[32] Satoshi Kobayashi, Monad as modality, Theoretical Computer Science 175
(1997), no. 1, 29–74.

[33] Joachim Lambek and Phil J. Scott, Introduction to higher order categori-
cal logic, Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge
University Press, 1986.

[34] Pierre Leleu, A modal lambda calculus with iteration and case constructs,
Technical Report RR-3322, Institut National de Recherche en Informatique
et en Automatique (Inria), France, 1997.

[35] John Mac Carthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin,
LISP 1.5 programmer’s manual, MIT Press, 1962.

[36] Saunders Mac Lane, Categories for the working mathematician, Graduate
Texts in Mathematics, vol. 5, Springer-Verlag, 1971.

[37] Simone Martini and Andrea Masini, A modal view of linear logic, Journal of
Symbolic Logic 59 (1994), no. 3, 888–899.

[38] , A computational interpretation of modal proofs, Proof Theory of
Modal Logic (H. Wansing, ed.), Kluwer, 1996, pp. 213–241.

[39] J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in
Mathematics, The University of Chicago Press, 1967.

[40] John C. Mitchell, Foundations for programming languages, MIT Press, 1985.
[41] John C. Mitchell and Andre Scedrov, Notes on sconing and relators,

Computer Science Logic ’92, Selected Papers (E. Boerger et al., ed.),
1993, Available by anonymous ftp from host ftp.cis.upenn.edu and the file
pub/papers/scedrov/rel.dvi, pp. 352–378.

[42] Michel Parigot, λµ-calculus: an algorithmic interpretation of classical natu-
ral deduction, 3rd International Conference on Logic Programming and Au-
tomated Reasoning (Saint-Petersburg, USSR), Lecture Notes in Computer
Science, vol. 417, Springer Verlag, July 1992.

[43] Frank Pfenning and Rowan Davies, A judgmental reconstruction of modal
logic, Invited talk, 1st Workshop on Intuitionistic Modal Logics and Ap-
plications, Trento, Italy., July 1999, Submitted to Mathematical Structures
in Computer Science. Available at http://www-2.cs.cmu.edu/~fp/papers/
mscs00.ps.gz.

Homology, Homotopy and Applications, vol. 5(2), 2003 209

[44] Frank Pfenning and Hao-Chi Wong, On a modal λ-calculus for S4, 11th Con-
ference on Mathematical Foundations of Programming Semantics, 1995, Ex-
tended Abstract.

[45] Gordon Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science 1 (1975), no. 2, 125–159.

[46] Tim Porter, Letter to the authors and Rajeev Goré, August 04th 1999, Avail-
able from T. Porter or the authors.

[47] Dag Prawitz, Natural deduction, a proof-theoretical study, Almqvist and
Wiskell, Stockholm, 1965.

[48] M. E. Szabo, The collected papers of Gerhard Gentzen, North-Holland Pub-
lishing Company, Amsterdam, 1969.

[49] Daniele Turi, Functorial operational semantics and its denotational dual,
Ph.D. thesis, Free University, Amsterdam, June 1996.

[50] Philip Wickline, Peter Lee, and Frank Pfenning, Modal types as staging spec-
ifications for run-time code generation, ACM SIGPLAN Notices 33 (1998),
no. 5, 224–235.

[51] Frank Wolter and Michael Zakharyashev, Intuitionistic modal logic, Tech.
report, The Institute of Computer Science, January 1999, To appear in Logic
in Florence, 1995. Available at http://www.informatik.uni-leipzig.de/
~wolter/paper11.ps.

[52] Houman Zolfaghari and Gonzalo E. Reyes, Topos-theoretic approaches to
modality, Category Theory, Lecture Notes in Mathematics, vol. 1488,
Springer-Verlag, Como, Italy, 1990, pp. 359–378.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n2a6/v5n2a6.(dvi,ps,pdf)

Jean Goubault-Larrecq goubault@lsv.ens-cachan.fr
http://www.lsv.ens-cachan.fr/~goubault/

LSV/CNRS UMR 8643 & ENS Cachan
61, av. du président-Wilson
F-94235 Cachan Cedex

Éric Goubault goubault@aigle.saclay.cea.fr
http://www.di.ens.fr/~goubault/

CEA (Recherche Technologique)
LIST/DTSI/SLA
F-91191 Gif-sur-Yvette

