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THE GEOMETRY OF CONFIGURATION SPACES FOR CLOSED
CHAINS IN TWO AND THREE DIMENSIONS

R. JAMES MILGRAM and J. C. TRINKLE

(communicated by Gunnar Carlsson)

Abstract
In this note we analyze the topology of the spaces of con-

figurations in the euclidian space Rn of all linearly immersed
polygonal circles with either fixed lengths for the sides or
one side allowed to vary. Specifically, this means that the
allowed maps of a k-gon 〈l1, l2, . . . , lk〉 where the li are the
lengths of the successive sides, are specified by an ordered k-
tuple of points in Rn, P1, P2, . . . , Pk with d(Pi, Pi+1) = li,
1 6 i 6 k − 1 and d(Pk, P1) = lk. The most useful cases
are when n = 2 or 3, but there is no added complexity in
doing the general case. In all dimensions, we show that the
configuration spaces are manifolds built out of unions of spe-
cific products (Sn−1)H × I(n−1)(k−2−H), over (specific) com-
mon sub-manifolds of the same form or the boundaries of such
manifolds. Once the topology is specified, it is indicated how
to apply these results to motion planning problems in R2.

1. Introduction

Polygonal circles in R2 or R3 with k-edges are called k-bar mechanisms in me-
chanical engineering, and they often arise with one of the edges fixed. In the latter
case they are called closed (k − 1)-chains. Generally the lengths of the edges are
assumed to be fixed, but if the length of one of the links is allowed to vary between
li and l′i, then this link is called a prismatic joint. The space of configurations,
particularly in the case of closed chains, is very important in areas like robotics
where motions of these mechanisms from an initial position to a final position -
often with special constraints like avoiding certain points or some self-intersections
- are objects of essential interest. Such motions are best regarded as paths in the
configuration space or suitable subspaces. We will describe these connections and
related problems in §2.
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Figure 1: Five bar mechanism with one prismatic joint

Equivalent forms of the configuration space and key subspaces: Let
B(l1, . . . , lk) denote the space of all configurations of closed chains with k links
in Rn, the first link of length l1, the second of length l2, etc. As described in the
abstract, each such configuration is given by an ordered k-tuple of points in Rn,
P1, . . . , Pk, where the vector P2 − P1 has length l1, P3 − P2 has length l2, etc.,
and lk−1 and P1 − Pk has length lk. These vectors are completely determined by
giving their lengths and the unit vectors ~e1, . . . , ~ek in their respective directions.
Conversely, a k-tuple of unit vectors (~e1, . . . , ~ek) ∈ (Sn−1)k and an initial point
P1 ∈ Rn determines an element of B(l1, . . . , lk) if and only if the vector sum

k∑
1

lj~ej = ~0.

Let D(l1, . . . , lk) ( (Sn−1)k be the set of k-tuples (~e1, . . . , ~ek) with
∑k

1 lj~ej =
~0. Then the remarks above show that there is a homeomorphism between Rn ×
D(l1, . . . , lk) and B(l1, . . . , lk). Consequently, since the exchange map, exchanging
the ith and jth coordinates in D(l1, . . . , lk), identifies

D(l1, . . . , li, . . . , lj , . . . , lk) with D(l1, . . . , lj , . . . , li, . . . , lk),

the order of the links does not matter if we know the initial point P1. On the other
hand, if we map the elements of B(l1, . . . , lk) to Rn by taking each configuration to
its initial point, P1, this is a (trivial) fibration with fiber the set of configurations
where P1 is fixed, B(l1, . . . , lk, P1). Thus, the initial point does not matter either,
and

B(lσ(1), . . . , lσ(k), P ) is homeomorphic to B(l1, . . . , lk, Q)

for any permutation σ of (1, . . . , k) and any two points P,Q in Rn.
The action of the Euclidian group on B(l1, . . . , lk): The oriented Euclidean
group of rigid motions, SEn = Rn : SOn, (where H : G is the semi-direct product
and the action of SOn on Rn is the usual one) acts on the configuration space
B(l1, . . . , lk) by

g(P1, . . . , Pk) = (g(P1), . . . , g(Pk)).

Writing B(l1, . . . , ln) = Rn ×B(l1, . . . , lk,~0), and g as the composition of a transla-
tion T and an element h ∈ SOn, we have that this action can be written as

(P, (~e1, . . . , ~ek)) 7→ (T (P ), h(~e1), . . . , h(~ek)))
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and the moduli space of these immersed polygonal circles is defined to be the quotient
of this action. In all dimensions it is the same as the quotient of B(l1, . . . , lk,~0) by
SOn.
The relationship between closed (k−1)-chains and B(l1, . . . , lk): B(l1, . . . , lk,~0)
projects to Sn−1 by taking (~e1, . . . , ~ek) to ~ek. This is a fibration with fiber the set
of configurations where ~ek is fixed, the configuration space of closed (k − 1)-chains,

C(l1, . . . , lk−1 | lk~ek).

The action of SOn on B(l1, . . . , lk) restricts to give an action of the subgroup SOn−1

that fixes ~ek on C(l1, . . . , lk−1 | lk~ek). Using this action, the fibration above,

C(l1, . . . , lk−1 | lk~ek)−−→B(l1, . . . , lk,~0)−−→Sn−1,

is the associated fibration to the usual bundle

SOn−1−−→SOn

π−−→Sn−1

where π(g) = g(~ex), and ~ex is the unit vector in the x-direction. Consequently, we
can write the fibration in the form

C(l1, . . . , lk−1 | lk~ex)−−→C(l1, . . . , lk−1 | lk~ex)×SOn−1 SOn−−→Sn−1 (1.1)

The fibration is trivial when n = 2 since SO1 = {1}, but is non-trivial for n > 3.
Note also that for n > 3 the space C(l1, . . . , lk−1 | lk~ex) is never free under the
action of SOn−1 since it will contain configurations that lie in an Rn−2 containing
~ex, which will be fixed under a copy of 1×SO2 ⊂ SOn−3×SO2 where SOn−3 fixes
the pair (Rn−2, ~ex) and the SO2 acts on the orthogonal R2.

Also, note that the quotient of B(l1, . . . , lk) by the Euclidian group is the quotient
of C(l1, . . . , lk−1 | lk~ek) by SOn−1, but only in the case where n = 2 can we identify
C(l1, . . . , lk−1 | lk~ek) with this quotient.
The configuration space of a closed chain: In this paper our focus is on the
spaces C(l1, . . . , lk−1 | lk~ex). Note that we can describe C(l1, . . . , lk−1 | lk~ex) as the
subspace of (Sn−1)k−1 consisting of vectors (~e1, . . . , ~ek−1) with

k−1∑
1

li~ei = −lk~ex.

Consequently the order of l1, . . . , lk−1 does not matter in C(l1, . . . , lk−1 | lk~ex). For
n > 3 we are not able to give a natural identification of the space

C(l1, . . . , lk−l | lk~ex) with C(l1, . . . , lk−2, lk | lk−1~ex),

but the triviality of the fibration in the previous paragraph when n = 2 implies
that there is a unique element of the Euclidian group SE2 that moves the ith link
so that its final point is ~0 and so that its initial point is on the negative x-axis. It
follows that order is entirely immaterial for the configuration space of closed chains
when n = 2.

Remark 1.2. In the case where all the lengths are fixed, if we rescale by multiplying
all the lengths by the same non-zero constant λ the configuration spaces and moduli
spaces are again homeomorphic. Consequently, we can assume that

∑k
1 li = 1, all
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the li > 0, and if we wish, that the lengths are given in increasing order except
possibly for the last link when n > 3. Unless otherwise stated the convention that∑

li = 1 will be in force for the remainder of this note whenever we discuss the
situation where all the lengths are fixed.

Definition 1.3. Assume that the li are normalized as above. Then we say that the
subset V = (li1 , li2 , . . . , lir

) consists of long links if and only if the sum of any two
lengths in V is greater than 1

2 .

The following lemma appears in [KM1] and shows that no real k-bar can have only
one long link:

Lemma 1.4. The ordered sequence 〈l1, l2, . . . , lk〉 with
∑k

1 li = 1 and li > 0 for all
i, has a non-empty configuration space in Rn, n > 2, if and only if each li 6 1

2 .

(The proof is elementary. The result is verified for k = 3 and then the proof for
k > 3 is a direct induction when one observes that for k > 3, there must be two
lengths li, lj with li + lj < 1

2 .)

Remark 1.5. It is also possible for the mechanism to have three long links li, lj , lk
so that the sum of any two is > 1

2 , though it is not possible to have four long links.
In the case of three long links we have the important result, [KM1]:

Theorem 1.6. For configurations of a k-bar mechanism with fixed lengths in R2

the configuration space is connected if and only if the mechanism does not have three
long links. Moreover in the case where the mechanism does have three long links,
then the configuration space has exactly two components and each component is a
torus (S1)k−3. (For Rn, n > 3, the moduli space is always connected.)

C(l1, . . . , lk−1 | lk~ex) is generically a closed manifold, but much more is true.

Theorem 1.7. Suppose given a closed (k−1)-chain with fixed lengths l1, l2, . . . , lk−1

and base length lk which is allowed to vary.

(a) Except for a finite number of choices for lk with lk <
∑k−1

1 lj, C(l1, . . . , lk−1

| lk~ek) is a closed compact manifold of dimension (n − 1)(k − 2) − 1, and is
connected for n > 3.

(b) Whenever C(l1, . . . , lk−1 | lk~ek) ⊂ (Sn−1)k is a manifold, it is the boundary
of a manifold W (n−1)(k−2) ⊂ (Sn−1)k which is given as a finite union of sub-
manifolds of the form

(Sn−1)s × I(n−1)(k−s−2),

each of which is taut in the sense that its integral homology injects to a direct
summand of H∗(W ;Z) and the sum of all the images is exactly H∗(W ;Z).
(The set of s that occur depend on the lengths in a fairly direct way and is
described in Theorem 1.12.)
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Figure 2: The (coordinate) union of two copies of S1 × I

This union is constructed as follows. Whenever two such pieces, (Sn−1)s1×
I(n−1)(k−s1−2) and (Sn−1)s2 × I(n−1)(k−s2−2), intersect, their intersection is a com-
mon (coordinate) sub-manifold of the form

(Sn−1)l × I(n−1)[(s1−l)+(s2−l)+k−s1−s2+l−2)] = (Sn−1)l × I(n−1)[k−l−2] (1.8)

with trivial normal bundle and, as indicated in 1.8, a certain number of the co-
ordinates in the normal bundle point in the direction of the first piece, while a
complementary set point in the direction of the second. Also, any two of these
sub-manifolds have at least one point in common, (Sn−1)0.
Here, coordinate sub-torus simply means that we fix a finite number of the product
coordinates in (Sn−1)k−1 and allow the remaining points to vary over all possible
values. Also, the structure of this finite union of sub-tori (shorthand for products
of spheres) is entirely explicit, consisting of a finite number of maximal sub-tori
together with all their possible intersections, and the set of maximal sub-tori is
given as a combinatorial function of the lengths. The precise descriptions are given
in Theorem 1.12, and the proof follows directly from 1.12. In turn, the proof of
1.12 will require all of sections 5 - 9, with introductory material given in sections
3 - 4.

Remark 1.9. In specific cases, it is quite direct to determine the exact structure of
these Wm.

Example 1.10. We give some examples for R2.

(a) If all the li, i < k, are equal, then the W k−2 are thickenings of the full s-
skeleton of (S1)(k−1) for s 6 [(k − 1)/2]. Compare [K1], [KTT], [KT], which
use very different techniques. (A thickening of X is a manifold M containing
X together with a deformation retraction of M to X.)

(b) If there are three long edges, W has the form

(S1)k−3 × I.

Moreover, from the description above, the intersection pairing is easily described
in any specific case. Applying the homology long exact sequence of the pair

(W, C(l1, . . . , lk−1 | lk~ex))
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and Poincaré duality, the intersection pairing determines H∗(C(l1, . . . , lk−1 | lk~ex),F),
so the homology structure of the configuration space of any closed chain can be re-
garded as completely understood.

We conclude this paragraph with a few remarks about the SOn−1 action on the
configuration space C(l1, . . . , lk−1 | lk~ex). A number of authors have shown that a
necessary and sufficient condition that SO2 act freely is that C(l1, . . . , lk−1 | lk~ex)
be a manifold when n = 3. Moreover, the configuration space fibers over the mod-
uli space with fiber S1, so the configuration space is homotopy equivalent to the
complement of the 0-section in a complex line bundle over the moduli space. In
this connection we note the following intriguing fact: in [KM2] it is shown that in
the case where the action of SO(2) is free, the quotient manifold has a complex
structure. It is natural to wonder if the line bundle above is actually holomorphic,
and what its interpretation with respect to this complex structure might be.

The configurations of closed chains with one prismatic joint: The key to
our analysis in 1.7 involves the analysis of the configuration spaces where the base
link lk~ex is allowed to vary in size 0 < a 6 lk 6 b. We denote these spaces

C(l1, . . . , lk−1 | m~ex, a 6 m 6 b).

When l1, . . . , lk−1 are fixed,

C(l1, . . . , lk−1 | m~ex, a 6 m 6 b)

is a manifold with boundary the disjoint union

C(l1, . . . , lk−1 | a~ex) t C(l1, . . . , lk−1 | b~ex)

except for a finite number of possible values for a and b with 0 < a < b <
∑k−1

1 lj .
(The exact values are given in 1.12(a).)

There is only one configuration with lk =
∑k−1

1 lj , the one where each ~ej = −~ex.
When b takes this value it turns out that C(l1, . . . , lk−1 | m~ex, a 6 m 6

∑k−1
1 lj)

is a manifold with boundary C(l1, . . . , lk−1 | a~ex) except for the finite number of
values for a when C(l1, . . . , lk−1 | a~ex) is not a manifold.

A reason for the importance of these configuration spaces is that the manifold

W (n−1)(k−2)

in Theorem 1.7 is identified with

C(l1, . . . , lk−1 | m~ex, lk 6 m 6
k−1∑
1

lj). (1.11)

In fact, we have

Theorem 1.12.

(a) W (n−1)(k−2) in 1.11 is a manifold with boundary if and only if there is no
subset {i1, . . . , ir} ∈ {1, . . . , k} so that 2

∑r
1 lij =

(∑k−1
1 lj

)
− lk

(b) If W (n−1)(k−2) in 1.11 is a manifold with boundary, then the set of coordinate
tori that occur as building blocks for W are in one to one correspondence with
the maximal subsets {i1, . . . , ir} ( {1, . . . , k− 1} so that 2

∑r
1 ij <

∑k
1 lj − lk.
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(c) For each maximal subset in 1.12(b), the corresponding building block is a prod-
uct (Sn−1)r×I(n−1)(k−r−2) ⊂ (Sn−1)k−1, and, in (Sn−1)k is homotopic to the
sub-product Sn−1

i1
× Sn−1

ir
given as the subspace of (Sn−1)k−1 where the coor-

dinates not in {i1, . . . , ir} are equal to ~ex.

Example with k = 5: We consider a mechanism consisting of 3 links of length 2,
3, and 4 based at ~0 and a link of length 1 based at (5, 0) joined to the endpoint of
the first three links. Here is the picture:
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circle about (5, 0)

9

5

3

1

The critical points for the based (2, 3, 4) mechanism are 9, a maximum, 5, 3 and
1. The little circle of radius 1 centered around (5, 0) has two arcs, the upper arc
and lower that join at (6, 0) and at (4, 0). Both go from a distance of 6 from the
center to a distance of 4 from the center, and both arcs pass transversally through
only one critical circle, the circle of radius 5 = 4 + 3− 2. In the outside region, the
boundary of the inverse image of each arc is a single circle, and the inside boundary
is two circles, with only one critical point between so each inverse image is a copy
of a single ”pair of pants,”
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and the entire configuration space is a genus two surface:

where the dashed lines indicate the points where the three circles on the two copies
of the pair of pants are identified.

As an alternative, we look at the mechanism with four links of length 1, 2, 3, 4
and with critical circles of radius 10 maximum, 8, 6, 4, 2 for one negative sign and
4, 2, 0 for 2 negative signs, so 4 has two critical circles above it. Then the path with
inverse image the manifold having boundary the configuration space for (1, 2, 3, 4|5)
starts at (10, 0) and goes along the x-axis to (5, 0). Along the way it crosses the
critical circles of radius 8 and 6, both assigned to just one negative link. Hence the
result is that the total space of the inverse image of this arc has the homotopy type
of the wedge of two circles. Applying Poincaré duality, the boundary is a surface
with homology that of the two-hole torus, so it is this surface.

In the special case where n = 2 we will show - as illustrated above - that we can
always realize

C(l1, . . . , lk−1 | lk~ex), l1 6 l2 6 · · · 6 lk

as the union of two copies of

C(l2, . . . , lk−1 | m~ex, lk − l1 6 m 6 min(lk + l1,

k−1∑
2

lj)) (1.13)

over their common boundary.

Theorem 1.14. Let n = 2. Suppose all the edges have fixed length, suppose that the
assumptions of the above theorem are satisfied, and suppose, moreover, that there
are two “long edges”, li and lj, (i 6= j), so that li + lj > 1

2 . Then the configuration
space for the associated k-bar mechanism is the double along the boundary of the
thickening given in 1.13.

As an example, when n = 2 and k = 5, if there are two long edges, the space
C(l1, . . . , l4 | l5~ex) is the double over the boundary of one of the manifolds in Figure
3 below.
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Figure 3: The manifolds W with boundaries C-spaces for 4-bars

In the remaining cases for n = 2 and k = 5 the configuration space is the double
over the boundary of one of the spaces in Figure 4.

Figure 4:

The proof of 1.12 is based on the careful analysis of the meaning of the critical
points of explicit Morse functions constructed on the inverse images of paths in the
subspace of Rn which is the image of the end-point map

(Sn−1)k−1, (~e1, . . . , ~ek−1) 7→
k−1∑
1

li~ei. (1.15)

The explicit descriptions of the configuration spaces given above allow for very
efficient motion planning in these thickened regions. Specifically, when the topology
of the region is sufficiently well understood, it is possible to construct efficient
(piecewise geodesic with very few breaks) paths in polynomial time, (roughly vk4)
where v is a constant that depends on the specific configuration space. Details are
discussed in section 3.

The determination of the extremal subsets of (1, . . . , k − 1) associated to the
lengths l1, . . . , lk for these regions can be done in roughly 23k very direct steps (best
possible in general, though when there are very few distinct lengths, the number
is much smaller). Of course, this calculation need only be done once for a given
mechanism. However, once one knows the configuration space in this detail, more
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efficient paths can be computed (piecewise geodesic with fewer breaks) than those
in the previous paragraph, which uses much less information about the topology of
the configuration space.

The authors have used these results to develop a complete program for motion
planning for closed chains that works in polynomial time1 independent of whether
the topology is well understood. The trade off is that these paths may be quite far
from optimal.

Closed k-chains are a special family of linkages. Over the years, quite a number
of papers have been written that deal with aspects of the problem of determining
the configuration spaces and moduli spaces of linkages. It is known, as was shown
by Thurston (unpublished, but see [KM3]), that the complexity of the full subject
is that of real algebraic geometry, though, as the results above show, the situa-
tion becomes much more manageable when we restrict to special families. Recently
the results of [KM1], [KM2], [KM3], provide a good review of previous work and
give a number of interesting results on the structure of these configuration spaces,
particularly the configuration spaces for closed chains in R2 and R3.

Worth special note is the work of J. C. Hausmann, also J. C. Housmann with
A. Knutson [Ha], [HK] who determine the cohomology rings of a number of these
spaces but not their detailed homotopy types. Also one should note the work of Y.
Kamiyama and a number of collaborators [K1], [K2], [K3], [KTT], [KT] who study
the case where all the edge lengths or all the edge lengths but one are the same by
different methods.

In further work, the authors discuss extensions of the results above to configura-
tion spaces for closed chains in the presence of obstacles and constraints. Also, we
would like to thank Steven Kaufman for the help and encouragement he gave us
throughout the development of these results.

2. Background

Kinematics is the study of the possible motions of systems of bodies coupled
mechanically through contact constraints. These constraints can be permanent, as
in the case of a hinge joint, or intermittent, as in the case of a ratchet mechanism.
A common problem in mechanism design is to choose the number of links and
their lengths, twists, and offsets, so as to allow a particular link to move (relative
to a given base link) from one configuration to another, possibly following some
specified rigid body motion. Currently, this design problem is solved taking little
or no advantage of the structure of the space of configurations of the mechanisms
under consideration. While some research results that leverage global structure of
the configuration spaces have appeared in the literature,2 common design practices
still tend to rely on iterative numerical procedures that use only local information.

1Here complete means that if it is possible to find a path from the initial configuration to the final
configuration, the program will construct one, and if it is not possible, the program will report
this as well.
2For example, Shukla and Mallik, [SM], developed a method to determine the existence of a crank
(a link that can rotate 360◦ relative to some other link in Watt and Stephenson chains (six-bar,
planar mechanisms with two loops)).
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As a result, the design process for mechanisms with even small numbers of joints is
tedious.

In the design of common one-degree-of-freedom mechanisms, such as the four-bar
linkage and crank and slider mechanisms, [H], current design tools are reasonably
powerful and efficient. However, the field of robotics has been placing increasingly
difficult demands on mechanism designers. Most robotic applications require more
degrees of freedom from mechanisms than current design tools can readily handle.
One challenging class of robotics problems requires the motion planning and control
of a closed-chain mechanism with many degrees of freedom. For example, a bomb-
disposal robot must be capable of moving to a door (behind which is a bomb), and
opening it. While the robot is opening the door, a closed kinematic chain is formed
that is composed of the robot arm and the door, connected to the ground at either
end. To open the door, one must understand the constraints imposed on the system
by the kinematic loop and be able to plan the motion of the system from an initial
state (the door is closed) to a goal state (the door is fully open).

Despite the fact that bomb-disposal and many other robotic tasks require good
designs and motion planning for closed kinematic chains, the state of the art is
surprisingly crude. The most effective robot motion planners today are built upon
randomized search techniques. [KLOS], [WXH]. However, individual randomized
techniques have wildly varying performance and are not complete; they are not
guaranteed to find a solution when one exists, nor can they determine that a solution
does not exist when that is the case. The theoretical basis for a complete general
motion planner was developed roughly 15 years ago, [C], but it has never been
implemented due to the complexity of the specified algorithms.

The work presented here represents a first step in the development of maximally
efficient, complete motion planners for robotic mechanisms. More importantly, the
work expands the field of theoretical kinematics. Previously, the only mechanisms
for which the global properties of configuration space were understood, were those of
planar mechanisms with very small numbers of joints (e.g., the four-bar mechanism).
Here we completely determine the global structure of configuration spaces of spatial
n-bar mechanisms, where n is arbitrary. The class of mechanisms considered are
those forming a single closed loop. For planar mechanisms, all joints are of the type
known as “revolute” (i.e., hinge joints); they constrain adjacent links in the loop
allowing only relative rotation about the axis of the joint. For spatial mechanisms,
all links are connected by “U”-joints (i.e., pairs of revolute joints with intersecting
axes). In addition, one link is allowed to change its length (i.e., the mechanism may
have one prismatic joint). While our analysis allows self-intersection of the links,
once the associated configuration space is understood, there are standard methods
in topology for dealing with restrictions on the embeddings so that, for example,
there are no self-intersections or the mechanisms do not intersect given closed sets
in R2 or R3. We will not discuss these techniques here, but will do so in subsequent
work.
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3. Planning Paths in the Configuration Space

Assume that we are given two points, A and B, in the configuration space of a
closed chain in Rn, with the last edge based at ~0 and lying on the x1-axis. Then the
space of paths from A to B is homotopy equivalent to the loop-space Ω(B(l1, . . . , lk))
(if A and B lie in the same path-component) or it is empty. Consequently, for k > 4
and n = 2, k > 3 and n = 3, or k > 2 for n > 3, if the loop space is not empty, then
there are many ways of moving from A to B. Given the non-uniqueness of paths
and the huge difficulty, in general, of determining geodesics between A and B, one
must identify the most important path attributes to guide their construction.

If any path between A and B will do, then one may proceed a step at a time.
Using 1.6, we can check whether we are dealing with a path connected space or one
that has two components. If there are two components, then they are distinguished
by the relative positions of the three long links. For example, if the long links are
l2, l3 and l4 (as in Figure 5), then P3 will be in one half-plane or the other relative
to l4.
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Figure 5: A four-bar mechanism with three long links.

In the two components case, (see 1.6), the configuration space is comprised of two
tori and the short links are free to move without constraints. Hence the motion
planning algorithm here is very simple: determine if A and B are in the same
component and, if so, move the short links in a straight line on the universal cover
of the torus from their configuration for A to their configuration for B.

In the case of a single path connected component, one can simply move one link
after another into the correct position, and then fix it. Having fixed a link, we can
lump it with the old base link to form a new base link leaving a closed chain with
one less link. The next move will be from the configuration just achieved, Ak, to
the original goal configuration, B. Before beginning the next move, however, one
checks the number of components in configuration space of the reduced chain. If
there are two components and Ak and B are in the same component, proceed as
in the previous paragraph. If they are not in the same component, we adjust the
previous move to ensure that the long links move into the correct relative position
before moving the next link into its correct final position.

Such algorithms take advantage only of our knowledge of the path components
and our ability to detect which component contains a given configuration. But we
also know much more about the geometry and topology of the configuration space
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than just the components. It turns out that the tori (Sn−1)s × pt ⊂ (Sn−1)s ×
I(n−1)(k−s−2) in our W ’s are very close to geodesic, so when design constraints
permit, it is quite efficient to locate one of these tori close to A, another close to B.
This done, one can plan the path by constructing a path in the poset of the (Sn−1)s

from the first torus to the other. Of course, this requires that one do a potentially
very long analysis of a certain set of critical radii given explicitly in the statement
of 1.12 and in more detail in 5.1. Algorithms for doing this can be extracted from
the discussion that follows 7.8.

4. Constructing Configuration Spaces of Closed Chains

In this section we restrict ourselves to R2. It is direct to extend the discussion
to Rn however, and we indicate the key changes as we proceed. Also, before we do
the analysis of the closed situation, we consider open chains (where one end-point
is allowed to vary but the other is fixed).

For open chains the structure of the configuration space is clear: a chain’s con-
figuration is determined by the successive angles between the edges, and between
the base edge and some fixed ray emanating from the base-point. Consequently, the
configuration space of an open chain with k segments is just the k-torus (S1)k, (for
Rn, the product (Sn−1)k).

We also need to consider the workspace of an open chain. This consists of all the
points in the plane that occur as the image of the free end-point of the chain.

1. In the case of an open chain with a single edge of length l, the workspace is
just the circle of radius l centered at the base-point. (In Rn it is the sphere
Sn−1 of radius l centered at the base-point.)

2. In the case of an open chain with two unequal edges the workspace is always
an annulus centered at the fixed end-point, with outer circle of radius l1 + l2
and inner circle of radius |l1 − l2|. (In Rn it is a product Sn−1 × I having the
same inner and outer radii as in R2.)
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Figure 6: Annular Workspace for Two-Edge Linkage

Here, it is also worth noting that there are exactly two configurations with a
given end-point as long as the end-point is in the interior of the annulus, while
the configurations on the boundary circles occur only when the two edges lie
on a single line through the base-point. In the case where the two edges have
equal length the workspace is the entire disk of radius 2l1, but the inverse
image of the base-point in the configuration space consists of an entire circle.
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3. The workspace for a general open chain with at least three links is either a
closed annulus or a closed disk centered at the origin. In both cases the outer
radius will be

∑
i li.

Let us consider the configuration space of closed chains with three segments, i.e.,
planar 4-bar mechanisms. To do this we consider simultaneously an open chain with
one edge of length l3 based at P4 and an open chain with two edges of lengths l1
and l2, based at P1. Assume, for the moment that P1 and P4 are further apart than
l1 + l2 + l3, so there is no configuration of the closed chain that connects P1 and P4.
Then start moving P4 towards P1 till the edges of the workspaces touch as shown
in Figure 7:
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Figure 7: Workspaces Just Touching

l3 l2 l1

P4 P1

Now there is a single solution – the three edges lie along the line containing P1 and
P4. Continue to move P4 towards P1, so the intersection of the workspaces is an
arc whose interior is completely contained in the interior of the annular workspace
of the 2-chain. (In Rn, n > 3, the intersection is a disc Dn−1 ⊂ Sn−1.) At each
interior point ~v of the arc there are exactly two configurations of the 2-chain at P1

with ~v locating the free end-point. (In Rn, n > 3 the configurations form an Sn−2

at each interior point of the Dn−1.) At each end-point of the arc there is only one
configuration of the 2-chain both in R2 and Rn with n > 3. Consequently, for the
region defined by

l1 + l2 > ||P1 − P4|| − l3 > |l1 − l2|

(provided that ||P1 − P4|| > l1 + l2 − l3) the configuration space is simply a circle
for n = 2, and Sn−1 more generally. (Four-bar mechanisms satisfying the condition
that their configuration space is a single circle are referred to as non-Grashof in the
engineering literature.)

The configuration space continues to be a circle, (Sn−1), as P4 moves towards P1

until either the arc of intersection touches the interior circle of the annulus (or P1
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when the interior circle is degenerate, i.e., l2 = l1), (which will occur if 2l3 > |l1−l2|)
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Figure 8: Workspaces Just Touching at Inner Boundary

or the intersection becomes the entire circle, with one point tangent to the outer
circle of the annulus (which can only happen if 2l3 < |l1 − l2|). Mechanisms with
this type of configuration space are known in the engineering literature as uncertain
since the inverse image of motion through the singular point given by three collinear
links bifurcates.
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Figure 9: Workspace Contained and Touching Outer Boundary

In both these cases the configuration space becomes a figure 8, while in the degen-
erate case (occurring when 2l3 = |l1− l2| > 0), we find that the configuration space
becomes the following graph:
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Figure 10: Three Loop Graph With Two Vertices

The remaining case occurs when the arc becomes tangent to the inner and outer
circles of the annulus simultaneously and the inner circle degenerates to the point
P1, i.e., l1 = l2 = l3. In this case the configuration space is a three vertex, six edge
graph, with four edges incident on each vertex.

As P4 continues to move towards P1 various possibilities now occur. The two
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most important are represented in continuing the situations in both Figure 8 and
Figure 9, where, in two different ways - as the circle crosses the inner radius in Figure
8, or becomes entirely contained in the interior of the annulus for Figure 9 - the
configuration space becomes two disjoint circles. In the engineering literature, this is
referred to as Grashof, and represents the usual way in which four-bar mechanisms
are applied. (Here is where the situation starts to significantly deviate between R2

and Rn, n > 3. For example, the generic situation for R3 is the sequence S3, S1 ×
S2, S3, RP3, while the corresponding sequence for R2 is S1, S1tS1, S1, S1tS1.)

The reader can easily list the remaining possibilities. A similar analysis can be
done for five bar mechanisms in R2, and such an approach is discussed in [KM1].
There are exactly six non-singular closed surfaces that appear as configuration
spaces for 5-bar mechanisms in R2, the surfaces of genus 6 4 and the disjoint
union of two copies of the torus S1 × S1. However, as the number of bars increases
or when n > 3, this approach becomes too complex, and we need more systematic
and powerful methods. (This is already evident for the 4-bar mechanisms in Rn,
n > 3 as the previous paragraph indicates.)

5. Generic points for the map to the workspace

The considerations above indicate that it should be possible to “bootstrap” from
k-bars to (k + 1)-bars, provided we understand the entire inverse map of the con-
figuration space for the lengths l1, l2, . . . , lk−1 in the sense that we know the inverse
images of all the points in the workspace. In doing the bootstrapping, we consider
the intersection of the circle of radius lk and the workspace, assuming that the cen-
ter of this circle is at distance lk+1 from the origin. The configuration space of the
(k + 1)-bar is the inverse image of this intersection.

Additionally, the considerations above indicate that there are certain critical
circles, (spheres Sn−1 for Rn), in the workspace, those circles where the inverse
image contains a configuration with all the edges collinear, and that the inverse
image will be non-singular unless the circle of radius lk is tangent to one of these
critical circles.

Both of these observations are true. In fact, even more is true. If we choose
an initial point on the circle and take the (signed) distance on the component of
the intersection of the circle of radius lk with the workspace that contains the
initial point, as a function on the inverse image of the configuration space, then this
function is locally Morse, with all its critical points contained in the inverse images
of the intersection of this circle with the critical circles in the workspace.

Here are the basic results.

Theorem 5.1. Let ~q be any point in the workspace of the open chain with lengths

〈l1, l2, . . . , lk〉,
then the inverse image (in the torus (Sn−1)k), of a point p in the workspace is an
(n− 1)(k− 1)− 1 dimensional manifold if and only if p is not on one of the spheres
centered at the center of the workspace having radius RI = |∑ li− 2

∑
j∈I lj | where

I ⊂ {1, 2, . . . , n} is any subset.
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Theorem 5.2. Suppose that γ is a rectifiable curve embedded in the workspace and
~0 6∈ γ. Then the inverse image of γ is non-singular manifold if and only if γ is
transverse to each of the critical spheres that it intersects.

(Here the critical circles and spheres are the spheres described in Theorem 5.1.)

Corollary 5.3. Let RI and RJ be adjacent critical radii, and W (I, J) the open
annulus (in R2) or open spherical shell (in Rn) between them, then the map of the
inverse image of W (I, J) onto W (I, J) is a fibration.

Remark. The exact structure of this fibration will be clarified in 6.5. There is an
action of SOn on W (I, J) defined in 6.3 with the key property 6.4 that enables us
to define these fibrations as bundles associated to the restricted action of SOn−1 on
the space e−1(w) for some w ∈ W (I, J). Such bundles are generically non-trivial,
but are trivial over any curve in W (I, J) for n > 2.

As a consequence, if the curve γ lies entirely in one of the W (I, J), then the
inverse image of γ is also a product I × V where V is the inverse image of an
arbitrary point in W (I, J), and it follows that any two embedded γ which lie entirely
in W (I, J) have diffeomorphic inverse images.

Theorem 5.4. Suppose that the curve γ in the workspace satisfies the properties
above for non-singularity of the inverse image. Then arc length on γ is locally a
Morse function on the inverse image, W , of γ, with critical points exactly the points
in W intersected with the critical spheres where all the edges are collinear.

In the next two sections we give the proofs.

6. The proofs of the general position theorems above

Lemma 6.1. The map e which sends an open chain with lengths l1, . . . , lk, based
at 0 to its endpoint has the following properties:
(a) It is real algebraic.

(b) The singular points of e are precisely the (n − 1)-spheres ( ~X1, ~X2, . . . , ~Xk)
in the configuration space (Sn−1)k where all the ~Xj are parallel, (so ~Xj =
(−1)εj ~X1, j = 2, . . . , k).

(c) e maps the singular set diffeomorphically onto a collection of spheres Sn−1

centered at the origin of radii |l1 +
∑k

i=2(−1)εi li| where the (k − 1)-tuples
(ε2, . . . , εk) run over all the 2(k−1) possibilities with each εi ∈ {0, 1}.

Example 6.2. If (l1, l2, l3, l4) = (1, 1.5, 2, 3) then there are exactly six critical radii,
.5, 1.5, 2.5, 3.5, 4.5 and 7.5 with 1.5 and 2.5 occurring in four distinct ways, and
each of the others in 2 distinct ways.

Proof. Sn−1 is real algebraic, so (Sn−1)k is as well. Moreover, the map e is given
explicitly as

e( ~X1, . . . , ~Xk) =
k∑
1

li ~Xi,
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and is consequently real algebraic.
We now consider the tangent map d(e). The tangent space to (Sn−1)k at

( ~X1, . . . , ~Xk) is the direct sum

τ ~X1
(Sn−1)⊕ τ ~X2

(Sn−1)⊕ · · · ⊕ τ ~Xk
(Sn−1),

and d(e) is just li × I on τ ~Xi
(Sn−1), where I is the inclusion τ ~Xi

(Sn−1) ( τ ~Xi
(Rn)

as the vector subspace ~X⊥
i . Clearly, since ~X⊥

i has codimension 1 in Rn, unless all
these subspaces are the same, the subspace of

τe( ~X1,..., ~Xk)(R
n)

spanned by these subspaces will be τe( ~X1,..., ~Xk)(R
n) itself, and the point will be non-

singular for e. But when all the images are the same, then ~X⊥
1 will be the image of

d(e) and the point will be singular.

Standard results for C∞ maps with compact inverse images of points show that
e is a fibration in any connected component of e((Sn−1)k) − Im(Sing(e)). Con-
sequently this is the case for each annular region between two successive critical
spheres. To understand these fibrations we need the action of On on (Sn−1)k de-
fined by

g( ~X1, . . . , ~Xk) = (g( ~X1), . . . , g( ~Xk)), (6.3)

for g ∈ On. A key property of this action is that

g(e( ~X1, . . . , ~Xk)) = e(g( ~X1), . . . , g( ~Xk))

so we have the commutative diagram

(Sn−1)k
g−−→ (Sn−1)kye

ye

Rn
g−−→ Rn

(6.4)

for each g ∈ On. As a consequence, if e( ~X1, . . . , ~Xk) = ~Y with ~Y 6= ~0 and On−1(~Y )
is the subgroup of On that fixes ~Y . It follows that On−1(~Y ) acts on e−1(~Y ) by
restriction. Also, note that On−1(~Y ) is conjugate to the usual On−1 ( On.

As an example, when k = 2 we know that for any point ~Y in the interior of the
image of e, e−1(~Y ) = Sn−2, and On−1 acts in the usual way on Sn−2 ( Rn−1. In
this case, the fibration is given as the associated fiber bundle with total space

Sn−2 ×On−1 On
∼= Sn−2 ×SOn−1 SOn

and projection

π : Sn−2 ×SOn−1 SOn−−→SOn−1\SOn = Sn−1

when restricted to any orbit sphere Sn−1 of On in V . This is the the tangent bundle
to Sn−1 and is non-trivial for n 6= 2, 4, 8, [A].
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More generally, if N = e−1(~Y ) for ~Y 6= 0 with ~Y ∈ Im(e), and k, n arbitrary,
then we can describe e−1(V ) as the product bundle

Id× π : I × (
N ×SOn−1 SOn

)−−→I × (SOn−1\SOn) = I × Sn−1

associated to the SOn−1 action on N .

Corollary 6.5. Let V be the open annular region between two successive critical
spheres in the situation above. Then the inverse image of V is a fibration over V .
The fibration is trivial, V × e−1(V ) if n = 2, but is usually non-trivial for n > 3.

Let γ be any rectifiable curve embedded in the workspace, and suppose that W
is the inverse image of γ under e. Thus W is generally a manifold of dimension
(n− 1)(k− 1) with boundary the disjoint union of the two manifolds e−1(γ(0)) and
e−1(γ(1)). More precisely we have

Corollary 6.6. Suppose that γ does not contain ~0. Then W is a differentiable
manifold if and only if γ intersects each critical sphere transversally. Moreover, if γ
satisfies these assumptions, then the set of critical points of the composition of the
length function on γ with e on W is exactly the set of ( ~X1, . . . , ~Xn−1) ∈ W where
all the ~Xi are collinear.

Proof. Under these assumptions the map e is transverse regular at every point of
γ, and this implies that the inverse image of γ, e−1(γ) = W , is a differentiable
manifold.

It is clear that de restricted to τv(W ) is onto τe(v)(γ) except possibly when
v is contained in the singular set of e. What needs to be checked is that de :
τv(W )−→τe(v)(γ) is the 0-map whenever v ∈ Sing(e)∩W . But since γ is transverse
to Im(Sing(e)) at such a v, and the image of de(τv((Sn−1)i) ⊂ τe(v)(Im(Sing(e))),
it follows that the image of de|τv(W ) must be ~0 in τe(v)(γ).

Thus we have shown that under the assumptions above, the length function sγf
restricted to W has isolated critical points. It remains to analyze the Hessian at
these critical points to prove that this function is Morse.

A key example: The curve we will study now is γ =




t
0
...
0


 in a neighborhood of

the singular image




|∑k
1(−1)εi li|

0
...
0


. Let W be the inverse image of γ for t in the

interval

(|
n∑
1

(−1)εi li| − δ, |
n∑
1

(−1)εi li|+ δ)

with δ > 0 appropriately small. On this W we have that the arc-length function is
simply the first coordinate of γ, t up to adding an appropriate constant.
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In a neighborhood of the critical point in W we have the following points in the
configuration space


(−1)ε1




√
1−m2

12 − · · · −m2
1n

m12

...
m1n


 , · · · , (−1)εk




√
1−m2

k2 − · · · −m2
kn

mk2

...
mkn







and the constraints that they lie in W are
∑k

1 ljmjs = 0 for 2 6 s 6 n. It follows
that we can take the mjs, 2 6 s 6 n, 2 6 j 6 k as local coordinates in W near the
critical point. In terms of these coordinates, the terms m12, . . . , m1n are given by

m1i = (−1)ε1+1
k∑
2

(−1)εj
lj
l1

mji, for 2 6 i 6 n.

Also, the arc-length function is given in the form

f(m22, . . . ,mkn) =
k∑

i=1

(−1)εi li

√
1−m2

i2 − · · · −m2
in, (6.7)

up to adding an appropriate constant.
The partial derivatives are

∂f

∂mij
= (−1)ε1+1l1

m1j√
1−m2

12 − · · · −m2
1n

∂m1j

∂mij
+ (−1)εi+1li

mij√
1−m2

i2 − · · · −m2
in

= (−1)εi
m1j√

1−m2
12 − · · · −m2

1n

li + (−1)εi+1li
mij√

1−m2
i2 − · · · −m2

in

and they are, as expected, all 0 at the point mij = 0, 2 6 i 6 k, 2 6 j 6 n.
Similarly, the second derivatives ∂2f

∂mij∂mvw
are 0 unless w = j, and

∂2f

∂mij∂mvj
= (−1)ε1+εi+εv+1 lilv

l1
+ δv,i(−1)εi+1li (6.8)

in the case where w = j. Here δv,i =

{
0 if v 6= i

1 if v = i.
. Thus the Hessian matrix, H, of

second partial derivatives is a block diagonal matrix of the form

H =




D 0 0 . . . 0
0 D 0 . . . 0
0 0 D . . . 0
...

...
...

. . .
...

0 0 0 . . . D




with D a (k− 1)× (k− 1) matrix and (−1)ε1+1l1 multiplied by the i− 1, v− 1 term
of D equal to

(−1)εi+εv lilv + δi,v(−1)ε1+εi lil1.
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Consequently, D is the sum of the diagonal matrix

C = (−1)ε1+1 1
l1




(−1)ε2+ε1 l1l2 0 0 . . . 0
0 (−1)j(3)l1l3 0 . . . 0
0 0 (−1)j(4)l1l4 . . . 0
...

...
...

. . .
...

0 0 0 . . . (−1)εk+ε1 l1lk




and the rank 1 matrix

RRt = (−1)ε1+1 1
l1




l22 (−1)ε2+ε3 l2l3 . . . (−1)ε2+εk l2lk
(−1)ε2+ε3 l2l3 l23 . . . (−1)ε3+εk l3lk

...
...

. . .
...

(−1)ε2+εk l2lk (−1)ε3+εk l3lk . . . l2k




where Rt = ((−1)ε2 l2, . . . , (−1)εk lk). Since RRt is rank 1, it follows that all the s×s
minors of RRt are 0 for k − 1 > s > 2. From this it is direct that

Det(D) = ± 1
l1

k∏
2

lj ×
(

k∑
1

(−1)εj lj

)

is non-zero. We have verified that f is Morse on this special γ.

We now complete the proofs of our main theorems by showing that this special
case implies the general case.

Let v ∈ W ∩ Sing(e) have image µ contained in the sphere of radius
∑k

1(−1)εi li
about ~0. Let µ ∈ γ = e(v). Then there is an open neighborhood of e(v) in γ, N , so
that

(1) at most one point in N has distance t from the origin (from the fact that N

is transverse to the sphere of radius
∑k

1(−1)εi li),

(2) there is a C∞ map λ : N−→SOn so that for each v ∈ N , λ(v)(v) is contained

in the curve




t
0
...
0


 above.

The corresponding action of λ(N) on e−1(N) = W1, (defined in 6.3), gives a diffeo-
morphism from e−1(N) to e−1(λ(N)), (because of 6.4), and the original arc-length
function on N is a composition h ◦ f ◦ λ with dh

dt > 1 at the image of v. But from
this, the Hessian with respect to arc-length on γ is the same as the Hessian on the
sample curve above multiplied by dh

dt evaluated at µ(e(v)). This completes the proof
of our main technical assertion, Theorem 5.4.
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7. The structure of inverse images of curves

It turns out that we do not need the exact index of these critical points. What
matters is how many of them there are in the inverse image of a given path in the
workspace. But before we get into these details we need to make a few remarks
about the dependence of these inverse images on the particular path, γ.

Throughout this section we assume that the inequalities among the l1, . . . , ln
required for the non-singularity of all the critical points are satisfied.

By assumption γ is differentiable and has transverse intersections with the critical
point spheres of the map from the free configuration space to the workspace. Assume
that γ has been parameterized by (scaled) arc-length and is thus given by a unique
differentiable map I−→e(W (l1, . . . , ln)). It follows that the union of these intersection
points forms a discrete labeled configuration of points in I, where the labeling is
by the radius of the particular critical sphere containing the image. Clearly, there
is a single constraint on this set - adjacent labeled points must either be labeled
by the same radius or by the next larger or smaller radius. But aside from this
constraint any finite, discrete configuration of labeled points can arise. We call the
resulting labeled configurations that actually arise admissible configurations. All
the admissible configurations are naturally ordered via the natural ordering of the
inverse images of the critical spheres in I, and thus, associated to each admissible
configuration there is a unique ordered sequence of radii of critical spheres.

Definition 7.1. Two admissible configurations are equivalent if and only if the
associated ordered sequences of radii of critical spheres are equal.

The following result is now direct from 5.3.

Theorem 7.2. Let γ1 and γ2 be two admissible curves in the workspace W (l1, . . . , ln)
with the same end-points which are not on the critical spheres. Then the inverse im-
ages of the two curves are diffeomorphic if their associated configurations of labeled
critical points are equivalent.

Remark 7.3. It is clear that one does not actually need the endpoints of the two
curves to be equal, merely that they lie in the interiors of the same annular regions
between adjacent critical radii.

Definition 7.4. A curve γ is monotone if the associated ordered sequence of critical
radii is monotone.

In the case of monotone curves, in order to understand the diffeomorphism type of
the associated inverse image, it is sufficient to assume that the curve is a segment of a
ray from the origin, and we will concentrate on monotone curves - and consequently,
segments on rays from the origin - in what follows.

Example 7.5. Suppose that the base is a prismatic joint, which, for simplicity, we
will assume simply means that the length of the base varies in the closed interval
[ln(0), lk(1)]. Then the resulting configuration space will be the inverse image of the
line segment

[lk(0), lk(1)]
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along the positive x-axis.

Example 7.6. Suppose that we are interested in the inverse image of xk with
0 < xk <

∑k−1
1 li along the x-axis, and suppose that xk is not a critical radius.

Then the configuration space C(l1, . . . , lk−1, xk) is non-singular and is the boundary
of the inverse image of the segment [xk, l1 + l2 + · · · lk−1].

Likewise, the union of the configuration spaces C(l1, . . . , lk(0)) and C(l1, . . . , lk(1))
is the boundary of the configuration space described in 7.5.

Example 7.7. When we bootstrap in the plane, and construct the configuration
space

C(l1, . . . , lk)

by taking the inverse image of the intersection of the circle centered at lk of radius
l1 with the free workspace for (l2, . . . , lk−1) we break the intersection up into two
pieces, the inverse image of the part of the circle above the x-axis and the inverse
image of the part of the circle below it. Both of these are monotone and consequently
diffeomorphic. We have just proved the following theorem:

Theorem 7.8. The configuration space of a closed chain in R2 is the double over
the boundary of the inverse image of a monotone path and hence a segment along
the x-axis.

Remark. Bootstrapping in Rn involves the inverse image of the intersection of an
(n − 1)-sphere, Sn−1, with the workspace. This inverse image also breaks up into
a union over the common boundary of two diffeomorphic pieces, one corresponding
to the upper hemisphere and one to the lower. But our current techniques only
enable us to identify the inverse images of curves γ and so the exact structure of
these inverse images for n > 2 are not really available in this way. However, by
using curves in the image of the configuration space for all k links we are able to
determine these spaces explicitly, though this description does not give them as
explicit doubles.

8. The homotopy types of the inverse images of curves

In §7 we reduced the analysis of the inverse image of any C∞ curve in the
workspace to the study of the inverse images of straight line segments. In this
section we consider the inverse image of the line segment S along the x1-axis from
some l > 0 to

∑
li, the radius of the workspace, where l is not a critical value. For

convenience let Ex be the unit vector pointing in the positive x1-direction in S.

Ex =




1
0
...
0


 .
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Suppose that rI ∈ S, is a critical radius. Note that if I ′ is the complement of I
- the set of j, 1 6 j 6 k with j 6∈ I - then rI′ is equal to rI , so we generally have
two different critical points for the same critical radius. To choose between them we
note that

∑

i∈I

−li +
∑

j 6∈I

lj = −

∑

s∈I′
−ls +

∑

w 6∈I′
lw


 6= 0

so only one choice of signs gives a positive signed sum. In the rest of this section,
we assume that the signed sum for I is the positive one. Consequently, for each I
with critical radius rI contained in S we have.

∑

i 6∈I

li −
∑

j∈I

lj = rI > 0, (8.1)

For each j ∈ I, the j-interval is parallel to the x1-axis and points inward.
For each such I we denote by T I the subspace (Sn−1)|I| contained in the con-

figuration space defined by setting the unit vectors which are not in I to be Ex,
while freely varying the links with i ∈ I. The image of the endpoint map e on T I

is an annulus or an n-ball centered about the point
∑

i6∈I liEx having outer radius∑
i∈I li.
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rI c

Figure 11: c =
∑

i 6∈I li

Thus, to each critical value rI in S there is associated a unique sub-coordinate
product (Sn−1)|I| in the total configuration space (Sn−1)k, and these T I fit together
in the sense that if J ⊂ I, then rJ ∈ S and T J ⊂ T I . Conversely, for each coordinate
sub-product (Sn−1)m contained in T I , there is a unique J so this sub-product is
T J .

Definition 8.2. The union of these T I , rI ∈ S, is written XS .
As constructed, XS does not lie in e−1(S). In fact, all that we can say about XS

at this point is that

(8.3) e(XS) is entirely contained in the positive half-ball of the workspace, that is
to say, the region consisting of all points with positive first coordinate, x1 > 0.

(8.4) The integral homology of XS is torsion free, has one generator for each rI ∈ S
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(in dimension |I|(n− 1)) and injects into the homology of the entire configu-
ration space.

(For 8.4 note that XS is a sub-complex of the CW -complex (Sn−1)k where Sn−1

is given as a cell complex having a single 0-cell, e0 = Ex, and a single (n− 1)-cell,
while (Sn−1)k is realized as the product CW -complex. We now indicate how to
construct a deformation of XS to a sub-complex of e−1(S).)

Recall the definition of the action SOn × (Sn−1)k−→(Sn−1)k defined in 6.3.

Lemma 8.5. There is a continuous map h : I ×XS−→SOn satisfying h|0 ×XS is
the identity in SOn, so that the one parameter family of embeddings

Pt : XS−−→(Sn−1)k

defined by Pt(v) = h(t, v)(v), satisfies P1(v) ∈ e−1(S) for all v ∈ XS.

Proof. The fibration,
SOn−1 −−→ SOny

Eval

Sn−1

(8.6)

where Eval(g) = g(Ex) for g ∈ SOn, is trivial over Sn−1 − (−Ex). Consequently,
there is a C∞ lifting L : Sn−1 − (−Ex)−→SOn so that
(1) Eval · L = Id,
(2) L(Ex) = Id ∈ SOn.

For an explicit lifting see, e.g., [ST].
For any point v ∈ XS , e(v) is in the positive half-ball, and, in particular e(v) 6= 0.

The unit vector from the origin pointing in the direction of e(v) consequently lies
in Sn−1 − (−Ex1). Moreover, there is a unique geodesic in Sn−1 − (−Ex1) between
this unit vector and Ex1 . Using these geodesics we obtain, in the obvious way, a
map λ : I ×XS−→Sn−1 − (−Ex1), so that λ(1, v) is the unit vector in the direction
of e(v) and λ(0, v) = Ex1 .

The map h in 8.5 is now defined as

h(t, v) = (L ◦ λ(t, v))−1.

Corollary 8.7. e−1(S) is homotopy equivalent to XS and is tautly embedded in
(Sn−1)k in the sense that the integral homology of e−1(S) embeds into the integral
homology of (Sn−1)k as a direct summand.

Proof. We have constructed an embedding of XS in e−1(S), and a homotopy of
this embedding to a CW -embedding of XS as a sub-complex of the usual cellular
decomposition of (Sn−1)k. Moreover, the integral homology of e−1(S) generated by
these cells forms a direct summand of H∗(e−1(S),Z). Consequently, we have shown
that every cell of XS ( e−1(S) is essential. On the other hand, there are exactly as
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many cells in XS as there are critical points in e−1(S) for the Morse function dis-
cussed in 6.6. Hence, we have accounted for all the cells needed to construct e−1(S),
and 8.7 follows. For n > 2 it follows that there are no (1)-cells in the decomposi-
tion, and the fundamental group π1(e−1(S)) = {1}. Consequently, the homology
isomorphism gives a homotopy equivalence using the Whitehead theorems. When
n = 2 we have to be a little more careful. Note that we can extend the embeddings
constructed in this section to embeddings of the normal bundles to the products
of spheres, (Sn−1)l, as open neighborhoods in e−1(S). (In the next section we will
show that these normal bundles are actually trivial but we don’t need this here.)
Since each of these products of spheres contains exactly as many critical points as
the sum of the dimensions of the homology groups of (Sn−1)l, the same is true for
the embedded normal bundle provided we make it sufficiently small.

The Morse flow associated to the Morse function can be assumed to stay within
this neighborhood in a sufficiently small neighborhood of the key critical point.
Then, by induction, one can argue that the attaching map of this top cell is the
usual one, attaching it as the top cell of the product of Sn−1-spheres. This completes
the proof.

Remark 8.8. It follows from 8.7 that the cohomology map

H∗((Sn−1)k,Z)−→H∗(e−1(S),Z)

is surjective (and explicit). Consequently, the cup-products in H∗(e−1(S),Z) are
entirely determined.

9. The normal neighborhoods of the T I ⊂ e−1(S).

As we have noted in 8.3, the unit vector from the origin in the direction of any
point in e(XS) always lies in the open right hemisphere. Hence, since XS is compact,
there is an ε > 0 so that this statement remains true if, instead of taking

(
∑

j 6∈I

lj)Ex +
∑

i∈I

liXi

to define our interior n-ball or annulus, we take the sum

(

∑

j 6∈I

lj)− t


 Ex +

∑

i∈I

liXi (9.1)

for 0 6 t 6 ε to define a new interior n-ball or annulus.
Now we restrict attention to just the links in the set J = {i | i 6∈ I}, and consider

the end-point map on their configuration space (Sn−1)|J|. Let R =
∑

j∈J lj be the
radius of the image of this end-point map. Let γJ ( the n-ball of radius R be the
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path 


R− t
0
0
...
0




(9.2)

for 0 6 t < ε with ε satisfying the condition above and also the condition that γ
only intersects the single singular image sphere of radius R. Since e−1(γJ) contains
only a single critical point, a maximum, it is a ball of dimension (n − 1)(|J | − 1),
D(n−1)(|J|−1). Consequently we have an explicit embedding

hI : MI(T I) ∼= D(n−1)|J| × T I ⊂ (Sn−1)k.

This embedded set has codimension (n − 1), so it is not open. But this is exactly
the codimension of e−1(S) in (Sn−1)k, so if it were to be contained in e−1(S) it
would be open there.

Let PI the the composition e ◦ hI .

PI : D(n−1)(|J|−1) × S(n−1)|I|−−→Rn.

It’s image is contained entirely in the subspace of image e with x1 > τ for a τ > 0.
Consequently, the map πI from Im(PI) to Sn−1 obtained by taking the unit vector
in the direction of the line from the origin to PI(w) for each w ∈ MI(T I), is
contained in Sn−1 − (−Ex), and we have a well defined map

λ : MI(T I)−−→SOn

defined as the composition L ◦ πI . As was the case with 8.5 we have

Lemma 9.3. The map

Λ: MI(T I)−−→(Sn−1)k

defined by Λ(w) = λ(w)−1PI(w) is a differentiable embedding MI(TI) ⊂ e−1(S).

This establishes the fact that the normal bundle to T I in e−1(S) is trivial. The
next thing to check is how two different T I and T I′ intersect the normal bundle to
T I∩I′ .

Lemma 9.4. Let I ′′ = I ∩ I ′, so we have

T I ∩ T I′ = T I′′ .

The following statements hold.

9.5 I ∪ I ′ 6= {1, 2, 3, . . . , k}.
9.6 Let

• K1 = I − {I ∩ I ′},
• K2 = I ′ − {I ∩ I ′},
• K3 be the compliment of I ∩ I ′ in {1, 2, . . . , k}.
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Then we can choose coordinates for the disk e−1(γI∩I′) in a sufficiently small neigh-
borhood of the point where all the vectors are equal so that the coordinates corre-
sponding to K1 ∪K2 are part of the coordinate set.

For 9.5 note that
∑k

1 lj − 2
∑

i∈I li > 0 and
∑k

1 lj − 2
∑

m∈I′ lm > 0. If I ∪
I ′ = {1, . . . , k}, then both the above equations cannot hold simultaneously. Thus
I ∪ I ′ 6= {1, . . . , k}.

For 9.6 note that 9.5 implies that K1 ∩ K2 = ∅ and K1 ∪ K2 ( K3. Let v ∈
{1, . . . , k} be contained in K3 − (K1 ∪K2). Let γ be the curve 9.2 for K3. Then γ
has codimension (n− 1) in the workspace so it is determined in a perhaps smaller
neighborhood of the extremal point

∑
j∈K3

ljEx1 by making an arbitrary single
coordinate a function of the remaining coordinates. In particular, we can choose
this coordinate to be the one corresponding to v. So 9.6 follows. ¤

Let K4 = {1, . . . , k} − I and let K5 = {1, . . . , k} − I ′. Both T I and T I′ contain
T I∩I′ , but it is not true that MI(T I) and MI′(T I′) are contained in MI∩I′(T I∩I′).
We now want to discuss the way that the normal bundles to the two products T I

and T I′ fit together in a neighborhood of T I∩I′ .

Theorem 9.7. Let MI∩I′(T I∩I′) = T I∩I′×RK1×RK2×RK4∩K5 where the factors
RK1 and RK2 are the coordinate planes of 9.6. Then the normal bundles NT I (T I×I′)
and NT I′ (T I×I′) span RK3 × RK4 at every point of T I∩I′ .

Proof. Let V be a small neighborhood of T I∩I′ in T I . Then the composition

(Λ)−1 ◦ P1 : V−−→MI∩I′(T I∩I′)

defined using Λ from 9.3 and P1 from 8.5 is what one expects on T I∩I′ but is not
quite expected on V − T I∩I′ . Thus, on coordinates associated to K1 the Xj are
close to Ex1 , but on K4 coordinates, all the Xv are equal, but not necessarily equal
to Ex1 , since we must have

∑

j∈K1

ljXj ⊕
( ∑

v∈K4

lv

)
Xv0 = tEx1 ,

for some positive value of t. Thus we can give coordinates for this region as the Xj ,
j ∈ K1, with the elements in K2 and K4 −K2 determined via the equations

∑

i∈K1

liXi +


 ∑

j∈K4

lj


 Xv0 = tEx1 .

Consequently, the τ coordinate in Xv0 is given as

−1∑
j∈K4

lj

∑

1∈K1

liXi,τ , 2 6 τ 6 n,

and we have
∂Xv0,τ

∂Xi,τ
=

−li∑
j∈K4

lj
.
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Let A1 =
∑

i∈K1
li, A2 =

∑
j∈K2

lj and A3 =
∑

w∈K3
lw. Then the Jacobian for the

embeddings of the two normal bundles to T I∩I′ in T I and T I′ has the form
(

I N
N ′ I

)
(9.8)

where the general form of N is (n−1) equal diagonal blocks, (one for each τ). Each
diagonal block has the form

N =
−1

A2 + A3




li1 li1 . . . li1
...

...
. . .

...
lir

lir
. . . lir




where i1, . . . ir are the coordinates in K1. There is a similar description for N ′. It
contains (n− 1) diagonal blocks, each of the form

N ′ =
−1

A1 + A3




lj1 lj1 . . . lj1
...

...
. . .

...
ljs ljs . . . ljs




where K2 = {j1, . . . , js}. The determinant of the matrix in 9.8 is the same as the
determinant of I−NN ′ where NN ′ is a square matrix consisting of (n−1) diagonal
blocks, each of the form

NN ′ =
A2

(A2 + A3)(A1 + A3)




li1 li1 . . . li1
...

...
. . .

...
lir lir . . . lir


 .

Since each diagonal block in NN ′ has rank 1 we directly calculate that the deter-
minant is (

1− A1A2

(A1 + A3)(A2 + A3)

)n−1

,

but this is (
A3(A1 + A2 + A3)

(A1 + A3)(A2 + A3)

)n−1

and is always non-zero.

Corollary 9.9. Given any two tori T I and T I′ in e−1(S), if T I∩I′ is the inter-
section torus, then locally the union M(T I) ∪ M(T I′) is obtained via a plumbing
construction where an appropriate collection of normal coordinates to T I over T I∩I′

are identified with the usual coordinates in T I′ .

Remark 9.10. When T I and T I′ have complementary dimensions then they intersect
in the single point where all the links point in the same direction. Thus, their cap
product will be 1.
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