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GALOIS THEORY AND DOUBLE CENTRAL EXTENSIONS

MARINO GRAN and VALENTINA ROSSI

(communicated by George Janelidze)

Abstract
We define a Galois structure between central extensions and

extensions in a Maltsev variety. By using the theory of commu-
tators we introduce double central extensions. We then prove
that the covering morphisms relative to this Galois structure
are precisely the double central extensions.

Introduction

The adjunction between the categories Grp of groups and Ab of abelian groups

Ab � �

inclusion
// Grp

abelianization

⊥
oo

gives rise to a natural Galois structure in the sense of the categorical Galois theory
of Janelidze [3]. This Galois structure Γ determines a class of homomorphisms,
called Γ-coverings, which turn out to be exactly the central extensions of groups,
i.e. the surjective homomorphisms of groups with kernel contained in the centre of
their domain. Accordingly, the theory of the central extensions is a special case of
the categorical Galois theory.

This correspondence between Γ-coverings and central extensions still holds in
any Maltsev variety [5], i.e. in any variety of universal algebras whose theory has
a ternary term p(x, y, z) such that p(x, y, y) = x and p(x, x, y) = y. The main tool
allowing this generalization to Maltsev varieties comes from the fact that, in this
context, there is a well-behaved theory of commutators [9] extending the notion of
commutator for normal subgroups in the category of groups.

In [4], another Galois structure Γ was defined starting from the adjunction be-
tween extensions (i.e. surjective homomorphisms of groups) and central extensions:

Centr(Grp)
U

// Ext(Grp).⊥
Foo

The left adjoint F : Ext(Grp) → Centr(Grp) sends an extension f : A → B to the
central extension F (f) : A

[K[f ],A] → B, where K[f ] is the kernel of f and [K[f ], A] is
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the usual commutator of subgroups. The Γ-coverings relative to this second Galois
structure also admit an elegant description in terms of the group-theoretic commu-
tator, which defines the double central extensions of groups [4].

In the present article we first define a Galois structure between the extensions
Ext(V) and the central extensions Centr(V) in any Maltsev variety V, which be-
comes the one defined by Janelidze when V = Grp. We then characterize the Γ-
coverings relative to this Galois structure in terms of two commutator conditions.
The equivalence of Γ-coverings and double central extensions gives to this last notion
its full meaning in any Maltsev variety V.

The paper is divided into the following sections:
1. Maltsev varieties and commutators
2. Galois structures
3. Galois structure of central extensions
4. Double central extensions
5. The characterization of Γ-coverings

In the first section we recall the definition of the commutator in a Maltsev variety
and some of its basic properties. In Section 2 we recall the basic notions of categorical
Galois theory. In Section 3 we construct a particular Galois structure Γ between
extensions and central extensions in a Maltsev variety, and we give a simplified
definition of Γ-covering. In Section 4 we define the double central extensions and
show that any Γ-covering is a double central extension. In the last section, thanks
to a method similar to the one used by Janelidze and Kelly in [5], we show the
equivalence of the notions of Γ-covering and double central extension.

1. Maltsev varieties and commutators

In this first section we briefly recall some basic properties of commutators in
Maltsev varieties. We adopt the categorical approach developed by Janelidze and
Pedicchio in [6]. We shall follow the presentation given by Janelidze and Kelly in
[5].

In the following V will denote a fixed variety of universal algebras. Let V be
determined by a fixed set of operators Ω = Ω0 ∪ Ω1 ∪ Ω2 . . . and a certain set of
identities. A variety V is Maltsev [9] if it has a ternary (possibly derived) operation
p(x, y, z) satisfying the identities

p(x, y, y) = x and p(x, x, y) = y.

Among the examples of Maltsev varieties there are groups, where a Maltsev op-
eration is given by p(x, y, z) = x · y−1 · z, abelian groups, quasigroups, rings, Lie
algebras, Heyting algebras and crossed modules.

Let us recall a classical result on Maltsev varieties [8],[9]:

Theorem 1.1. Let V be a variety. Then the following conditions are equivalent:
1. V is a Maltsev variety;
2. any reflexive homomorphic relation in V is a congruence;
3. for any congruences R and S on any algebra A, R ∨ S = R ◦ S.



Homology, Homotopy and Applications, vol. 6(1), 2004 285

The following characterization of Maltsev varieties will be also needed:

Proposition 1.2. [2] Let V be a variety. Then V is a Maltsev variety if and only
if the following property holds: given a pushout of surjective homomorphisms r and
s

D

r

ÃÃ

s

&&

w

##
C ×B A

πC

²²

πA

// A

v

²²
C

u // B

the comparison arrow w to the pullback of u and v is a surjective homomorphism.

Any Maltsev variety is congruence modular. This means that the lattice of con-
gruences on any algebra A in V is modular, i.e. R ∧ (S ∨ T ) = (R ∧ S) ∨ T for any
congruences R, S and T on A such that T 6 R.

Maltsev varieties provide a very rich context in which one can develop the theory
of commutators of congruences. We shall adopt the definition of the commutator
given in [5] (see also [6]):

Definition 1.3. For an algebra A in a Maltsev variety V and congruences R and S
on A, the commutator [R,S] is the smallest congruence on A such that the function

{(x, y, z) ∈ A3 | (x, y) ∈ R and (y, z) ∈ S} 7→ A/[R, S],

sending (x, y, z) to the [R, S]-class of p(x, y, z), is a homomorphism of algebras.

This definition does not depend on the choice of the Maltsev operation p in
the theory of the variety. Moreover, it does coincide with the classical definition
introduced by Smith [9].

Remark 1.4. Looking at the Definition 1.3 and at Theorem 1.1.2, one can see, as
remarked by Janelidze and Kelly [5], that the commutator [R, S] of two congruences
R and S on an algebra A can be described as the subalgebra of A × A generated
by all pairs (u, v)

u = p(s(x1, . . . , xn), s(y1, . . . , yn), s(z1, . . . , zn))
v = s(p(x1, y1, z1), . . . , p(xn, yn, zn))

for some n-ary operator s in a fixed signature of V, for p a Maltsev operation, and
for elements x1, . . . , xn, y1, . . . , yn, z1, . . . , zn of A having each (xi, yi) in R and each
(yi, zi) in S (for i = 1, 2, . . . n).

Here there are some basic properties of the commutator:
1. [R, S] = [S,R];
2. [R, S] 6 R ∧ S;
3. S 6 T ⇒ [R, S] 6 [R, T ];
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4. [R, S ∨ T ] = [R, S] ∨ [R, T ];

5. if f : A → B is a surjective homomorphism, then f([R, S]) = [f(R), f(S)],

where f(R) denotes the image of the congruence R along f×f : A×A → B×B. Re-
mark that f(R) actually is a congruence by Theorem 1.1.2. For any homomorphism
f : A → B, let R[f ] be its kernel congruence, i.e.:

R[f ] = {(x, y) ∈ A×A | f(x) = f(y)}.
We shall also use the property 5 of the commutator in the equivalent formulation

5′. f−1[T, U ] = R[f ] ∨ [f−1(T ), f−1(U)]
where T and U are congruences on B, f−1(T ), f−1(U) and f−1[T, U ] are the re-
spective inverse images.

By an extension (A, fA) of an algebra A0 is simply meant a surjective homomor-
phism fA : A1 → A0 in the variety V. From now on we shall denote by ∆ and ∇
the smallest and the largest congruence on a fixed algebra, respectively.

Definition 1.5. An extension (A, fA) is central if [R[fA],∇] = ∆.

Let Ext(V) be the category of extensions in V: an arrow α from (A, fA) to
(B, fB) in Ext(V) is given by a pair (α1, α0) of homomorphisms in V such that
fBα1 = α0fA:

A1 α1
//

fA

²²

B1

fB

²²
A0

α0
// B0

Let Centr(V) be the full subcategory of Ext(V) with objects all central extensions
in V. By using the properties of the commutator, one can see that Centr(V) is a
reflective subcategory of Ext(V) (see [5], Remark 4.4), which will be displayed as

Centr(V)
U

// Ext(V).⊥
Foo

The (A, fA)-component of the unit of this adjunction is given by the arrow

(η1
A, 1A0) : (A, fA) → F (A, fA) :

A1
η1

A//

fA

²²

A1

[R[fA],∇]

²²
A0 A0

We shall often write F (fA) : F (A1) → A0 for the induced right-hand vertical arrow
in the diagram here above.
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2. Galois structures

In this section we recall the notion of Galois structure as defined by Janelidze in
[3] and [4].

Let C be a category with pullbacks, and E a class of morphisms in C containing
all isomorphisms, closed under composition and stable under pullbacks. For a fixed
(C, E), we write C ↓ B for the comma category over B, with B an object in C, and
E(B) for its full subcategory whose objects are arrows σ : C → B in E .

Given an arrow σ : C → B in E there is the composition functor Wσ : E(C) →
E(B) defined by (A,α) 7→ (A, σα). Under our assumptions, Wσ has a right adjoint
Gσ : E(B) → E(C), the pullback functor along σ, defined by the assignment:

(A,α) 7→ (C ×B A, πC).

Let us then recall from [4]:

Definition 2.1. A Galois structure Γ consists of an adjunction

X
U

// C⊥
Foo

and classes E and Z of morphisms of C and X , respectively, such that:

1. (C, E) satisfies the conditions above;

2. (X ,Z) satisfies the same conditions;

3. F (E) ⊂ Z;

4. U(Z) ⊂ E ;

5. the counit ε is an isomorphism;

6. each component ηC of the unit η belongs to E .

In this case we shall write Γ = ((X ,Z), (C, E), U ` F ). Given an object C in C, we
call FC : C ↓ C → X ↓ F (C) the functor induced by F , and UC : X ↓ F (C) → C ↓ C
its right adjoint. This latter is defined as follows: to any (X,ϕ) in X ↓ F (C), it
associates (C ×UF (C) U(X), πC) in C ↓ C, where the pullback is the following:

C ×UF (C) U(X)
πU(X)//

πC

²²

U(X)

U(ϕ)
²²

C ηC

// UF (C)

We denote by FC,Γ : E(C) → Z(F (C)) and UC,Γ : Z(F (C)) → E(C) the functors
induced by FC and UC , respectively.
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Definition 2.2. Let (A, α) and (C, σ) be two objects in E(B). We say that (A,α)
is split over (C, σ) with respect to Γ if the canonical commutative diagram

C ×B A
ηC×BA//

πC

²²

F (C ×B A)

F (πC)

²²
C ηC

// F (C)

is a pullback.

Definition 2.3. Let (A,α) be in E(B). (A,α) is a Γ-covering if there exists a (C, σ)
in E(B) satisfying the following conditions:

1. (A,α) is split over (C, σ) with respect to Γ;
2. the counit εC,Γ : FC,ΓUC,Γ → 1Z(F (C)) is an isomorphism;
3. the functor Gσ : E(B) → E(C) is monadic.

The full subcategory of E(B) with objects all Γ-coverings is denoted by Spl(Γ, B).

3. Galois structure of central extensions

In this section we are first going to show that, in any Maltsev variety V, the
adjunction

Centr(V)
U

// Ext(V)⊥
Foo

gives rise to a Galois structure.
Let us first define the following class E of morphisms in Ext(V): an arrow

(α1, α0) : (A, fA) → (B, fB)

A1 α1
//

fA

²²

B1

fB

²²
A0

α0
// B0

belongs to E if:
1. α1 and α0 are surjective homomorphisms in V;
2. the canonical morphism 〈fA, α1〉 : A1 → A0×B0B1 to the pullback is surjective

in V.
We denote by Z the class of morphisms in Centr(V) satisfying the same condi-

tions as the class E above.

Theorem 3.1. ((Centr(V),Z), (Ext(V), E), U ` F ) is a Galois structure.

Proof. The forgetful functor U : Centr(V) → Ext(V) has a left adjoint F : Ext(V) →
Centr(V), as we recalled at the end of the first section. The category Ext(V) has
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pullbacks: indeed, given two arrows (α1, α0) : (A, fA) → (B, fB) and
(σ1, σ0) : (C, fC) → (B, fB) in Ext(V), consider the following diagram

C1 ×B1 A1
πA1 //

f̃

ÄÄ

πC1

²²

A1

α1

²²

fA

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

C0 ×B0 A0
πA0 //

πC0

²²

A0

α0

²²

C1 σ1
//

fC

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
B1

fB

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

C0 σ0
// B0

where the front and the back squares are pullbacks in V. One can factorize the
arrow f̃ : C1×B1 A1 → C0 ×B0 A0 as a surjective homomorphism f : C1×B1 A1 →
I followed by an injective homomorphism. The pullback of (α1, α0) : (A, fA) →
(B, fB) and (σ1, σ0) : (C, fC) → (B, fB) is given by the extension f . Remark that,
when at least one of the arrows (α1, α0) and (σ1, σ0) is in E , then f̃ = f . The
pullbacks also exist in Centr(V), and they are constructed in the same way.

One can check that both classes Z and E contain all the isomorphisms, are stable
under composition and under pullbacks; moreover, F (E) ⊂ Z and U(Z) ⊂ E . The
counit ε is an isomorphism because Centr(V) is a full subcategory of Ext(V). The
(A, fA)-component of the unit of the adjunction U ` F clearly belongs to E , as one
can see by looking at the following diagram:

A1

fA

ÀÀ

η1
A

''
η1

A

""
A1

[R[fA],∇]

F (fA)

²²

A1

[R[fA],∇]

F (fA)

²²
A0 A0

Convention. From now on, we shall only consider the special Galois structure

((Centr(V),Z), (Ext(V), E), U ` F )

in Theorem 3.1.



Homology, Homotopy and Applications, vol. 6(1), 2004 290

With the same notations as in Section (2), we have the following

Lemma 3.2. Let (C, σ) be any object in E(B). Then:
1. the counit εC,Γ : FC,ΓUC,Γ → 1Z(F (C)) of the adjunction UC,Γ ` FC,Γis an

isomorphism;
2. the pullback functor Gσ : E(B) → E(C) is monadic.

Proof. (1) Let (X,ϕ) be an object in Z(F (C)), and let (C ×F (C) X, f) be the
extension obtained by taking the pullback in Ext(V) of (ϕ1, ϕ0) and the (C, fC)-
component (η1

C , 1C0) of the unit of the adjunction U ` F .
The (X, ϕ)-component of the counit εC,Γ is a pair of arrows (εC,Γ

ϕ1 , 1X0). In order

to prove that εC,Γ
ϕ1 is an isomorphism, consider the following diagram

C1 ×F (C1) X1

(1)πC1

²²

η // F (C1 ×F (C1) X1)

F (πC1 )

²²

εC,Γ
ϕ1

// X1

ϕ1

²²
C1

η1
C

// F (C1)
1F (C1)

F (C1)

where η = η1
C×F (C)X

. Since εC,Γ
ϕ1 η = πX1 , it follows that εC,Γ

ϕ1 is surjective. In

order to prove that εC,Γ
ϕ1 is an isomorphism, it is sufficient to show that the kernel

congruences R[η] and R[πX1 ] are equal. Of course, R[η] 6 R[εC,Γ
ϕ1 η] = R[πX1 ]. To

prove the converse inclusion, first observe that R[πC1 ]∧R[πX1 ] = ∆ because πC1 and
πX1 are the projections of a pullback. Then the inequality R[η] 6 R[πX1 ] together
with the modularity of the lattice of congruences in V gives:

R[η] = R[η] ∨ (R[πC1 ] ∧R[πX1 ]) = (R[η] ∨R[πC1 ]) ∧R[πX1 ] = R[πX1 ].

The last equality follows from the fact that the square (1) is a pushout in V (which
can be deduced from the property 5 of the commutator in a Maltsev variety), so
that

R[πX1 ] 6 R[ϕ1πX1 ] = R[η1
CπC1 ] = R[η] ∨R[πC1 ].

(2) For i = 0, 1 the pullback functor Gσi

: V ↓ Bi → V ↓ Ci is monadic [7]. From
this it follows easily that the pullback functor Gσ : E(B) → E(C) along σ = (σ1, σ0)
is also monadic.

Thanks to the previous Lemma, when Γ = ((Centr(V),Z), (Ext(V), E), U ` F ),
the Definition 2.3 of a Γ-covering can be simplified:

Definition 3.3. Let (A,α) in E(B):

A1 α1
//

fA

²²

B1

fB

²²
A0

α0
// B0
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(A,α) is a Γ-covering if there exists a (C, σ) in E(B) such that

C1 ×B1 A1
η1

C×BA //

πC1

²²

F (C1 ×B1 A1)

F (πC1 )

²²
C1

η1
C

// F (C1)

is a pullback in V.

4. Double Central Extensions

In this section we define double central extensions and prove that any Γ-covering,
as defined in the previous section, is a double central extension.

Definition 4.1. Let V be a variety. A double extension (A,α) of (B, fB) is an
element in E(B). This means that in the commutative square

A1

(2)

α1
//

fA

²²

B1

fB

²²
A0

α0
// B0

the homomorphisms α1 and α0 are surjective, as well as the canonical morphism
〈fA, α1〉 : A1 → A0 ×B0 B1 to the pullback.

Definition 4.2. Let V be a Maltsev variety. A double extension (A, α) of (B, fB)
is called a double central extension if the following conditions are satisfied:

1. [R[α1], R[fA]] = ∆;

2. [R[α1] ∧R[fA],∇] = ∆.

Remark 4.3. Let us first notice that a double extension (2) as in Definition 4.1 is
central whenever the arrow fA is a central extension (in the sense of Definition 1.5).
Consequently, in order to prove that any Γ-covering is a double central extension it
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suffices to show that in any pullback diagram:

C1 ×B1 A1
πA1 //

f

ÄÄ

πC1

²²

A1

α1

²²

fA

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

C0 ×B0 A0
πA0 //

πC0

²²

A0

α0

²²

(3)

C1 σ1
//

fC

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
B1

fB

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

C0 σ0
// B0

in Ext(V) with (C, σ) in E(B), the double extension (A, α) is central if and only if
the double extension (C ×B A, πC) is central. This is exactly what we are going to
prove in the rest of this section.

We begin with the following observation:

Lemma 4.4. With the same notations as in diagram (3):

πA1(R[πC1 ] ∧R[f ]) = R[α1] ∧R[fA].

Proof. One always has that

πA1(R[πC1 ] ∧R[f ]) 6 πA1(R[πC1 ]) ∧ πA1(R[f ]) = R[α1] ∧R[fA],

where the equality follows from the fact that σ is an arrow in E . Conversely, let
(a1, a2) be in R[α1] ∧ R[fA], and let us call b = α1(a1) = α1(a2). There exists a c0

in C0 such that σ0(c0) = fB(b). Once again, since σ is in E , there exists c1 in C1

such that σ1(c1) = b and fC(c1) = c0. Therefore the element ((c1, a1), (c1, a2)) is in
R[πC1 ] ∧R[f ], and R[α1] ∧R[fA] 6 πA1(R[πC1 ] ∧R[f ]), as desired.

Proposition 4.5. With the same notations as in diagram (3): if (C ×B A, πC) is
a double central extension, then (A,α) is a double central extension.

Proof. The first property in the Definition 4.2 of double central extension follows
from the property 5 of the commutator: indeed, from [R[πC1 ], R[f ]] = ∆ one has
that

[R[α1], R[fA]] = [πA1(R[πC1 ]), πA1(R[f ])] = πA1([R[πC1 ], R[f ]]) = ∆.
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The previous Lemma and the condition [R[πC1 ] ∧ R[f ],∇] = ∆, together with the
property 5 of the commutator, imply that:

[R[α1] ∧R[fA],∇] = [πA1(R[πC1 ] ∧R[f ]),∇] = πA1([R[πC1 ] ∧R[f ],∇]) = ∆.

Lemma 4.6. Let f : A → B be a surjective homomorphism, and let R and S be
congruences on A such that S ∧R[f ] = ∆. If [f(R), f(S)] = ∆, then [R,S] = ∆.

Proof. We first show that, under our assumptions, [R, S] 6 R[f ]. By property 5′ in
Section 1 we have:

R[f ] ∨ [f−1(f(R)), f−1(f(S))] = f−1([f(R), f(S)]) = f−1(∆) = R[f ].

Therefore, by property 3 of the commutator:

R[f ] > [f−1(f(R)), f−1(f(S))] > [R, S].

By the property 2 of the commutator, we have that [R,S] 6 R ∧ S, thus:

[R, S] 6 (R ∧ S) ∧R[f ] = R ∧ (S ∧R[f ]) = ∆.

Proposition 4.7. With the same notations as in diagram (3): if (A,α) is a double
central extension, then (C ×B A, πC) is a double central extension.

Proof. By assumption [R[α1], R[fA]] = ∆ and [R[α1] ∧R[fA],∇] = ∆.
Moreover, since

R[πC1 ] ∧R[πA1 ] = ∆,

and

[πA1(R[πC1 ]), πA1(R[f ])] = [R[α1], R[fA]] = ∆,

the previous Lemma implies that [R[πC1 ], R[f ]] = ∆. Similarly,

[πA1(R[πC1 ] ∧R[f ]), πA1(∇)] = [R[α1] ∧R[fA],∇] = ∆.

Again by applying the previous Lemma, it follows that:

[R[πC1 ] ∧R[f ],∇] = ∆.

Theorem 4.8. Any Γ-covering is a double central extension.

5. The characterization of Γ-coverings

We are now going to show that the Γ-coverings are exactly the double central
extensions.

Theorem 5.1. Any double central extension is a Γ-covering.
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Proof. Let (A,α) be a double central extension. Consider the pullback of (A,α)
along itself:

A1 ×B1 A1
π2 //

f

ÄÄ

π1

²²

A1

α1

²²

fA

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

A0 ×B0 A0
p2 //

p1

²²

A0

α0

²²

A1 α1
//

fA

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
B1

fB

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ

A0 α0
// B0

Remark that by Proposition 4.7 the left-hand double extension in the cube above
is central, that is

[R[π1], R[f ]] = ∆, (1)

[R[π1] ∧R[f ],∇] = ∆. (2)

In order to prove that (A,α) is a Γ-covering, we must show that the canonical
commutative square

A1 ×B1 A1
η1

A×BA //

π1

²²

F (A1 ×B1 A1)

F (π1)

²²
A1

η1
A

// F (A1)

is a pullback. Clearly, this square is a pushout of surjective homomorphisms because
π1 and F (π1) are naturally split. Since V is a Maltsev variety, by Proposition 1.2
the comparison arrow w : A1 ×B1 A1 → A1 ×F (A1) F (A1 ×B1 A1) is a surjective
homomorphism. Consequently, to prove that it is a pullback it suffices to show
that:

R[π1] ∧R[η1
A×BA] = ∆.

By definition of the functor F , this means that (A,α) is a Γ-covering if and only if

R[π1] ∧ [R[f ],∇] = ∆. (3)



Homology, Homotopy and Applications, vol. 6(1), 2004 295

The claim of the Theorem reduces then to the implication (1) + (2) ⇒ (3).
Let us denote by δ : A1 → A1 ×B1 A1 the unique homomorphism such that

π1δ = 1A1 = π2δ.
By Remark 1.4 the condition (1) says that, for any n-ary term s and any Maltsev

operation p the elements

u = p(s(x1, . . . , xn), s(y1, . . . , yn), s(z1, . . . , zn)) (4)
v = s(p(x1, y1, z1), . . . , p(xn, yn, zn)) (5)

are equal whenever π1(xi) = π1(yi) and f(yi) = f(zi) for i = 1, . . . , n.
In the same way, the condition (2) means that u = v whenever π1(xi) = π1(yi)

and f(xi) = f(yi) for i = 1, . . . , n.
Let us define a function +: (A1 ×B1 A1)× (A1 ×B1 A1) → A1 ×B1 A1 by setting

u + v = p(u, δπ1(u), δπ1(v)).

If (u, v) belong to R[π1], we have:

u + v = p(u, δπ1(u), δπ1(v)) = p(u, δπ1(u), δπ1(u)) = u.

To prove (3), it will be sufficient to show that u+v = v for each (u, v) in [R[f ],∇].
The proof will consist of two steps. In the first step we shall prove that u+ v = v

for any “generator” (u, v) of the commutator [R[f ],∇]. In the second step we shall
extend the equality u + v = v to any (u, v) in [R[f ],∇].

FIRST STEP:
Let (u, v) be a generator of the commutator [R[f ],∇], i.e. u and v can be written

as in (4) and (5) with f(xi) = f(yi) for i = 1, . . . , n.
Let us calculate u + v:

u + v = u + p(s(x1, . . . , xn), s(x1, . . . , xn), v)
= p(u, δπ1(u), δπ1p(s(x1, . . . , xn), s(x1, . . . , xn), v))
= p(p(s(x1, . . . , xn), s(y1, . . . , yn), s(z1, . . . , zn)),

δπ1p(s(x1, . . . , xn), s(y1, . . . , yn), s(z1, . . . , zn)),
δπ1p(s(x1, . . . , xn), s(x1, . . . , xn), v)).

By taking into account the fact that δπ1 is a homomorphism, this becomes:

= p(p(s(x1, . . . , xn), s(y1, . . . , yn), s(z1, . . . , zn)),
p(δπ1s(x1, . . . , xn), δπ1s(y1, . . . , yn), δπ1s(z1, . . . , zn)),
p(δπ1s(x1, . . . , xn), δπ1s(x1, . . . , xn), δπ1(v))).

Here the condition (1) can be applied, giving:

(∗) = p(p(s(x1, . . . , xn), δπ1s(x1, . . . , xn), δπ1s(x1, . . . , xn)),
p(s(y1, . . . , yn), δπ1s(y1, . . . , yn), δπ1s(x1, . . . , xn)),
p(s(z1, . . . , zn), δπ1s(z1, . . . , zn), δπ1(v))).

We now analyse separately the three components in the last expression (∗).
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First,

p(s(x1, . . . , xn), δπ1s(x1, . . . , xn), δπ1s(x1, . . . , xn)) = s(x1, . . . , xn)
= s(x′1, . . . , x

′
n)

with x′i = xi. Secondly,

p(s(y1, . . . , yn), δπ1s(y1, . . . , yn), δπ1s(x1, . . . , xn))
= p(s(y1, . . . , yn), s(δπ1(y1), . . . , δπ1(yn)), s(δπ1(x1), . . . , δπ1(xn)))

(6) = s(p(y1, δπ1(y1), δπ1(x1)), . . . , p(yn, δπ1(yn), δπ1(xn)))
= s(y′1, . . . , y

′
n)

with y′i = p(yi, δπ1(yi), δπ1(xi)). The equality (6) follows from the condition (1).
Thirdly,

p(s(z1, . . . , zn), δπ1s(z1, . . . , zn), δπ1s(p(x1, y1, z1), . . . , p(xn, yn, zn)))
= p(s(z1, . . . , zn), s(δπ1(z1), . . . , δπ1(zn)), s(δπ1p(x1, y1, z1), . . . , δπ1p(xn, yn, zn)))

(7) = s(p(z1, δπ1(z1), δπ1p(x1, y1, z1)), . . . , p(zn, δπ1(zn), δπ1p(xn, yn, zn)))
= s(z′1, . . . , z

′
n)

with z′i = p(zi, δπ1(zi), δπ1p(xi, yi, zi)). The equality (7) follows from the condi-
tion (1).

Let us now go back to the expression (∗):
p(p(s(x1, . . . , xn), δπ1s(x1, . . . , xn), δπ1s(x1, . . . , xn)),

p(s(y1, . . . , yn), δπ1s(y1, . . . , yn), δπ1s(x1, . . . , xn)),
p(s(z1, . . . , zn), δπ1s(z1, . . . , zn), δπ1(v)))

= p(s(x′1, . . . , x
′
n), s(y′1, . . . , y

′
n), s(z′1, . . . , z

′
n))

(8) = s(p(x′1, y
′
1, z

′
1), . . . , p(x′n, y′n, z′n))

(9) = s(p(x1, y1, z1), . . . , p(xn, yn, zn))
= v.

The equality (8) follows from the condition (2). On the other hand, the equality (9)
depends on the fact that p(x′i, y

′
i, z

′
i) = p(xi, yi, zi) for each i = 1, . . . , n. Indeed, by

definition of + one has:

p(xi, yi, zi) + p(xi, yi, zi) = p(xi, yi, zi).

Consequently,

p(xi, yi, zi)
= p(xi, yi, zi) + p(xi, yi, zi)
= p(xi, yi, zi) + p(xi, xi, p(xi, yi, zi))
= p(p(xi, yi, zi), δπ1p(xi, yi, zi), δπ1p(xi, xi, p(xi, yi, zi)))
= p(p(xi, yi, zi), p(δπ1(xi), δπ1(yi), δπ1(zi)), p(δπ1(xi), δπ1(xi), δπ1p(xi, yi, zi)))

(10) = p(p(xi, δπ1(xi), δπ1(xi)), p(yi, δπ1(yi), δπ1(xi)), p(zi, δπ1(zi), δπ1p(xi, yi, zi)))
= p(x′1, y

′
1, z

′
1)

where (10) is a consequence of the condition (1).
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SECOND STEP:
Let X be the set of generators of [R[f ],∇], considered as a subalgebra of

(A1 ×B1 A1)× (A1 ×B1 A1). The congruence [R[f ],∇] is then given by

[R[f ],∇] =
⋃

m∈N
Em(X),

where E0(X) = X, E(X) = X ∪ {s((u1, v1), . . . , (un, vn)) | s ∈ Ω, (ui, vi) ∈ X},
and Em+1(X) = E(Em(X)). We shall use induction on m.

The case m = 0 is exactly given by the first step above. Let us then assume that
u + v = v for any (u, v) in Em(X). If we take (u, v) in Em+1(X), either it is in
Em(X), or it can be written as

(u, v) = (s(u1, . . . , un), s(v1, . . . , vn))

with (ui, vi) in Em(X), and s in Ω.

u + v = p(s(u1, . . . , un), δπ1s(u1, . . . , un), δπ1s(v1, . . . , vn))
= p(s(u1, . . . , un), s(δπ1(u1), . . . , δπ1(un)), s(δπ1(v1), . . . , δπ1(vn)))

(11) = s(p(u1, δπ1(u1), δπ1(v1)), . . . , p(un, δπ1(un), δπ1(vn)))
= s(u1 + v1, . . . , un + vn)

(12) = s(v1, . . . , vn)
= v

The equality (11) follows from condition (1) (which applies since [R[f ],∇] ⊆ R[f ]),
while (12) follows from the inductive assumption.

Corollary 5.2. In a Maltsev variety V a double extension is a Γ-covering if and
only if it is a double central extension.
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