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Abstract
The aim of this paper is to provide a short introduction to

computational homology based on cubical complexes. The dis-
cussed topics include cubical complexes, a reduction algorithm
for computing homology of finitely generated chain complexes,
and an algorithmic construction of homology of continuous
maps via multivalued acyclic representations.

1. Introduction

The aim of this paper is to provide a synthesis of research by the authors and their
collaborators on the subject of computing homology of spaces and maps. Our initial
motivation came from dynamical systems, a subject with a history rich in entangle-
ments with algebraic topology. It is not a coincidence that Poincar’e was a founding
figure in both disciplines. Furthermore, much of modern applied dynamics is closely
tied to numerical simulations. Thus, it should not come as a surprise that attempts
to understand the structure of specific dynamical systems naturally leads to prob-
lems which require homological computations of large high dimensional numerically
or experimentally generated complexes and maps thereof (see [21, 20, 18, 19] and
references therein). However as one can see e.g. from the expository paper by Dey,
Edelsbrunner and Guha [7], we can expect considerably more applications in the
future.

From our perspective, there are three fundamental issues that need to be resolved
in order to have an effective tool for computing homology. The first involves the
underlying combinatorial structure. Obviously, one would like to encode this infor-
mation in an efficient data structure. However, especially in the setting of dynamics,
it is important that this combinatorial structure have nice properties with respect to
the dimension of both the objects of interest and the ambient space. Furthermore, it
should be noted that in many applications the input takes the form of discrete data
points. As we will describe below it is with these constraints in mind that we have
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chosen to develop a computational homology theory based on cubical complexes,
rather than the classical approach involving simplicies [24].

At first glance the simplicial theory appears more elegant than the cubical the-
ory described in Section 2. Furthermore, triangulations are at the heart of much of
computational geometry. Thus, our insistence on using the cubical structure may
appear strange. Consider, however, that it is hard to think of a scientific or engi-
neering discipline which does not generate computational simulations or make use
of recording devices or sensors to produce or collect image data. For example, it is
possible, using X-ray computed tomography, to visualize cardiovascular tissue with
a resolution on the order of 10 µm. [4]. Because this can be done at a high speed,
timed sequences of 3-dimensional images can be constructed, essentially producing
a 4-dimensional object. Observe that such images involve large amounts of data
since the data sets contain information on the level of tetrals (the four dimensional
equivalent of pixels). Obviously, the size and complexity of this data will grow as the
sophistication of the sensors or simulations increase. Of course, one can try to ren-
der these objects in terms of triangulations thereby producing images that require
smaller data sets and even perhaps are more intelligible to the human eye. However,
given our current capabilities such rendering is typically quite time consuming and
by its very nature results in modifications to the original data. For those appli-
cations which only require topological data (for example finding defects in hearts,
which unfortunately is an all too common birth defect) the cubical approach allows
one in principle to work directly with the raw data. 1

Another typical example involves geometric structures arising from numerical
simulations of partial differential equations. If one employs finite element methods
based on a regular cubical lattice, then the output once again takes the form of a
cubical complex. Furthermore, such computations can very rapidly produce com-
plexes where memory constraints become a serious issue. If as above we think in
terms of structures in space and time, then we have four dimensional complexes.
Simply subdividing each cube into a simplex results in a simplicial complex with
24 times as many highest dimensional cells, which we claim is an unnecessary cost.
Of course, one can imaging more intelligent methods of triangulating the cubical
complex, but at a higher computational cost.

Returning to dynamical systems we have two additional problems to contend
with. The first is that for many applications one needs to compute not onlythe
homology of a space, but also the homology of a continuous function f . The standard
approach of the simplicial theory is to approximate f by a simplicial map f# which
then induces f∗ the map on homology. Unfortunately, the cost of computing f#

for a typical nonlinear map f appears to be excessive. To circumvent this problem
we essentially compute f∗ by making direct use of the geometric acyclic carrier
theorem. We will describe this procedure in greater detail shortly, for the moment
the important point is that in our applications we need to construct geometric
acyclic carriers. Of course this can be done using either simplicies or cubes. However,

1For the purpose of this discussion we are ignoring the issue of noise in the data. In applications
this is a serious problem which must be dealt with regardless of whether one uses simplicial or
cubical homology.
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these carriers are obtained using numerical approximations of the original map f .
In higher dimensional problems cubes provide a very simple method data structure
for encoding the images of points along with their errors, especially if one uses the
l∞ norm.

The second problem that is encountered in dynamical systems has to do with the
difference between the dimensions of the objects of interest, e.g. a periodic orbit, and
the dimension of the phase space which, in the case of a partial differential equation,
can be infinite dimensional. A standard method of numerically solving such prob-
lems involves the Galerkin method, whereby one projects the infinite dimensional
problem onto a finite dimensional subspace and then computes. Topological meth-
ods associated with nonlinear functional analysis provide an ideal means of using
the information from the finite dimensional computations to deduce information
about the infinite dimensional problem. However, to do so efficiently it is useful to
have complexes which are compatible with orthogonal projections. As will become
clear in Sections 2 and 3, this is an extremely nice feature of the cubical homology.

With this brief justification for using a cubical combinatorial structure we now
turn to the problem of extracting algebraic information, i.e. the computation of
homology of spaces. In Section 3, we present a procedure based on elementary re-
ductions. The idea is to remove one pair of coinciding generators per time, without
changing the homology of the complex, until one gets a complex which has a trivial
boundary map, so it is isomorphic to its own homology. Although examples are given
among cubical chain complexes, the procedure applies to any finitely generated free
chain complex. An algorithm for computing homology of a chain map is a simple
by-product. Results presented in this section first appeared in [14] and in somewhat
refreshed form in [12]. We present the algorithm for computing homology with co-
efficients in a field, while we refer to [25] for coefficients in any Euclidean domain.
A reduction procedure in the context of cubical complexes was presented in [15].
Homology programs based on our algorithms have been designed in C++ by Pilar-
czyk [25], Mazur and Szybowski [17], and they are currently available at the Web
site http://www.math.gatech.edu/ chom/. The same idea of reducing a given com-
plex to a minimal one with the help of the Smith normal form algorithm is explored
by Gonzalez-Diez and Real [9] in the context of cohomology computation. Among
algorithms of computing homology in low dimensions (simplicial complexes in R3

and S3), probably the most efficient one is given by Delfinado and Edelsbrunner [6].

Finally, we deal in Section 4 with the most complex project of computing ho-
mology of continuous maps. This project is especially motivated by the previously
mentioned applications to dynamical systems but there are also many problems in
nonlinear analysis where homology of a map provides a useful information. In this
context it is important to have an algorithm which will work for huge complexes
coming from fine grids of the space and in arbitrarily high dimensions. The clas-
sical approach via barycentric subdivisions and simplicial approximations leads to
a high complexity computation. In [2] a new approach is launched. It is proposed
to inscribe the graph of a given continuous map f defined on a compact cubical
domain into a graph of a finitely representable multivalued map F with acyclic
cubical values. The construction of F is based on numerical approximation of f :
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we only need to know a Lipschitz constant of f (more generally, the modulus of
uniform continuity) and to be able to compute its approximative values on fine grid
points. The proof of the central Theorem 4.4 provides the construction of a chain
selector ϕ of F whose quotient map ϕ∗ is the homology map ϕ∗ = F∗ = of F .
In a sense, the multivalued map F is a geometric realization of so called acyclic
carrier presented e.g. in [24] thus we bypass the simplicial approximation. In [13],
our construction is presented as the definition of the homology map f∗ of f and
the cubical homology theory is developed in a systematic self-contained way. In
this paper, we only present the most important steps needed for understanding the
explicit formula for f∗. In the end of Section 4.3 we present a new approach to grid
refinements: rather than discussing grid subdivisions we introduce a concept of grid
rescaling which allows to avoid generalizing previously introduced algebra to many
grids. The final formula for computing f∗ is given by Theorem 4.11. In Section 4.4
we present an algorithm for constructing so-called coboundary of a cycle z in an
acyclic set, i.e. a chain c (usually not unique) which solves the equation ∂(c) = z.
This was the major obstacle from making the construction of the homology map
algorithmic. The problem was previously treated in [1, 3, 12, 17]. Although this
was not our initial motivation, it is an interesting observation that our cobounday
problem is an algebraic analogy of a geometric problem of minimal surfaces [5]. An-
other approach to computing homology of maps presented in [23] better utilizing
the outcome of numerical algorithms for Poincaré maps in differential equations, is
under development.

Many results discussed here were previously presented in several research papers
[2, 3, 12, 14, 15] and in student dissertations [1, 17, 25]. A systematic presen-
tation of the material was a subject of courses in computational algebraic topology
simultaneously taught by the authors at their departments, and it constitutes a part
of the book [13] which is in progress now.

2. Cubical Complexes

In numerical and graphical analysis one needs to consider very fine cubical grids.
With appropriate units we may assume here that each cube is unitary i.e. it has
sides of length 1 and vertices with integer coordinates. Later on in Section 4.3 we
will discuss the effects of rescaling on the algebra extracted from a cubical grid.

An elementary cube Q is a finite product

Q = I1 × I2 × · · · × Id ⊂ Rd

where Ii is an interval of the form I = [l, l + 1] or I = [l, l] for some l ∈ Z.
To simplify the notation we will write [l] = [l, l] for an interval that contains only
one point, such an interval is called degenerate. When Q ⊂ Rd, the dimension
d is called the embedding number of Q and denoted by embQ. The interval Ii is
referred to as the i-th component of Q and written as Ii(Q). The number of non
degenerate components in Q is the dimension of Q and denoted by dim Q. The set
of all elementary cubes in Rd is denoted by Kd. The set of all elementary cubes is
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denoted by K, i.e.

K :=
∞⋃

d=1

Kd.

It is easy to see that if Q ∈ Kd
k and P ∈ Kd′

k′ , then

Q× P ∈ Kd+d′
k+k′ .

A set X ⊂ Rd is cubical if X can be written as a finite union of elementary cubes.
We shall adopt the following notation.

K(X) := {Q ∈ K | Q ⊂ X}
and

Kk(X) := {Q ∈ K(X) | dim Q = k}.
The elements of K0(X) are the vertices of X and the elements of K1(X) are the
edges of X. More generally, the elements of Kk(X) are the k-cubes of X.

The group Ck of k-chains is the free abelian group generated by elements of Kk,
i.e. Ck := Z(Kk). More explicitly, Ck is formally defined as the group of all those
integer-valued functions on Kk which are non-zero on finitely many elements of Kk.
This is a free abelian group generated by functions Q̂ : Kk → Z, called duals of Q,
given by the formula

Q̂(P ) =
{ 1 if P = Q

0 otherwise

for any Q and P in Kk. The set of all duals of elementary cubes denoted by K̂ is
a basis of Ck. In the literature, it is customary to identify the dual of Q with Q
but, for a better understanding of data structures, it is important to distinguish the
algebraic object Q̂ from the geometric object Q. For that reason, we shall continue
using the “hat” notation for duals of elementary cubes. The elements of Ck called
k-dimensional chains (k-chains for short) are finite sums of the form

c = α1Q̂1 + α2Q̂2 . . . αmQ̂m,

where {Q1, Q2, . . . , Qm} ⊂ Kk. If c ∈ Ck then dim c := k. Obviously, for k < 0 and
k > d the set Kk = ∅ and Ck = 0.

Let c1, c2 ∈ Ck and let a =
∑m

i=1 αiQ̂i, b =
∑m

i=1 βiQ̂i Given chains c and d, we
use the scalar product notation

〈c1, c2〉 :=
m∑

i=1

αiβi.

The product of two elementary cubes is again an elementary cube. This motivates
the following definition. Given two elementary cubes P ∈ Kk and Q ∈ Kk′ put

P̂ ¦ Q̂ := P̂ ×Q.

This formula extends to arbitrary chains c1 ∈ K̂k and c2 ∈ K̂k′ by linearity:

c1 ¦ c2 :=
∑

P∈Kk,Q∈Kk′

〈c1, P̂ 〉〈c2, Q̂〉P̂i ×Qj .
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The element c ¦ c2 ∈ Ck+k′ is called the cubical product of c1 and c2. It it easy to
show that

Proposition 2.1. Let Q be an elementary cube such that emb Q = d > 1. Then,
there exist unique elementary cubes I and P with emb I = 1 and embP = d − 1
such that

Q̂ = Î ¦ P̂ .

Let X ⊂ Rd be a cubical set. Let K̂k(X) := {Q̂ | Q ∈ Kk(X)}. Ck(X) is the
finitely dimensional subgroup of Ck generated by the elements of K̂k(X) and is
referred to as the set of k-chains of X.

Let c ∈ Ck and let c =
∑m

i=1 aiQ̂i where ai 6= 0 for i = 1, . . . ,m. The support of
the chain c is the cubical set

|c| :=
m⋃

i=1

Qi ⊂ Rd.

It is clear that Ck(X) = {c ∈ Ck | |c| ⊂ X}.
Given k ∈ Z, the cubical boundary operator

∂k : Ck → Ck−1

is defined on generators by induction on the embedding number. Let Q̂ ∈ K̂1
k, then

Q is an elementary interval and hence Q = [l] ∈ K1
0 or Q = [l, l + 1] ∈ K1

1 for some
l ∈ Z. Define

∂Q̂ :=
{

0 if Q = [l],
[̂l + 1]− [̂l] if Q = [l, l + 1].

Now assume that Q̂ ∈ K̂d
k where d > 1. By Proposition 2.1 there exist unique

elementary cubical chains Î , P̂ with emb I = 1 and embP = d− 1 such that

Q̂ = Î ¦ P̂ .

Define

∂Q̂ := ∂Î ¦ P̂ + (−1)dim I Î ¦ ∂P̂ . (1)

Finally, we extend the definition to all chains by linearity.

Proposition 2.2. Let c and c′ be cubical chains, then

∂(c ¦ c′) = ∂c ¦ c′ + (−1)dim cc ¦ ∂c′. (2)

Proof. By linearity, it is sufficient to prove the proposition for elementary cubical
chains, i.e. to show that

∂(Q̂ ¦ Q̂′) = ∂Q̂ ¦ Q̂′ + (−1)dim QQ̂ ¦ ∂Q̂′.

The proof goes by induction on d := embQ and the decomposition of Q given by
Proposition 2.1.

Here is the explicit formula for the boundary map
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Corollary 2.3. If Q̂1, Q̂2, . . . , Q̂m are elementary cubical chains, then

∂(Q̂1 ¦ Q̂2 ¦ · · · ¦ Q̂m) =
m∑

j=1

(−1)
Pj−1

i=1 dim QiQ̂1 ¦ · · · ¦ Q̂j−1 ¦ ∂Q̂j ¦ Q̂j+1 ¦ · · · ¦ Q̂m.

Again by induction on the embedding number and an application of Proposi-
tions 2.1 and 2.2 one proves the fundamental property ∂ ◦ ∂ = 0 for the cubical
boundary operator. It is also useful to observe that |∂c| ⊂ |c|, so ∂k(Ck(X)) ⊂
Ck−1(X). This implies that, given a cubical set X ⊂ Rd, the cubical chain complex

C(X) := {Ck(X), ∂X
k },

is well defined. In the sequel we will omit the superscript X in ∂X
k .

The subgroups of cycles and boundaries in Ck(X) are respectively denoted by

Zk(X) := ker ∂k = Ck(X) ∩ ker ∂k ⊂ Ck(X). (3)

and

Bk(X) := im ∂k+1 = ∂k(Ck+1(X)) ⊂ Ck(X). (4)

The k-th cubical homology group of X is Hk(X) := Zk(X)/Bk(X). The homology
of X is the graded group H∗(X) := {Hk(X)}k∈Z.

3. Computing Homology of Chain Complexes

3.1. Examples of Elementary Reductions
The aim of this section is to develop geometric intuitions behind the general

reduction procedure presented next. We emphasize the importance of seeing the
geometry behind the algebra since we believe that this will help to render our
general reduction algorithm more efficient in particular cases of chain complexes
coming from applications, as it was the case with cubical complexes in [3, 15].

We discuss two types of reductions for the cubical chain complex C := C(X)
where X = [0, 1]× [0, 2]. Since elementary reductions may give complexes which are
not necessarily cubical and duals of elementary cubes may be replaced by generators
of a different geometric meaning, the ”hat” notation of the previous section will be
cumbersome here. We denote elementary cubes by upper case letters and dual chains
by lower case, e.g. vi := V̂i are duals of vertices, ai := Âi are duals of edges and
bi := B̂i are duals of squares. We indicate on Figure 1 dual chains rather geometric
cubes so to point out their orientation.

With this in mind, C0 is generated by E0 := K̂0(X) = {v1, v2, . . . v6}, C1 is
generated by E1 := K̂1(X) = {a1, a2, . . . a7}, and C2 is generated by E2 := K̂2(X) =
{b1, b2}. The only nontrivial boundary maps ∂1 and ∂2. Their definitions can be
deduced from fig:collapses (i). e.g. ∂1(a1) = v2−v1, ∂2(b1) = a1 +a2−a4−a3. Note
that the edge a4 is an interior edge in the sense that it is a common edge of more
then one elementary square of X. The remaining edges are exterior or free edges,
in the sense any one of them is an edge of an exactly one square.
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Figure 1: Elementary collapses by exterior edges.

Example 3.1. (Exterior face collapses.) Imagine that we push A1 from outside so
that B1 is projected onto the remaining part of its boundary formed of A2 A3 and
A4. By taking account of orientations in Figure 1 (i), a1 is projected onto the chain
ā1 := a3+a4−a2 and b1 disappears. No new homologically nontrivial cycle is created
by the fact that b1 disappears because the image of the cycle ∂b1 = a1 +a2−a4−a3

is (a3 +a4−a2)+a2−a4−a3 = 0. This indicates that the homology of the complex
C̄ obtained by projecting the generators

a1 7→ ā1 = a3 + a4 − a2 , b1 7→ 0,

and keeping the remaining generators fixed should be the same as that of C. The
new complex C̄ illustrated in Figure 1 (ii) is a subcomplex of C with bases Ē0 := E0,
Ē1 := {a2, a3, . . . a6} and Ē2 := {b2}.

By repeating the same procedure with the edge a4 and square b2, we get a one-
dimensional complex C illustrated in Figure 1 (iii). The same procedure can be
repeated for the free vertex v2 and its unique edge a2 and so on. Thus C can be
reduced in the next five elementary collapses to the single vertex v1.

Example 3.2. (Interior vertex reduction.) Face reductions may also be performed
starting from the lowest dimension. Imagine that we push the vertex V4 along the
edge A4 so it projects to the vertex V3. The edge A4 disappears. If we want to do
that without moving interiors of B1 and B2, we must drag the edges A2 and A6

with the vertex V4 along A4. With some care about orientations of edges we get the
projections

v4 7→ v3, a4 7→ 0, a2 7→ ā2 := a2 − a4, a6 7→ ā6 := a4 + a6 .

Figure 2 (i) shows a geometric interpretation of the new complex C̄. The topo-
logical structure realizing these reductions is the CW-complex (see [24]). Note that
the new oriented edges ā2 and ā6 follow the same path in reverse directions for a
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Figure 2: Starting from interior vertex reduction.

while. The whole complex can be visualized as two leafs B1 and B2 having v3 as the
only common vertex. By performing vertex reductions in each leaf as in the previous
example we arrive at the complex C shown in Figure 2 (ii). Next, ā7 is a free face of
b2 so an elementary collapse brings the complex to one leaf pictured in Figure 2 (iii)
and another projection of ā1 through b1 brings the complex to Cf := C({V3}).

3.2. Reduction Procedure
Let now (C, ∂) = ({Cq}q∈Z, {∂q}q∈Z) be a finitely generated free chain complex.

Let n0 and d(C) be, respectively, the least and the greatest value of q such that
Cq 6= 0. Most commonly, n0 = 0 but, for example, if we want to compute the reduced
homology (see [24]), we study an augmented chain complex and then n0 = −1. The
number d(C) is called the dimension of C. Let dq := dim Cq := card (Eq) (the number
of elements in Eq) for each q.

Assume that a fixed base Eq of Cq is given for each q such that Cq 6= 0. We shall
call it the canonical basis of Cq. Let 〈·, ·〉 denote the scalar product associated to
that canonical basis. Given c ∈ Eq, the generators e ∈ Eq−1 such that 〈∂c, e〉 6= 0
are faces of c. The number 〈∂c, e〉 is the incidence number of e in ∂c. It is simply
the coefficient of e in the expansion of ∂c as a linear combination of elements of Eq.

Let m ∈ Z be a fixed number. Assume that a ∈ Em−1 and b ∈ Em are two fixed
elements such that

λ := 〈∂b, a〉 is invertible. (5)

So far we have been using coefficients in Z so the condition λ invertible means λ = 1
or λ = −1. Later on, we will use coefficients in a field where λ is invertible if and
only if λ 6= 0 so this condition will be less restrictive.

Consequently, ∂b can be written as ∂b = λa + r, where 〈a, r〉 = 0. Let

Em−1 = {a1, a2, . . . adm−1−1, a} ,
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Em = {b1, b2, . . . bdm−1, b} .

We shall write r as

r =
dm−1−1∑

i=1

αiai .

For any q ∈ Z, define a map πq : Cq → Cq by the formula

πqv :=





v − λ−1〈v, a〉∂b if q = m− 1 ,
v − λ−1〈∂v, a〉b if q = m ,
v otherwise,

(6)

where v ∈ Cq. We let C̄q := im πq be the image of Cq in πq.
It is easy to show that the map πq is a linear projection of Cq onto its image C̄q.

More precisely, it is a linear map with the property πqw = w for all w ∈ C̄q. We
should explicitly identify the images of the basic elements under πm−1 and πm. For
simplicity of notation we put v̄ := πqv and γi := λ−1〈∂bi, a〉. It is easily seen that

āi = ai , ā = −λ−1r (7)

b̄i = bi − γib , b̄ = 0 . (8)

We put

Ēq =




{b̄1, b̄2, . . . b̄dm−1} if q = m ,
{a1, a2, . . . adm−1−1} if q = m− 1 ,
Eq otherwise.

(9)

For the proof of the following proposition and theorem, we refer the reader to [12].

Proposition 3.3. Ēq is a basis for C̄q for all q ∈ Z and Ēm ∪ {b} is a basis for
Cm.

Theorem 3.4. The function π : C → C consisting of the sequence of projections
{πq}q∈Z is a chain map.

Corollary 3.5. The sequence of groups (C̄, ∂) := {(C̄q, ∂q)q∈Z} is a chain subcom-
plex of (C, ∂) and the restriction π̄ : C → C̄ of the codomain of π to its image is a
chain map.

The most important feature of the new chain complex is expressed in the following
theorem. We present a part of its proof which contains the construction of maps
useful in the sequel.

Theorem 3.6. H∗(C̄) ∼= H∗(C).
Proof. We will show that π̄ : C → C̄ is a chain equivalence with the inclusion
i : C̄ ↪→ C as a homotopical inverse. Indeed, as mentioned before, π̄ is a projection
so π̄i = id C̄ . Hence it is sufficient to find a chain homotopy between iπ̄ = π and
id C . Let Dq : Cq → Cq+1 be given by

Dqv =
{

λ−1〈v, a〉b if q = m− 1 ,
0 otherwise
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for any v ∈ Cq. It remains to show the identity

id Cq
− iqπ̄q = ∂q+1Dq + Dq−1∂q . (10)

We refer the reader to [12, 14] for details.
Let now

C0 π̄1

−→ C1 π̄2

−→ C2 · · · (11)

be a sequence of chain subcomplexes and projections obtained from (C, ∂) by it-
erating the above construction as long as it is possible to choose m ∈ {n0, n0 +
1, . . . , d(C)}, a ∈ Cm−1 and b ∈ Cm such that λ := 〈∂b, a〉 is invertible. Thus
C0 := C, Ck+1 := C̄k and Ek+1

q := Ēk
q for all q ∈ Z. We denote by ∂k the restriction

of ∂ to Ck.
Denote by M(k) =

∑
q card (Ek

q ), for k = 0, 1, 2, . . . Since C is finitely generated,
M(k) < ∞ and M(k + 1) = M(k)− 2, therefore there exists a final element of that
sequence denoted by (Cf , ∂f ), beyond which the construction cannot be extended.
The following corollary is deduced from Theorem 3.6 by induction.

Corollary 3.7.

H∗(C) ∼= H∗(Cf ) .

It seems that H∗(Cf ) should now be easier to compute than H∗(C) , because Cf

has less generators left. In general, one should incorporate the Smith normal form
reduction arguments for judicious choice of pairs (b, a) of generators to eliminate.
This has been done in [25]. In many applications however we are only interested in
detecting nontrivial homologies or estimating Betti numbers. In that case one can
reduce a task by computing homology with coefficients in a field F, e.g. F = Zp

where p is prime, or F = Q, the field of rational numbers. This means in practice
that Cq is defined as a vector space over F with the same Eq as the canonical
basis and the chain complex C is a graded vector space with ∂ the graded linear
map defined as previously on generators. The relationship between homologies for
field coefficients and those for integer coefficients are described by the Universal
Coefficient Theorem (see [24]).

Theorem 3.8. Suppose now that the computation is performed for coefficients in
a field F. Then ∂f = 0 and

H(C,F) ∼= H(Cf ,F) = Cf .

Proof. The first identity is proved in Corollary 3.7. Since F is a field then λ is
invertible if and only if and only if it is non-zero. Hence the construction can be
iterated as long as there exist m and two elements a ∈ Ek

m−1 and b ∈ Em satisfying
〈∂b, a〉 6= 0 i.e. as long as ∂ 6= 0. Therefore ∂f = 0. But this means that H(Cf ,Zp) =
Cf .

We outline below an algorithm due to Kaczynski-Mrozek-Ślusarek [14], which we
call here KMS algorithm, based on the above reduction procedure. This algorithm
computes homology of chain complexes with coefficients in a field but we shall
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restrict the analysis to mod p computation, i.e. for coefficients in the field Zp,
because this choice is the most efficient due to a low cost od division operation.

For simplicity we assume that n0 = 0, this is the case when C is a cubical complex.
We put N = max{dq | q = 0, 1, . . . , d(C)}. We assume that there is a fixed upper
bound for d(C) and we shall estimate the time or complexity of calculations as a
function of N .

A direct implementation of a classical homology computation by linear algebra
methods ([24]) when applied to computations over the field Zp yields an O(N3)
algorithm. This means that if the number of arithmetic operations is comparable
with N3 for large values of N . For some special cases KMS algorithm achieves
significant improvement of that bound.

For a fixed dimension the process is controlled by procedure COLLAPSE and a
single reduction step is executed by procedure REDUCE.

Algorithm 3.9. (Algorithm HOMOLOGY)
input: finite chain complex C with coefficients in Zp.
output: nonnegative integers β(0), β(1), . . . β(d(C))
(these are dimensions of Hq(C,F)).
for q = d(C) downto 1 do
COLLAPSE(q);
β(q) = card E(q);
end.
procedure COLLAPSE(q);
while E(q) 6= ∅ and there exist b ∈ E(q) and a ∈ E(q − 1) such that 〈∂b, a〉 6= 0 do
REDUCE(b, a);
end.

Procedure REDUCE operates on the following data structures:
1. An array Tm of all m-generators;
2. An array Tm−1 containing all faces of m-generators;
3. For each m-generator b a list F (b) of its faces sorted by faces with their incidence
numbers in ∂b.

Algorithm 3.10. procedure REDUCE(b, a);
for each b′ in Tm do
if a appears in F (b′) then
compute new list F (b′) by means of synchronous scan (i.e. merge) of F (b) and F (b′)
end REDUCE.

A single execution of REDUCE costs O(N2) and assuming that d(C) is fixed
one shows that homology groups with coefficients in Zp of a finitely generated chain
complex can be computed in O(N3) arithmetical operations.

As already mentioned there are special cases when the algorithm runs much
faster. Observe that 0-dimensional homologies can be computed by finding the
number of connected components of the graph which can be performed in linear
time by classical graph scan methods like depth-first search. Next, 1-dimensional
homologies can be specified by computing the number of fundamental cycles in the
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graph. For a connected graph this needs no computation at all because this number
is d1 − d0 + 1 by the Euler characteristic. When X is a cubical set in R2 it can be
proved that there exists an edge A which is a face of exactly one elementary square
Q. The procedure REDUCE applied to (Q̂, Â) is in fact an elementary collapse, so
the resulting complex is again a cubical complex and incidence numbers are 0, 1
or −1. We may iterate this procedure until we get a 1-dimensional complex. The
following result is derived.

Theorem 3.11. Let X be a cubical set in the plane R2. Then the homology of
C(X) is be computed in linear time. Moreover this also holds true for computation
in integer coefficients.

The fact that Betti numbers of polyhedra in R2 can be computed in linear time
has already been observed by Delfinado and Edelsbrunner [6]. We refer the reader
to [12, 14, 15] for further discussion of cases when the complexity of the reduction
algorithm can be improved.

3.3. Computing Homology of a Chain Map
Given a triple (C,D, ϕ) where C, D are finite chain complexes with coefficients

in a field F and ϕ : C → D is a chain map, a reduction performed either on C or D
induces a reduction on the whole triple.

Indeed, if C̄ is obtained from C by an elementary reduction, we define ϕ̄ : C̄ → D̄
by ϕ̄ := ϕi, where i : C̄ ↪→ C is the inclusion chain map given in the proof of
Theorem 3.6. If D̄ is obtained from D, we define ϕ̄ : C → D̄ by ϕ̄ := π̄ϕ where
π̄ : D → D̄ is the projection chain map given for D as in Corollary 3.5. Since we
showed in the proof of Theorem 3.6 that i and π̄ induce isomorphisms in homology,
this procedure can be iterated so that in the final stage we get a chain map ϕf :
Cf → Df such that the diagram

C ϕ−→ Dxjf

ypf

Cf ϕf

−→ Df

commutes and the vertical arrows induce isomorphisms in homology. Thus Corol-
lary 3.7 and the above discussion imply the following

Corollary 3.12. If field coefficients are assumed then the triple (Cf ,Df , ϕf ) is
isomorphic to the triple (H(C), H(D), ϕ∗) in the sense that the vertical arrows in
the following commuting diagram are isomorphisms:

H(C) ϕ∗−→ H(D)xif
∗

ypf
∗

Cf ϕf

−→ Df

The above discussion permits one to obtain an algorithm of computing homology
of a chain map. Assume that C, D are finite chain complexes with coefficients in
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a field F and ϕ : C → D is a chain map. For each q ∈ Z let Aq be the matrix of
ϕq : Cq → Dq with respect to fixed bases Eq and Fq in Cq and Dq, respectively.

Given the reduction of elements a and b in Cm−1 and Cm we define the matrix Āq

of ϕ̄q : C̄q → Dq, for each q, by specifying its columns, using the map i discussed in
Section 3.3. If q 6= m then Āq = Aq. Assume then q = m. Let Col(e) be the column
of Aq which corresponds to e ∈ Em, let λ = 〈∂b, a〉 6= 0, and let ce = 〈∂e, a〉,
e ∈ Ēm = Em \ {b}.

If ce 6= 0, put Cole = Cole, otherwise Cole = Cole − ceλ
−1Colb.

Analogically, given the reduction of elements a and b in Dm−1, Dm we define the
matrix Āq of ϕ̄q : Cq → D̄q, for each q, by specifying its rows, using the definition
of the map p̄ from discussed in Section 3.3.

If q 6= m− 1,m then Āq = Aq. If q = m we obtain Āq by deleting the row Rowb

which corresponds to b in Aq. Assume then q = m−1 and let f ∈ F̄m−1 = Fm−1\{a}.
Let Rowf be the row of Am−1 which corresponds to f . Let Rowa be the row which
corresponds to a and let df = 〈∂b, f〉. It is easy to check that the row in the matrix
Ām−1 which corresponds to f is given by

Rowf = Rowf − λ−1dfRowa

For a fixed q the computation of ϕ̄q : C̄ → D̄ consists of two iterated transfor-
mations of the matrix Aq, each one taking O(n2) time. We can iterate the above
matrix transformations until there is no possibility for a one-step reduction, finally
obtaining the homomorphism ϕ∗ : H(C) → H(D) corresponding to the chain map
ϕ : C → D. Since the dimension of the complexes is fixed we get an algorithm for
computing the homology of a chain map of complexity O(n3).

4. Towards Computing Homology of Maps

As it was indicated in the introduction, we shall present here the approach to
computing homology of a continuous map between cubical sets via its multival-
ued representation. We shall present only those proofs which contain constructions
important for the algorithm design. The detailed proofs of all statements will be
presented in [13].

4.1. Topology of Representable Sets
Cubical sets are compact. It is often useful to have a locally finite class of sets

which contains cubical sets but is closed under set-theoretical and topological oper-
ations. For this reason we present the notion of elementary cells and representable
sets introduced in [22].

With any elementary cube Q = I1×I2×. . .×Id ⊂ Rd we associate the associated
elementary cell

◦
Q :=

◦
I1 ×

◦
I2 × . . .× ◦

Id.

where
◦
I :=

{
(l, l + 1) if I = [l, l + 1],
[l] if I = [l, l].
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We purposely avoided the temptation of calling
◦
Q an open cube since it is not open

in Rd, unless its dimension is equal to the embedding number.
A set Y ⊂ Rd is representable if it is a finite union of elementary cells. The family

of representable sets in Rd is denoted by Rd.
The closed hull of a set A ⊂ Rd is

ch (A) :=
⋃
{Q | Q ∈ K,

◦
Q ∩A 6= ∅}. (12)

Example 4.1. If x, y ∈ R, x 6 y are two arbitrary real numbers then

ch ([x, y]) = [p, q],

where p := max{m ∈ Z | m 6 x} and q := min{m ∈ Z | m > y} denote the floor
of x and ceiling of y respectively. This in turn implies that given bounded intervals
A1, A2, . . . , Ad we have

ch (A1 ×A2 × . . .×Ad) = ch (A1)× ch (A2)× . . .× ch (Ad).

In particular, ch (A1 ×A2 × . . .×Ad) is a rectangle in Rd.

For a more systematic presentation of properties of representable sets we refer
the reader to [22].

4.2. Cubical Multivalued Maps
Let X and Y be cubical sets. A cubical multivalued map F : X

→→Y from X to Y
is a function from X to subsets of Y (i.e. for every x ∈ X, F (x) ⊂ Y ) which has
the following properties.

1. For every x ∈ X, F (x) is a cubical set.

2. For every Q ∈ K(X), F | ◦
Q

is constant, i.e. if x, x′ ∈
◦
Q, then F (x) = F (x′).

Given A ⊂ X and B ⊂ Y we let F (A) :=
⋃

x∈A F (x). A multivalued map F is
upper semicontinuous if {x ∈ X | F (x) ⊂ U} is open for any open U ⊂ Y and it
is lower semicontinuous if the set {x ∈ X | F (x) ∩ U 6= ∅} is open for any open
U ⊂ Y .

Proposition 4.2. Assume F : X
→→Y is a cubical map. Then F is lower semicon-

tinuous if and only if it has the following property:

For any P,Q ∈ K(X) such that P is a face of Q, F (
◦
P ) ⊂ F (

◦
Q). (13)

Similarly, upper semicontinuous cubical maps are characterized by the property:

Proposition 4.3. Assume F : X
→→Y is a cubical map. Then F is upper semicon-

tinuous if and only if it has the following property:

For any P,Q ∈ K(X) such that P is a face of Q, F (
◦
Q) ⊂ F (

◦
P ). (14)

The above propositions show how to construct lower semicontinuous and upper

semicontinuous maps if their values on elementary cells are given. Indeed, if F (
◦
Q)



Homology, Homotopy and Applications, vol. 5(2), 2003 248

is defined for all maximal Q and we put

F (
◦
P ) =

⋂
{F (

◦
Q) | P ≺ Q and Q is maximal}, (15)

we get a lower semicontinuous map. Similarly, if we put

F (
◦
P ) =

⋃
{F (

◦
Q) | P ≺ Q and Q is maximal},

we get an upper semicontinuous map. Lower semicontiuous maps are those which
we need here for computing the homology. Upper semicontinous maps, however, are
those whose graphs are easier to draw since they are closed.

A cubical multivalued map F : X
→→Y is called acyclic if for every x ∈ X the

set F (x) is acyclic. The next theorem is the central result of this section. Although
it can be found in various formulations e.g. in [1, 2] and in [24] under the name
Acyclic Career Theorem, we present it here with a detailed proof since the proof
directly serves for the algorithm design.

Theorem 4.4. Assume F : X
→→Y is a lower semicontinuous, acyclic, cubical map.

Then, there exists a chain map ϕ : C(X) → C(Y ) with the two properties

|ϕ(Q̂)| ⊂ F (
◦
Q) for all Q ∈ K(X), (16)

ϕ(Q̂) ∈ K̂0(F (Q)) for all Q ∈ K0(X), (17)

Proof. We will construct the homomorphisms ϕk : Ck(X) → Ck(Y ) by induction
in k. For k < 0, Ck(X) = 0 , therefore there is no choice but to define ϕk := 0.

Consider k = 0. For each Q ∈ K0, choose P ∈ K0(F (Q)) and set

ϕ0(Q̂) := P̂ . (18)

Clearly, |ϕ0Q̂| = P ∈ F (Q). Since, Q ∈ K0,
◦
Q= Q and hence F (Q) = F (

◦
Q).

Therefore |ϕ0Q̂| ⊂ F (
◦
Q). Furthermore, ϕ−1∂0 = 0 = ∂0ϕ0.

Suppose now that ϕi : Ci(X) → Ci(Y ), i = 0, 1, 2, . . . , k − 1, are constructed in
such a way that

|ϕiQ̂| ⊂ F (
◦
Q) for all Q ∈ Ki(K),

and
ϕi−1∂i = ∂iϕi. (19)

Let Q ∈ Kk(X). Then ∂Q̂ =
m∑

j=1

αjQ̂j for some αj ∈ Z and Qj ∈ Kk−1(X). Since

F is lsc, we have by Proposition 4.2

|ϕk−1Q̂j | ⊂ F (
◦
Qj) ⊂ F (

◦
Q)

for all j = 1, . . . , m. Thus |ϕk−1∂Q̂| ⊂ F (
◦
Q). Since F (

◦
Q) = F (x) for any x ∈

◦
Q, the

set F (
◦
Q) is acyclic. By the induction assumption (19)

∂k−1ϕk−1∂kQ̂ = ϕk−2∂k−1∂kQ̂ = 0,
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i.e. ϕk−1∂Q̂ is a cycle.
The case k = 1 should be distinguished because all 0-chains are 0-cycles and this

information is not useful. In that case, Q is an interval and ∂Q̂ = B̂ − Â where A
and B are vertices of Q. We showed above that the vertices ϕ0(A) and ϕ0(B) are

supported in F (
◦
Q). Since F (

◦
Q) is acyclic, it is connected and that this implies the

existence of a chain of edges c ∈ C1(F (
◦
Q)) such that ∂c = ϕ0(B)− ϕ0(A). We put

ϕ1Q̂ := c.

When k > 1, the acyclicity of F (
◦
Q) implies that there exists a chain c ∈ Ck(F (

◦
Q))

such that ∂c = ϕk−1∂Q̂. Define

ϕkQ̂ := c.

By definition, the homomorphism ϕk satisfies the property

∂kϕk = ϕk−1∂k.

Also, if Q ∈ Kk(X), then ϕkQ̂ ∈ Ck(F (
◦
Q)), hence |ϕkQ̂| ⊂ F (

◦
Q). This completes

the induction step.
Observe that in the first nontrivial step (18) of the inductive construction of ϕ

we were allowed to choose any P ∈ K0(F (Q)). Thus, this procedure allows us to
produce many chain maps of the type described in Theorem 4.4. Any such chain
map is called a chain selector of F .

By carrying over the inclusion (16) to linear combinations of generators of a
chain, one proves that, for any c ∈ C(X) w have |ϕ(c)| ⊂ F (|c|). The following
theorem is proved by standard chain homotopy arguments and induction.

Theorem 4.5. Let ϕ,ψ : C(X) → C(Y ) be chain selectors for the lower semiconti-
nous, acyclic, cubical map F : X

→→Y . Then, ϕ is chain homotopic to ψ, and hence,
they induce the same homomorphism in homology.

The above theorem permits now to give the following definition. Let F : X
→→Y

be a lower semicontinuous, acyclic, cubical map. Let ϕ : C(X) → C(Y ) be a chain
selector of F . The homology map F∗ : H∗(X) → H∗(Y ) of F is defined by

F∗ := ϕ∗.

This definition coincides with a classical definition of homology of a multivalued map
given via the Vietoris-Begle Theorem e.g. in [10]. Here is a conditional functoriality
property of homology in the class of acyclic multivalued maps:

Theorem 4.6. Let F : X
→→Y and G : Y

→→Z be lower semicontinuous, acyclic,
cubical maps. If G ◦ F also is acyclic then

(G ◦ F )∗ = G∗ ◦ F∗ ,

where G ◦ F (x) := G(F (x)).
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4.3. Homology of Continuous Maps Via Cubical Representations
Let X and Y be cubical sets and let f : X → Y be a continuous function. A

cubical representation to f or simply a representation to f is a lower semicontinuous
multivalued cubical map F : X

→→Y such that

f(x) ∈ F (x) (20)

for every x ∈ X. The minimal cubical representation Mf of f is given by

Mf (x) := ch (f(ch (x))) . (21)

It is easily proved that Mf is in fact a representation of f and that it is minimal
in the sense that given any other representation F of f , Mf is a submap of F . If F
admits an acyclic representation, the Vietoris-Begle Theorem (c.f. [10]) implies that
the homomorphism f∗ : H∗(X) → H∗(Y ) induced by f in homology is f∗ = F∗. Of
course, this is not the case in general as the following example shows.

Example 4.7. Let X be the boundary of the unit square Q = [0, 1]2. Consider its
sides K1 := [0] × [0, 1], K2 := [0, 1] × [1] K3 := [1] × [0, 1], and K4 := [0, 1] × [0].
Consider the map λ : [0, 1] → X given for any t ∈ [0, 1] by

λ(t) :=





(0, 4t) if t ∈ [0, 1/4]
(4t− 1, 1) if t ∈ [1/4, 1/2]
(1, 3− 4t) if t ∈ [1/2, 3/4]
(4− 4t, 0) if t ∈ [3/4, 1]

Let f : X → X be given at (x1, x2) ∈ X by

f(x1, x2) :=
{

λ(x2) if (x1, x2) ∈ K1 ∪K3

λ(x1) if (x1, x2) ∈ K2 ∪K4.

Then f is continuous and for (x1, x2) ∈
◦
Ki

Mf (x1, x2) = ch (f(ch (x1, x2))) = ch (f(Ki)) = ch (X) = X.

Obviously Mf is not acyclic.

In order to overcome the lack of acyclic representation we could introduce sub-
divisions of the unitary cubical grid we considered. However, that would require a
generalization of all what we have done until now to fractional grids. That is not
necessary. Instead we take a natural approach based on rescaling the domain of the
function to a larger size by changing units.

A scaling vector is a vector of positive integers

α = (α1, α2, . . . , αd) ∈ Zd

The corresponding scaling is the linear coordinate preserving isomorphism Λα :
Rd → Rd defined by

Λα(x) := (α1x1, α2x2, . . . αdxd).

It is easy to see that Λα maps cubical sets onto cubical sets. Let X ⊂ Rd be a
cubical set and let α ∈ Zd be a scaling vector. Define Λα

X := Λα|X . The scaling of
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X by α is

Xα := Λα
X(X) = Λα(X).

The inverse of the map Λα
X : X → Xα is Ωα

X : Xα → X := (Λα
X)−1 given by

Ωα
X(x) := (α−1

1 x1, α
−1
2 x2, . . . , α

−1
d xd).

Scalings, their compositions, and inverses are convenient maps in the sense that
their minimal cubical representations are acyclic:

Proposition 4.8. Let X be a cubical set and let α be a scaling vector. The maps
MΛα

X
and MΩα

X
are acyclic.

Moreover let X, Y , and Z be cubical sets and let α and β be scaling vectors. If
Λα(X) ⊂ Y and Λβ(Y ) ⊂ Z, then MΛβ

Y ◦Λα
X

and MΛβ
Y
◦MΛα

X
are acyclic.

Since the map Λα
X : X → Xα is isomorphism and Ωα

X its inverse, the maps
induced in homology

(Λα
X)∗ : H∗(X) → H∗(Xα) and (Ωα

X)∗ : H∗(Xα) → H∗(X)

are also isomorphisms. What is important that, in the view of Proposition 4.8, we
can compute the inverse ((Λα

X)∗)−1 directly from MΩα
X

thus avoiding a complex
algorithm of finding an inverse of a homomorphism.

Given a continuous map f : X → Y and a scaling vector α put

fα := f ◦ Ωα
X

Observe that fα : Xα → Y . We shall head towards showing that Mfα is acyclic for
a sufficiently large α.

Example 4.9. Return to Example 4.7. Consider α = (2, 2), and let Q = [0, 1]× [2].

Let (x1, x2) ∈
◦
Q. Then

Mfα(x1, x2) = ch (fα(Q)) = ch (λ([0, 1/2])) = [0]× [0, 1] ∪ [0, 1]× [1]

which is acyclic. Similar checks at all segments on Xα shows that Mfα is acyclic.

Proposition 4.10. Let X and Y be cubical sets and f : X → Y be continuous.
Then there exists a scaling vector α such that Mfα is acyclic.

Proof. The continuity of f lets us choose δ > 0 such that for x, y ∈ X

dist (x, y) 6 δ ⇒ dist (f(x), f(y)) 6 1
2

(22)

Let α be a scaling vector such that min{αi | i = 1, . . . , n} > 1/δ. Since diam ch (x) 6
1, we get from (22) that

diam fα(ch (x)) 6 1
2
.

Let A = fα(ch (x)). We need to show that ch (A) is acyclic. Let

C := {Q ∈ K(Y ) |
◦
Q ∩A 6= ∅}.
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Since Y is cubical ch (A) =
⋃

Q∈C Q. Observe that for any two elementary cubes
P, Q ∈ C the intersection P ∩ Q is non-empty, because diam A < 1. From this it
can be deduced that

⋂ C is non-empty. It follows that ch (A) is star-shaped and
consequently acyclic.

We can now give the formula for the homology map of a continuous function on
cubical set.

Theorem 4.11. Let f : X → Y be a continuous function where X and Y are
cubical sets. Let α be a scaling vector such that Mfα is acyclic. Then, the homology
map of f∗ : H∗(X) → H∗(Y ) is given by

f∗ = M(fα)∗ ◦M(Λα
X)∗ . (23)

Proof. The map M(fα)∗ is well defined by the acyclicity assumption and M(Λα
X)∗ is

well defined by Proposition 4.8. Since Ωα
X is the inverse of Λα

X , we have

f = f ◦ Ωα
X ◦ Λα

X = fα ◦ Λα
X

and formula (23) follows.
We conclude this section with the following remark. In [13] the homology theory

is developed for the category Cub of cubical sets with continuous maps as mor-
phism. The construction of homology map f∗ by means of the formula (23) and
the chain selector provided by Theorem 4.4 is presented there as the definition of
f∗. It is proved there that so obtained homology is a functor from Cub to Ab, the
category of abelian groups. Direct proofs of homology axioms, in particular, the
homotopy property, are provided. This functor is next extended to the category Pol
of topological polyhedra which is defined in [13] as the class of topological spaces
which are homeomorphic to cubical sets. Since any simplex is homeomorphic to an
elementary cube, this class contains, in particular all polyhedra.

4.4. Coboundary Formula
Computation of homology of a continuous map f relies on three algorithms. One

computes a cubical representation F of f . The second one does rescaling. The third
one computes a chain selector of a cubical acyclic map obtained by rescaling. The
proof of Theorem 4.4 which provides the chain selector goes by induction which is
very easy to program, it does however contain one existential quantifier:

”The acyclicity of F (
◦
Q) implies that there exists a chain c ∈ Ck(F (

◦
Q)) such that

∂c = ϕk−1∂Q̂.”
One should therefore provide an explicit algorithm for constructing that c. The
problem may be formulated as follows. Let C will be an acyclic finitely generated
chain complex. Let z ∈ Zm−1 be a (m − 1)-cycle. By the acyclicity assumption,
there exists a chain c ∈ Cm such that

∂c = z . (24)

In general, c is not unique. We want to provide an explicit algorithm for finding at
least one such a chain which will be denoted by Cob (z). We shall provide here a
summary of the algorithm presented in [12]. We refer to [12] for proofs and for a
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presentation of the formal algorithm. The construction of Cob (z) is derived as a
by-product of the reduction algorithm presented in Section 3.2.

Lemma 4.12. Let a ∈ Cm−1, b ∈ Cm and p : C → C be as in the elementary
reduction step in Section 3.2. Let z ∈ Zm−1 be a given cycle. Put α := 〈z, a〉. Then
(a) z̄ := pm−1z ∈ Z̄m−1.
(b) ∂(αλ−1b) = z − z̄.

Note that the conclusion of Lemma 4.12 holds true even if α = 0 but in that
case z̄ = z. We may want to avoid repetitions of (a, b)-reductions which are not
necessary for computing Cob (z). We introduce the following notation. Given any
c ∈ Cm−1 let

Em−1(c) := {a ∈ Em−1 : 〈c, a〉 6= 0} , Em(c) := {b ∈ Em : 〈∂b, c〉 6= 0} .

Lemma 4.13. Let z ∈ Zm−1, z 6= 0. Then Em−1(z) 6= ∅ and, for any a ∈ Em−1(z),
Em(a) 6= ∅.

We shall now head towards the construction of Cob (z). We start from c = 0.
Then use recursively (b, a)-reductions simultaneously adding the term αλ−1b which
appears in Lemma 4.12 to the previous value of c, and replacing the previous value
of z by z̄. This procedure must end since, each time we repeat it, the cardinality of
Ēm−1 and Ēm decreases by one and those sets are finite. When it ends, the final
value of z̄ is 0, and the final value of c satisfies ∂c = z − 0 = z.

To formalize this discussion let us go back to the sequence of projections in
Equation 11. Let

C0 p̄1

−→ C1 p̄2

−→ C2 · · ·
be the sequence of projections and let (ak, bk) ∈ (Ek

m−1, E
k
m) be the reduced pairs

of generators for a fixed m. Let zk be defined by

z0 := z , zk := p̄kzk−1, k = 1, 2, . . .

Since each projection is a chain map, each zk is a cycle. Thus by Lemma 4.12

zk−1 − zk = ∂(αkλ−1
k bk−1) (25)

for some λk 6= 0 and some αk (possibly equal to 0 but then zk−1 = zk). We construct
a sequence of chains ck ∈ Cm, k = 0, 1, 2, . . . as follows.

c0 := 0 , ck := ck−1 + αkλ−1
k bk , k = 1, 2, . . . (26)

It follows from Equations 25 and 26 by induction that

z − zk = ∂ck , (27)

By the same argument as in discussion following Equation 11, there is a finite ele-
ment Cfm in the sequence beyond which the construction in this dimension cannot
be extended and then ∂fm

m = 0 where ∂k = 0 is the restriction of ∂ to Ck. Since C
is acyclic, by the proof of Theorem 3.8, Cfm is acyclic too. Since ∂fm

m = 0, we have
ker ∂fm

m−1 = im ∂fm
m = 0 hence zfm = 0. From Equation 27 we get the following
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Theorem 4.14. ∂cfm = z.

The algorithm based on the above construction is presented in [12]. We do not
expect that our algorithm, in its most general setting, is more efficient that stan-
dard linear algebra programs applied for Equation 24. We expect however that the
geometric flavor of our algorithm will help to render it more efficient in particu-
lar cases of chain complexes coming from applications. This was the case with the
coboundary algorithm for cycles in a rectangular set presented in [3]. Let us briefly
describe how the improvement is reached there.

Let R be a representable rectangle in Rd, i.e. a product of intervals with integer
coordinates and C := C(R) be the cubical complex of X. The geometric algorithm
of finding a coboundary of an (m−1)-cycle z given in [3] is based on the recurrence
with respect to the dimension d of R. Here is the main idea of the recurrence step.
Let R′ be a (d− 1)-dimensional face of X. The orthogonal projection of R onto R′

induces, in an evident way, a projection p : C(R) → C(R′) which is orthogonal with
respect to the canonical basis of C(R) consisting of unitary cubes. We let z′ := pz and
compute Cob (z′). Then Cob (z) is obtained by adding to Cob (z′) all m-dimensional
unitary cubes through which z is projected (we may visualize them as side-walls of
the projection cylinder), with some care about signs of coefficients. It is visible that
this construction may be viewed as a major shortcut of what we presented here.
Instead of projecting in small steps through one elementary cube per time, we get
the whole cylinder enclosed between a face e ∈ Em−1(z) and a corresponding face of
z′, in a single operation of replacing an endpoint by an interval in the expression of e
as a product of intervals. Due to this simplification, the complexity of the algorithm
in [3] is linear with respect to the number of elements of Em−1(z) provided an
arithmetics on elementary cubes is introduced in a way which permits a convenient
presentation of the output. Cubical complexes are very particular but we believe
that those type of shortcuts in our universal algorithm will be possible in many
situations when a subdivision of a space to cells is chosen in a ”custom-fit” way.

We refer the reader to [12] for further discussion of cases when the efficiency of
the reduction algorithm can be improved.
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and P. Zgliczyński), Banach Center Publications 47 Warsaw (1999), 115-131.

[16] W. S. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, New
York 1991.

[17] M. Mazur, J. Szybowski, Algorytm Allili-Kaczynskiego Konstrukcji
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