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Abstract
The classical HKR-theorem gives an isomorphism between

the n-th Hochschild cohomology of smooth algebras and the n-
th exterior power of their module of Kähler differentials. Here,
we generalize it for simplicial graded commutative objects in
“good pairs of categories”. We apply this generalization to
complex spaces and Noetherian schemes and deduce several
theorems on the decomposition of their respective (relative)
Hochschild (co)homologies.

Introduction

One motivation for considering Hochschild cohomology in geometry is its pos-
sible application in noncommutative deformation theory. Even if the geometrical
objects (complex spaces, schemes) considered in this paper belong to classical com-
mutative geometry, it is interesting to find out how they can be deformed into non-
commutative spaces, and in which way classical deformation theory is contained in
noncommutative deformation theory1. Classical deformations of schemes and com-
plex spaces are governed by tangent cohomology (see for example [16]), and since
deformations of (noncommutative) associative algebras are governed by Hochschild
cohomology (see [8]), we may assume that Hochschild cohomology of schemes and
complex spaces governs their noncommutative deformation theories. This leads to
the question of how their Hochschild and tangent cohomologies are related, which
is the subject of the present paper.

Hochschild complexes and Hochschild homology for schemes were first de-
fined by Weibel/ Geller [21]. They defined the Hochschild complex as sheafifica-
tion of the cyclic bar complex. An alternative definition is due to Yekutieli [23].
Hochschild cohomology for schemes was defined by Gerstenhaber and Schack [8].
Kontsevich [14] suggested to define Hochschild cohomology of a complex manifold X
as ExtX2(OX ,OX). Swan [19] showed that for schemes, the Gerstenhaber/Schack-
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1So far, deformation theory for noncommutative schemes has not been developed and noncommu-
tative complex spaces with singularities are not jet defined.
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definition is equivalent to Kontsevich’s definition. The definition of Hochschild com-
plexes and Hochschild (co)homology for complex spaces is due to Buchweitz/Flenner
[6]. Weibels definition of Hochschild complexes is not recommendable for complex
spaces. This is due to the fact that the (cyclic) bar complex of an analytic alge-
bra A (in which tensor products are replaced by analytic tensor products) is not a
complex of projective A-modules. Thus, if we defined the Hochschild cohomology
as cohomology of the dual of the cyclic bar complex of A, we would not arrive
at the desired Ext-interpretation. Instead, we must define the Hochschild complex
piecewise (on Stein compacts) via free algebra resolutions, and globally via a Čech
construction (see [6] or Section 4).

In order to avoid having to prove each statement for each situation, we unify
the algebraic and analytic theories. To do so, we follow an approach due to Bin-
gener/Kosarew [1] who extracted the common features of both situations and listed
them as axioms for “admissible pairs of categories”. These are pairs (C,M)
where C is a suitable category of algebras and M a category of modules over C. Ad-
missible pairs of categories enable the description of “affine” spaces. For example C
may be the category of sections on Stein compacts or the category of sections on
affine schemes (i.e. the category of algebras). In the present paper we will mainly
talk about admissible pairs of categories. These are interesting by themselves, as
they are useful in many more situations (see Examples 1.1) than affine schemes and
Stein compacts. We will show how to apply results for admissible pairs to schemes
and complex spaces only in Section 4.

The main results for admissible pairs (C,M) of categories are the following: (1)
In Section 1.7, we characterize regular sequences in graded commutative algebras
in C. (2) We define the Hochschild complex for simplicial algebras in C (i.e. functors
from a small category N to C) and show that the Hochschild complex is homotopy
invariant (Proposition 2.2). (3) We prove a HKR theorem for free commutative
graded DG algebras in C, if the ground ring k contains Q. Loday’s textbook [15]
contains the special case of this theorem where C is just the category of k-algebras.
Loday’s sketch of proof does not apply in the general case, as for an analytic algebra
A, the bar construction is not a projective resolution of A over A⊗̂A. A corollary of
this HKR theorem is the following Quillen-type theorem for a k-algebra in C: There
is a quasi-isomorphism

H(a/k) ≈ ∧L(a/k)

from the Hochschild complex to the exterior algebra of the tangent complex. (Quillen
[18] stated this result in the case where C is the category of k-algebras.) We gen-
eralize this theorem for objects in CN and in Section 4, we deduce the main result
of this paper by means of a Čech construction. (4) If X −→ Y is a morphism of
complex spaces (paracompact and separated) or a separated morphism of finite type
of Noetherian schemes in characteristic zero, then there exists a quasi-isomorphism

H(X/Y ) ≈ ∧L(X/Y ) (0.1)

over OX , where H(X/Y ) is the relative Hochschild complex of X over Y (see Sec-
tion 4) and L(X/Y ) is the relative cotangent complex. From the main result we de-
duce several decomposition theorems for Hochschild (co)homology. (5) Hochschild
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cohomology contains tangent cohomology:

HHn(X/Y,M) ∼=
∐

i+j=n

Exti(∧jL(X/Y ),M). (0.2)

The left side is the n-th Hochschild cohomology of X over Y with values in M. The
right side contains the (i− 1)-th relative tangent cohomology Exti−1(L(X/Y ),M)
as a direct factor. For complex spaces, this decomposition, as well as equation (0.1),
has already been proved in a completely different way by Buchweitz/Flenner [6].
(6) The second corollary is a decomposition theorem for the Hochschild cohomology
of complex analytic manifolds and smooth schemes in characteristic zero:

HHn(X) ∼=
∐

i+j=n

Hi(X,∧jTX). (0.3)

On the right, we have the sheaf cohomology of the exterior powers of the tangent
complex. A proof of this result for complex analytic manifolds has been announced
(but not yet published) by Kontsevich. For smooth schemes, decomposition (0.3)
was proved in a different way by Yekutieli [23]. A similar statement for quasi-
projective smooth schemes is due to Gerstenhaber/Schack [8] and Swan [19]. (7) If
X is a smooth scheme in characteristic zero, or a manifold, then we can deduce the
“Hodge decomposition” of the Hochschild homology

HHn(X) ∼=
∏

i−j=n

Hj(X,∧iΩX) (0.4)

Remark that the difference with the Hodge composition of the De Rham cohomology
is that we sum over the columns of the “Hodge diamond” instead of over the lines.
For schemes, this result was shown in a different way (using the λ-decomposition of
the Hochschild complex) by Weibel [22].

Acknowledgments: I want to express my gratitude to Siegmund Kosarew for his
encouragement and the many discussions and suggestions that were indispensable
for the progress of my work on the present paper. Furthermore, I am grateful to
Ragnaz-Olaf Buchweitz and Hubert Flenner for sending me a not-yet-published
version of their paper on Hochschild cohomology from which I have learned many
techniques applied in this work.

Conventions: For a ring k, we denote the category of k-modules by k-Mod.
For a morphism f : A −→ B in any category, we denote the kernel of f in the
categorical sense (see [20]) by kern f , i.e. kern f is a morphism K −→ A, where
K is an object, determined up to a canonical isomorphism. By Kern f , we mean
the object K. We use the notions cokern, Cokern, im and Im in the same way. For
example, we have Im f ∼= Kern(cokern f). We write ≈ for quasi-isomorphisms and
' for homotopy equivalences. We use the letter D to denote derived categories and
K to denote homotopy categories, i.e. the localization of categories by homotopy
equivalences. The differential of a DG object is always of degree +1. If the degree
g(a) of a homogeneous element a of a graded ring or module arises in an exponent,
we just write a instead of g(a). By convention, (−1)ab means (−1)g(a)·g(b) and not
(−1)g(ab).
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1. Admissible pairs of categories

In order to describe geometric objects locally by means of algebraic objects, one
has to handle pairs of categories (C,M), where C is a category of algebras and M
a category of modules over algebras in C. If the algebraic calculus should include
the local description of commutative schemes, complex spaces and even infinite
dimensional spaces, like Banach analytic spaces, then the frame of admissible pairs
of categories is a good choice. Before listing the axioms defining an admissible pair
of categories (figured out by Bingener and Kosarew in [1]), we give several examples:

Examples 1.1. The following pairs (C,M) are admissible pairs of categories:

(1) Let C(0) be the category of all commutative K-algebras and M(0) the cat-
egory of modules over algebras in C(0).

(2) Recall that a Stein compact is a compact subset X of a complex space,
admitting a base of open neighborhoods U, such that each U ∈ U is a Stein
space. Let C(1) be the category of all analytic C-algebras, i.e. the category
of all sections of the structure sheaf of a Stein compact. Then each algebra
in C(1) is a DFN-algebra, i.e. a topological algebra with respect to the dual
Frechet nuclear topology (see [17], for instance) and each homomorphism of
such algebras is continuous. Let M(1) be the category of all DFN-modules
over algebras in C(1).

(3) In the first example, we can replace C(0) by the category of all Noetherian,
commutative K-algebras.

(4) In the second example, we can replace C(1) by the category of local analytic
algebras.

(5) For ε ∈ (0, 1], let C(ε) be the category of commutative complete PO-algebras
in the sense of [16] and M(ε) the category of all complete PO-modules and
POε-homomorphisms.

The reader, only interested in schemes or algebraic varieties, doesn’t have to
care about the following definition and may always take (C,M) as in Example (1)
instead.

We fix a ground ring K (in our main reference [1], K is the field Q, so here
we start with a more general setting). Denote by C a category of commutative K-
algebras and by C-Mod the category of all modules over algebras in C. For objects
A,B in C and M in A-Mod, N in B-Mod, a homomorphism M −→ N in C-Mod is
a pair (φ, f), where φ : A −→ B is a homomorphism in C and f : M −→ N[φ] is a
homomorphism in A-Mod. LetM be a subcategory of C-Mod. Then the pair (C,M)
is called an admissible pair of categories if the following conditions hold:

(1) In C there exist finite fibered sums that we denote as usual by A⊗CK B.

(2) If φ : A −→ B is a homomorphism in C and N a module inM(B), then N is via
φ an object of M(A), and for each module M in M(A), HomM(A)(M,N[φ])
is the set of all homomorphisms f : M −→ N in M, such that (φ, f) is a
homomorphism in C-Mod.



Homology, Homotopy and Applications, vol. 6(1), 2004 303

(3) Let A be an algebra in C. Then M(A) is an additive category, in which kernels
and cokernels exist. Further, CA is a subcategory of M(A) and the functor of
M(A) in A-Mod commutes with kernels and finite direct sums.

(4) Let φ : A −→ B a homomorphism in C and u : M −→ N a homomorphism in
M(B). Let L (resp. L′) be the kernel of u (resp. u[φ]) in M(B) resp. M(A).
Then the canonical map L′ −→ L[φ] is an isomorphism in M(A).

(5) Let A be an algebra in C and N a module in M(A). For each finite family
Mi; i ∈ I of modules in M(A), there is a given K-submodule

MultM(A)(Mi, i ∈ I;N)

of the module MultA(Mi, i ∈ I;N) of A-multilinear forms
∏

i∈I Mi −→ N ,
which is functorial in each Mi and N and has the following properties:

(5.1) Let i0 be an element of I and u : M ′
i0
−→ Mi0 a homomorphism in M(A).

Set M ′′
i0

:= Cokern(u) and M ′
i := M ′′

i := Mi, for i ∈ I \{i0}. The sequence

0 → MultM(A)(M ′′
i , i ∈ I; N) → MultM(A)(Mi, i ∈ I;N) →
MultM(A)(M ′

i , i ∈ I; N)

induced by u is exact.
(5.2) For modules M, N ∈M(A), there is a canonical isomorphism

MultM(A)(M ; N) −→ HomM(A)(M ; N).
(5.3) For M in M(A), the multiplication map µM : A × M −→ M is in

MultM(A)(A×M ; M).
(5.4) If σ : I −→ J is a bijective map, then the restriction of the isomorphism

MultA(Mi, i ∈ I; N) −→ MultA(Mσ−1(j), j ∈ J ;N)

defined by σ, defines an isomorphism

MultM(A)(Mi, i ∈ I;N) −→ MultM(A)(Mσ−1(j), j ∈ J ; N).

(5.5) Each homomorphism φ : A −→ B in C induces a cartesian diagram

MultM(B)(Mi, i ∈ I; N)

²²

// MultM(A)((Mi)[φ], i ∈ I;N[φ])

²²
MultB(Mi, i ∈ I; N) // MultA((Mi)[φ], i ∈ I; N[φ])

(5.6) For each i ∈ I, let Lj , j ∈ Ji a nonempty finite family of modules in
M(A). Set J := qi∈IJi. The canonical map

(
∏

i∈I

MultM(A)(Lj , j ∈ Ji; Mi))×MultM(A)(Mi, i ∈ I; N) −→

MultA(Lj , j ∈ J ;N)

factorises through MultM(A)(Lj , j ∈ J ;N).
(5.7) The functor N 7→ MultM(A)(Mi, i ∈ I;N) on M(A) is represented by a

module
⊗

i∈I
M
A

Mi in M(A).
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(5.8) If I is a disjoint union
⋃

j∈J Ij with Ij 6= ∅ for all j, then the canonical
homomorphism

⊗

i∈I

M

A

Mi −→
⊗

j∈J

M

A

(
⊗

i∈Ij

M

A

Mi)

is an isomorphism in M(A).
(5.9) The canonical map A⊗MA M −→ M is an isomorphism in M(A).

(6) Let φ : A −→ B be a homomorphism in C and M a module in M(A) and N
a module in M(B). The module N[φ] ⊗MA M is via the canonical A-bilinear
map2

B ×N[φ] ⊗MA M −→ N[φ] ⊗MA M

a module in M(B). The analogue statement holds for M ⊗MA N[φ].
(7) Let k −→ A and k −→ B be two homomorphisms in C and φ (resp. ψ) the

canonical maps of A (resp. B) in C := A⊗Mk B. Let M be a module in M(k)
and ρ : C ×M −→ M an element of MultM(k)(C ×M ;M) such that
(a) ρ extends the multiplication of k on M .
(b) M is via ρ a C-module.
(c) M[φ] is in M(A) and M[ψ] in M(B).
Then M is in M(C).

(8) For algebras A and B in Ck, the canonical map A ⊗Mk B −→ A ⊗Ck B is an
isomorphism in M(k).

Axioms (1) - (8) hold in the algebraic as well as in the analytic context. The differ-
ence between both contexts is manifest in the difference between Axiom (S1) and
(S1’):

Axioms. Let A be an algebra in C.
(S1) If u : M −→ N is a homomorphism of finite A-modules in M(A), then
the cokernel of u in M(A) coincides with the cokernel of u in A-Mod and for
N = A the cokernel of u is an algebra in CA with respect to the canonical
projection A −→ Cokern(u).

(S1’) For any homomorphism u : M −→ N of A-modules, the cokernel of
u in M(A) coincides with the cokernel of u in A-Mod and for N = A the
cokernel of u is an algebra in CA with respect to the canonical projection
A −→ Cokern(u).

(S2) Bijective homomorphisms in M(A) are isomorphisms.

Examples 1.2. Again, consider the Examples 1.1.
(1) (C(0),M(0)) is an admissible pair of categories that satisfies Axioms (S1’)
and (S2).

(2) Let MultM(1)( ) be the group of all continuous multilinear forms. Then
(C(1),M(1)) is an admissible pair of categories that satisfies Axioms (S1) and
(S2).

2The existence of this map is a consequence of (2), (5.7) and (5.8).
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Let (C,M) be an admissible pair of categories. Let k be an algebra in C and
A,B, M and Nmodules in M(k).

Remark 1.3. (1) For elements a, a′ ∈ A and b, b′ ∈ B, we have (a⊗ b)(a′⊗ b′) =
aa′ ⊗ bb′.

(2) Each homomorphism h ∈ HomM(k)(A ⊗Mk B,N) is uniquely determined by
its values on the elements of the form a⊗ b.

Remark that in the graded commutative context (see below) we will have (a ⊗
b)(a′ ⊗ b′) = (−1)ba′aa′ ⊗ bb′ for homogeneous a, b, a′, b′.

1.1. Free modules and algebras
To motivate the definition of markings on categories of algebras and modules:

Let X be a compact n-dimensional polydisk. This is a Stein compact. We want
to consider the algebra A = colimU⊃X Γ(U,OCn) of global sections on X as free
algebra in C(1), generated by n algebra generators x1, ..., xn. If B is the algebra of
sections on a second polydisk Q, we can’t just choose n elements of B as images of
x1, ..., xn to define a homomorphism in C(1), since the corresponding map Q −→ Cn

would not, in general, land in P . There are restrictions on the values each xi may
take. A marking on the category C is such a restriction. A non-restrictive marking
is called canonical. Usually, when the modules in M are non-graded, the marking
on M will be the canonical one.
Let (C,M) be an admissible pair of categories. graphFree algebras: A marking on
C is a family (Fτ )τ∈T of subfunctors Fτ : C −→ (sets) of the identity functor such
that Fτ (A) contains 0, for all τ , and all objects A in C. For a given object k of C and
a family (τi)i∈I , we consider the functor FI,k : A 7→ ∏

i∈I Fτi(A) on the category
Ck. If FI,k is representable, i.e. there is a k-algebra A and a canonical bijection

b : HomC
k(A,B) −→

∏

i∈I

Fτi(B)

for each algebra B in Ck, then A together with the family (ei)i∈I = b(IdA) is called
the free algebra over k with free algebra generators ei, i ∈ I. We will write
A = k〈ei〉i∈I . The marking F is called representable, if FI,k is representable for
each k in C and each finite family (τi)i∈I .

1.1.0.1. Free modules: A marking on M is a family (Gu)u∈U of subfunctors
Gu : M −→ (sets) of the identity functor such that, for each u ∈ U , the following
condition holds: For each homomorphism φ : A −→ B in C and each module N in
M(B), we have Gu(N[φ]) = Gu(N). For a given algebra A in C and a family (ui)i∈I ,
we consider the functor GI,A : M 7→ ∏

i∈I Gui(M) on the category M(A). If GI,A

is representable, i.e. there is an A-module M and a canonical bijection

b : HomM(A)(M,N) −→
∏

i∈I

Gui(N)

for each A-module N , then M together with the family (ei)i∈I = b(IdM ) is called
the free module over A with free module generators ei, i ∈ I. We will write
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M =
∐

i∈I Aei. The marking G is called representable, if GI,A is representable,
for each A in C and each finite family (ui)i∈I . A marking on (C,M) is a pair (F, G)
of a marking F = (Fτ )τ∈T on C and a marking G = (Gu)u∈U on M together with
a map η : T −→ U such that Fτ (A) ⊆ Gη(τ)(A), for each A in C and each τ in T.

Axioms. Let (F,G) be a marking on (C,M).

(F1) F is representable.

(F2) Let k be an algebra in C and A = k〈ei〉i∈I be a free k-algebra in C. The
canonical homomorphism k[ei]i∈I −→ k〈ei〉i∈I in k-Mod is flat and the functor
M 7→ A⊗Mk M is exact on the category of finite modules in M(k).

(F3) Let A be like in (F2) and A′ = k〈e′i〉i∈I′ be another free k-algebra in C
with I ⊆ I ′. Then A′ is flat over A via the homomorphism A −→ A′ with
ei 7→ e′i.

(F4) G is representable.

(F5) For each u ∈ U and each A in C, Gu is a right exact functor on M(A).

(F6) Let A be an algebra in C and E =
∐

i∈I Aei be a free A-module with
respect to G with finite basis (ei)i∈I and let M be a module in M(A). The
canonical homomorphism M I −→ M ⊗A E in A-Mod is bijective.

(F7) Let k be an algebra in C and A = k〈ei〉i∈I be a free k-algebra in C with
finite I. Then ΩA/k is a free A-module with base dei ∈ Gη(τi)(ΩA/k); i ∈ I.

Remark that Axiom (F2) implies that free algebra generators (of degree 0) are
no zero divisors.

Definition 1.4. The marking (F,G) is called good, if Axioms (F1), (F4), (F5),
(F6) and (F7) hold. An admissible pair of categories (C,M) equipped with a good
marking (F, G) is called a good pair of categories if it satisfies Axioms (S1) and
(S2).

Examples 1.5. (1) On the admissible pair (C(0),M(0)) of Example 1.1, we
work with the canonical marking, i.e. F (A) = A, for each algebra A in C,
and G(M) = M , for each module M inM(A). With this marking, (C(0),M(0))
is a good pair of categories, that satisfies additionally Axioms (F2) and (F3).

(2) Consider the admissible pair (C(1),M(1)). For A in C(1) and t ∈ T := (0,∞),
let Ft(A) be the set of all elements of A such that the Gelfand-transformation
(see [4] for the definition) χ(A) −→ C factorises through {z ∈ C : |z| 6
t}. Further, let G be the canonical marking on M(1). The pair (C(1),M(1)),
together with the marking (F, G) is a good pair of categories, that satisfies
Axioms (F2) and (F3).

(3) If C is the category of local analytic algebras and M the category of DFN-
modules over C, then G is set to be the canonical marking and for objects A,
we set F (A) to be the maximal ideal mA of A. The pair (C,M) is a good pair
of categories that satisfies Axioms (F2) and (F3).
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1.2. Graded objects
Let (C,M) be an admissible pair of categories. As in [1], we can construct a

new admissible pair (gr(C), gr(M)) as follows: Let gr(C) be the category of graded
commutative3 rings A =

∐
i60 Ai with A0 in C, all Ai in M(A0) such that the

multiplication maps Ai × Aj −→ Ai+j belong to MultM(A0)(Ai × Aj , Ai+j). A
homomorphism φ : A −→ B in gr(C) is a homomorphism of graded commutative
rings such that φ0 is a homomorphism in C and all φi : Ai −→ Bi are φ0- linear
homomorphisms in M.
Let gr(M) be the category over gr(C) whose objects over an algebra A in gr(C) are
the graded A-modules M =

∐
i∈ZM i, with M i = 0, for almost all i > 0, such that

each M i is in M(A0) and the maps Ai ×M j −→ M i+j belong to MultM(A0)(Ai ×
M j ,M i+j). If B is another algebra in gr(C) and N is a module in gr(M)(B), then
Homgr(M)(M, N) is the set of all pairs (φ, f), where φ : A −→ B is a homomorphism
in gr(M) and f : M −→ N is a φ-linear homomorphism of degree zero, such that
all f i : M i −→ N i are homomorphisms in M over φ0.

For modules M1, . . . , Mn and N in gr(M)(A), let Multgr(M)(A)(M1×...×Mn, N)
be the K-module of all maps f : M1× . . .×Mn −→ N with the following properties:
(1) For k1, . . . , kn in Z, the restriction f |

M
k1
1 ×...×Mkn

n
factorises through a map in

MultM(A0)(M
k1
1 × . . .×Mkn

n , Nk1+...+kn).
(2) For elements a ∈ A and mi ∈ Mi, we have

f(m1, . . . , mra,mr+1 . . .mn) = f(m1, . . . , mr, amr+1, . . . , mn), for 1 6 r < n,
and
f(m1, . . . , mna) = f(m1, . . . , mn)a

We just have made use of the fact that we can make each M in gr(M)(A) a graded
symmetrical A-bimodule by setting m · a := (−1)g(m)g(a)a · m, for homogeneous
elements a ∈ A and m ∈ M .
To define free algebras in gr(C), we modify the definition in Section 1.1 as follows:
There is a map g : T −→ Z60 and each functor Fτ is a subfunctor of the functor A 7→
Ag(τ). In this context, if F is representable, then each functor FI,A is representable,
if for n 6 0, the set of all τi with g(τi) = n is finite. In this case the free algebra
A〈ei〉i∈I is called g-finite free algebra. Of course, the degree g(ei) of a free generator
ei is just g(τi).

To define free modules in gr(M), we modify the Definition in Section 1.1 as
follows: There is a map g : U −→ Z and each functor Gu is a subfunctor of the
functor M 7→ Mg(u). In this graded context, when G is representable, then each
functor GI,A is representable, if for each n, the set of all ui with g(ui) = n is finite.
In this case the free module

∐
i∈I Aei is called g-finite free A-module. We have

g(ei) = g(ui) for i ∈ I.
To define a marking on (gr(C), gr(M)), we have to add in Section 1.1 the condi-

tion, that the map η : T −→ U is compatible with g.

Example 1.6. If G is a marking onM, then we get a marking gr(G) = (gr(G))u′∈U ′

on gr(M) in the following way: Set U ′ := U × Z. For A in gr(C), M in gr(M) and

3i.e. ab = (−1)g(a)g(b)ba, for homogeneous a, b ∈ A
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u′ = (u, n) ∈ U ′ set gru′(G)(M) := Gu(Mn). Here we have g(u′) = n.
If (F,G) is a marking on (C,M), then we get a marking grG(F ) = (grG(F )τ ′)τ ′∈T′

in the following way: Let T′ be the disjoint union of T × {0} and U × Z<0. For A
in gr(C) and τ ′ = (τ, n), we set grG(F )τ ′(A) = Fτ (A), if n = 0, and grG(F )τ ′(A) =
Gτ (An), if n < 0.
If (F, G) is a marking on (C,M), then (grG(F ), gr(G)) is a marking on (gr(C), gr(M))
with the map η′ : T′ −→ U ′ given by (τ, 0) 7→ (η(τ), 0) and (u, n) 7→ (u, n), for n < 0.

Remark that by Lemma I.7.6 of [1], free algebra generators of negative degree
behave much like polynomial variables4 and if (C,M) is a good pair of categories,
then (gr(C), gr(M)) is a good pair of categories as well. If (C,M) is an admissible
pair of categories that satisfies Axiom (S2), then by Proposition I.6.9 of [1], the
admissible pair (gr(C), gr(M)) also satisfies Axiom (S2). In general, this is not true
for Axiom (S1). But we have:

Remark 1.7. Let (C,M) satisfy Axiom (S1) and let A be an object of gr(C) such
that all Ai are finite A0-modules. For g-finite modules M, N in gr(M)(A) each
homomorphism f : M −→ N in gr(M)(A) is strict, i.e. the cokernel of f in gr(M)
coincides with the set-theoretical cokernel.

Remark 1.8. Let (C,M) be an admissible pair of categories with a marking (F, G),
where G is canonical. Suppose that Axiom (S1) holds. Let k be an algebra in C and
let M1,M2 and N be modules in M(k) such that M1 and M2 are finite k-modules
with Mi ⊆ N and M1 ∩M2 = {0}. Then we have

(1) The inclusions Mi ↪→ N are homomorphisms in M(k).
(2) M1 + M2 is in M(k).
(3) The inclusions Mi −→ M1 + M2 are homomorphisms in M(k).
(4) The projections pi : M1 + M2 −→ Mi are homomorphisms in M(k).
(5) M1 + M2 = M1 ⊕M2.

In (gr(C), gr(M)) the same statement is true if we suppose that all ki are finite
k0-modules and M1,M2 and N are g-finite.

The proof is left to the reader as exercise. In the sequel, we will denote the
full subcategory of gr(C) generated by all algebras A such that each Ai is a finite
A0-module by gr′(C).
Remark 1.9. (1) Suppose that (C,M) is a good pair of categories and that k

is an algebra in gr′(C). Let R = k〈T 〉 be a free g-finite algebra over k in gr(C).
We have the following decomposition

R = k ⊕
∑

t∈T

Rt

in the category gr(M)(k).

4For a more precise statement, see Proposition 1.17.
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(2) Suppose that additionally the marking G on M is trivial and that Axiom
(F2) holds. Then, for each n > 0, R decomposes as

R = k ⊕
∑

t1∈T

t1k ⊕ ...⊕
∑

t1,...,tn∈T

t1 · . . . · tnk ⊕
∑

t1,...,tn+1∈T

t1 · . . . · tn+1R.

Proof. We only prove (i) and leave the proof of (ii) as exercise. We can form the
free g-finite R-module M =

∐
t∈T Re(t), where to each free algebra generator t ∈

grG(F )τ ′ we have associated a free module generator e(t) ∈ gr(G)η(τ ′)(M). Consider
the homomorphism M −→ R in gr(M)(R) with e(t) 7→ t. By Remark 1.7, the
cokernel map of this homomorphism coincides with the cokernel map in R-Mod,
which is just the projection p : R −→ R/(T ) and R/(T ) is an algebra in gr(C). Now
there is a diagram

R
π //

p

""EEEEEEEE k

²²
R/(T )

in gr(C), where π : R −→ k is the homomorphism given by t 7→ 0 for t ∈ T and
the homomorphism k −→ R/(T ) is the canonical inclusion. The diagram commutes,
since in both directions an element t ∈ T goes to 0. So we get Kern(π) = (T ). But
obviously, we have R = k ⊕Kern(π).

1.3. Simplicial objects
Let I be an index set. A set N of subsets of I is called simplicial complex over

I, if ∅ 6∈ N ; if for all i ∈ I, we have {i} ∈ N and if every nonempty subset of an
element in N is again in N .
For an element α of a simplicial complex N over I, containing n elements, set
|α| := n − 1. Then for n > 0, the set N (n) of all α ∈ N with |α| 6 n is again a
simplicial complex over I.
A simplicial complex N can be seen as category, where Hom(α, β) contains only
the inclusion α ⊆ β if α ⊆ β and is empty in all other cases. Let A be a category.
An N -object in A is a covariant functor N −→ A. The N -objects in A again form
a category, denoted by AN . If (C,N ) is an admissible pair of categories and A =
(Aα)α∈N an object of CN , then we denote the category of N -objects M = (Mα)α∈N
in MN with Mα ∈ ob(M(Aα)) by MN (A).
Let (C,M) be an admissible pair of categories and N a simplicial complex. Let
((Fτ )τ∈T, (Gu)u∈U ) be a marking on (C,M). Then, for each pair (α, τ) in N × T,
there is a functor Fα,τ : A 7→ Fτ (Aα). For a family (αi, τi), i ∈ I of elements of
N × T and A in CN , there is a set-valued functor B 7→ ∏

i∈I Fαi,τi(B). We denote
it by FI,A.

Remark 1.10. Suppose that for each α ∈ N , the free Aα-algebra A′α = Aα〈e(α)
i 〉αi⊆α

in the free generators e
(α)
i ∈ Fτi(A

′
α) exists. For α ⊆ β, let ραβ : A′α −→ A′β be

the homomorphism in C over Aα, given by e
(α)
i 7→ e

(β)
i . Then A′ = (A′α)α∈N is

an algebra in CN , and together with the family (e(αi))i∈I , it represents the functor
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FI,A. We call it the free A-algebra in the free generators ei := e
(αi)
i ∈ Fαi,τi

(A′)
and denote it by A〈ei〉i∈I .

For each pair (α, u) ∈ N × U , there is a functor Gα,u : M 7→ Gu(Mα). For a
family (αi, ui), i ∈ I of elements of N ×U and A in CN , there is a set-valued functor
N 7→ ∏

i∈I Gαi,ui(M). We denote it by GI,A.

Remark 1.11. Fix a family (αi, ui), i ∈ I of elements of N × U and an algebra A

in CN . Suppose that for each α ∈ N , the free Aα-module Mα =
∐

αi⊆α Aαe
(α)
i in

the free generators e
(α)
i ∈ Gui(Mα) exists. For α ⊆ β, let ραβ : Mα −→ Mβ be the

homomorphism in M over Aα, given by e
(α)
i 7→ e

(β)
i . The collection M = (Mα)α∈N

is a module in MN and together with the family (e(αi))i∈I it represents the functor
GI,A. We call it the free A-module with free generators ei := e

(αi)
i ∈ Gαi,ui(A

′)
and denote it by

∐
i∈I Aei.

To distinguish the non-simplicial from the simplicial context, we call the first one
affine.

1.4. Resolvents
Fix an admissible pair (C,M) of categories with marking (F, G). For a DG module

K in gr(M)(R) with differential d, we define the i-th homology Hi
M(K) of K

in M(R) as cokernel of the natural map Im(di−1) −→ Kern(di) (image and kernel
formed in the category M(R)). If K is separated, i.e. the cokernels of the map
d : Ki −→ Ki+1 and of the induced maps Ki −→ Kern(di+1) and Kern(di) −→ Ki

coincide with their cokernels formed in the category R-Mod, then Hi
M(K) is as

R-module isomorphic to the i − th cohomology of K, considered as complex in
R−Mod. We call K acyclic, if Hi

M(K) = 0 for all i.

Remark 1.12. Suppose that (C,M) satisfies Axiom (S1) and all Ki are finite
R-modules. K is acyclic if and only if K is acyclic as complex in R−Mod.

A DG resolution of an object B in M is a DG module M in gr(M) such that
Hi
M(M) = 0, for i < 0, and H0

M(M) = B.

We recall Definition I.8.1 of [1].

Definition 1.13. Let A −→ B be a homomorphism of DG objects in gr(C)N . A
resolvent of B over A is a free DG algebra R over A in gr(C)N (with respect to
the marking grG(F )) together with a morphism R −→ B of DG objects in gr(C)N
which is a surjective quasi-isomorphism on each α ∈ N .

In the present paper, we will mostly work in a Noetherian context, i.e. we will
assume that the following Axiom is satisfied:

Axiom (N) Each algebra A in C is Noetherian and each finite module M in
M(A) is a quotient of a finite free A-module.



Homology, Homotopy and Applications, vol. 6(1), 2004 311

If the good pair (C,M) satisfies Axioms (N) and (F2) and if A and B belong to
gr′(C) and if A0 is a quotient of a g-finite B0-module C in CN such that each Cα is
a finite free B0

α-algebra, then such resolvents exist by Proposition I.8.7 and I.8.8 of
[1] or by Remark 1.21.

The next proposition is of great importance for this work. In the algebraic con-
text, the statement is well-known and was used by Quillen and others. The difference
in the analytic context is that a free DG algebra over a ring k is not, in general, a
complex of free k-modules as long as there are analytic algebra generators, i.e. free
algebra generators of degree zero. Hence, even the affine version of the following
statement seems to be new in this form.

Suppose that the marking G on M is trivial and that Axiom (N) is satisfied.

Proposition 1.14. Let A −→ B be a homomorphism of DG algebras in gr(C)N .
For two g-finite resolvents R1 and R2 of B over A, there exists a homomorphisms
R1 −→ R2 in gr(C)N , which is a homotopy equivalence over A.

Proof. We prove the affine case first and sketch the generalization to N -objects in
gr(C)N , afterwards. First affine case: Suppose that R0

1 = R0
2.

Set A′ := A ⊗A0 R0
1. Then R1 and R2 are resolvents of B over A′. By Proposition

I.8.1 of [1], there is a quasi-isomorphism R1 −→ R2 in gr(C) over A′. Since R0
1 =

R0
2 = A′0, R1 and R2 are free A′-modules in gr(M). Hence the quasi-isomorphism

is already a homotopy-equivalence.
Second affine case: Suppose that R0

2 is a finite free algebra over R0
1 in C.

By induction, we can restrict ourselves to the case where R0
2 = R0

1〈e〉 is just a
free algebra in one generator. Consider the free R0

1-algebra R := R0
1〈e, f〉 in gr(C),

generated by a free generator e of degree 0 and a free generator f of degree −1.
We define a differential on R by setting f 7→ e. By Remark 1.9, we have R0

1〈e〉 =
R0 ⊕ eR0

1〈e〉. So by Axiom (S2), the differential gives an isomorphism fR0
1〈e〉 −→

eR0
1〈e〉. With this in mind, we can easily construct a contracting homotopy on R.

Now R′1 := R1 ⊗R0
1

R is homotopic over R1 to R1. More precisely, the inclusion
R1 −→ R′1 and the projection R′1 −→ R′ are homotopy equivalences. By the first
case, there is a homotopy-equivalence R′1 −→ R2 in gr(C).
General affine case: Let R3 be a free g-finite resolution of B over R1⊗A R2. Now
R3 is free over R1 and R2 and by the second case, we get a homotopy-equivalence
R1 −→ R3 −→ R2.
In the simplicial case, a free algebra in gr(C)N over an algebra A in gr(C)N is
not a free module in gr(M)N (A), even if all free algebra generators are of strictly
negative degree. The point is that even A itself is not free as A-module. But a free
algebra over A with free algebra generators of negative degree is as A-module in
gr(M)N a direct sum A⊕M with a free A-module M . To prove the simplicial case,
we must first generalize the Comparison Theorem (see Theorem 2.2.6 of [20]) to
(free) DG resolutions in gr(M)N which is straightforward. Secondly, observe that
for a DG algebra A in gr(C)N and free A-modules M, N , each quasi-isomorphism
Id×f : A⊕M −→ A⊕N is even a homotopy equivalence. With those tools we can
generalize the first case above and the second and third case go just as in the affine
situation.
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1.5. Double graded objects
Let (C,M) be an admissible pair of categories. We define the pair (gr2(C), gr2(M))

as follows: The objects of gr2(C) are the double commutative graded5 rings A =∐
i,j60 Ai,j with A0,0 in C and all Ai,j in M(A0,0) such that the multiplication maps

Ai,j ×Ak,l −→ Ai+j,k+k belong to

MultM(A0,0)(Ai,j ×Ak,l, Ai+j,k+l).

Following the ideas of Section 1.2, we can define Homgr2(C)(A, B), for objects A, B
in gr2(C), the category gr2(M), Homgr2(M)(M, N) for objects M, N of gr2(M) and
Multgr2(M)(A)(M1, ...,Mn, N) for modules M1, ...,Mn, N in gr2(M)(A). We don’t
make this definitions explicit here.

Remark 1.15. Let A be an object of gr2(C) and M, N objects of gr2(M). For
(p, q) in Z × Z, set T p,q :=

∐
i+j=p,k+l=q M i,k ⊗MA0,0 N j,l. Then T :=

∐
p,q T p,q

is a tensor product of A and B in gr2(M)(A0,0). T can be seen in two different
ways as object of gr2(M)(A). Consider the homomorphism u : A⊗A0,0 T −→ T in
gr2(M)(A0,0), sending a⊗m⊗n to ma⊗n−m⊗an. u can be seen in two manners as
homomorphism in gr2(M)(A). Both of them induce the same A-module structure
on T̄ := Cokern(u). We see that T̄ is a tensor product of M and N in gr2(M)(A).

Remark 1.16. The pair (gr2(C), gr(M)2) is an admissible pair of categories.

Proof. Analogue to the proof of Proposition 6.9 of [1].

Convention: When we consider an object K of gr(M) as object of gr2(M), we
set Ki,0 = Ki and Ki,j = 0 for j 6= 0.
In the same manner as above, we can define a marking (gr2G(F ), gr2(G)) on the pair
(gr2(C), gr2(M)):
Define the index set T′′ as T×{0, 0}∪U×(Z60×Z60)\(0, 0). For τ ′′ = (τ, 0, 0) ∈ T′′

and A ∈ gr2(C) set gr2G(F )τ ′′(A) := Fτ (A0,0) and for τ ′′ = (u, p, q) in T′′ with
(p, q) 6= (0, 0) set gr2G(F )τ ′′(A) := Gu(Ap,q). Define the index set U ′′ as U × Z× Z.
For u′′ = (u, p, q) ∈ U ′′ and M ∈ gr2(M), set gr(G)u′′(M) := Gu(Mp,q).

Proposition 1.17. (1) Let A be an algebra in gr2(C) and A′ = A〈ei〉i∈I a free
algebra over A, with respect to the marking gr2G(F ). Suppose that the bidegree
of each ei is different to 0, then the canonical homomorphism A[ei]i∈I −→ A′

in A-Alg is bijective.
(2) If (F, G) is good, then (gr2G(F ), gr2(G)) is good as well.

Proof. Analogue to the proof of Lemma I.7.6 of [1].

Definition 1.18. A DG algebra in gr2(C) is an algebra A in gr2(C) equipped
with a (vertical) A0,0-derivation6 v : A −→ A of bidegree (0, 1) with s2 = 0. A
DDG Algebra in gr2(C) is a DG algebra A in gr2(C) equipped with a (horizontal)
derivation h of bidegree (1, 0) that anti-commutes with v such that h2 = 0. A
homomorphism of (D)DG algebras is a morphism in gr2(C) that commutes with
the vertical (and horizontal) differentials.

5i.e. for a ∈ Ai,j and b ∈ Ak,l we have ab = (−1)(i+j)(l+k)ba
6i.e. for homogeneous a, b ∈ A we have v(ab) = v(a) + (−1)aav(b)
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The definition of (D)DG modules over D(DG) algebras is straightforward (pay
attention to Koszul signs).

Remark 1.19. Let K = (K,h, v) be a DG algebra in gr2(C). Consider a free algebra
K〈E〉 over K in gr2(C) with a set E = {ei : i ∈ I} of free algebra generators with
ei ∈ gr2G(F )τ ′′i (K〈E〉), for a certain τ ′′i ∈ T′′. For each i, if g(xi) 6= (0, 0) choose an
element hi ∈ Gui(K〈E〉g(xi)+(1,0)) and an element vi ∈ Gui(K〈E〉g(xi)+(0,1)), where
ui is the first component of τi = (ui, g(xi)). Setting h(ei) := hi and v(ei) := vi, we
get an extension of the horizontal and the vertical derivation h and v of K. This
extensions make K〈E〉 a DDG algebra, if and only if, for each i, we have
(1) h(vi) + v(hi) = 0 and
(2) h(hi) = v(vi) = 0.

Proof. Inductively, we can reduce the proof to the case where E consists of a single
element e of bidegree (p, q). In this case, it is an easy calculation.

Definition 1.20. A DG resolvent of an algebra B in gr(C) is a free DG algebra
A in gr2(C) such that, for all i, the i-th row is a surjective DG module resolution of
Bi. A DDG resolvent of a DG algebra B in gr(M) is a DDG algebra A in gr2(M)
which is a DG resolvent of B such that the map A∗,0 −→ B is a homomorphism of
DG algebras in gr(C).

For a homomorphism A −→ B of DG algebras in gr(C), to get a resolvent R of
B over A it is enough to construct a DDG resolvent K of B which is free over A
as object of gr2(C). Then we can choose R as total complex tot(K). This leads to
the question of the existence of DDG resolvents. The following remark provides a
positive answer:

Remark 1.21. Suppose that for the pair (C,M) the Axioms (N) and (F2) hold.
Let K = (K, h, v) be a DDG algebra in gr2(C) and u : K∗,0 −→ A a homomorphism
of DG algebras in gr(C). Suppose that each A ∈ gr′(C) and that each Ki,j a finite
K0,0-module.

(1) If A0 is a quotient of a free K0,0-algebra, then there exists a free DDG
algebra L = K〈F 〉 over K, where F is a g-finite set of generators of bidegree
(k, 0); k 6 0, and a surjective homomorphism L∗,0 −→ A over K∗,0.

(2) Suppose that u is surjective and that for a fixed p < 0, we have up+1 =
cokern(vp+1,−1). There exists a free DDG algebra L = K〈F ∪ G〉 over K
with finite sets F and G of generators of bidegree (p,−1) and (p + 1,−1),
respectively, such that we still have up+1 = cokern(vp+1,−1), and additionally
up = cokern(vp,−1) holds.

(3) Fix p 6 0 and q 6 −1. Suppose that we have Hq+1(Kp+1,∗) = 0. There
exists a free DDG algebra L = K〈F ∪G〉 over K spanned by finite sets F and
G of generators of bidegree (p, q) and (p+1, q), respectively, such that we still
have Hq+1(Kp+1,∗) = 0, and additionally Hq+1(Kp,∗) = 0 holds.

Proof. The proofs of (1) - (3) are very similar, so we only do the proof of (3). We
choose G such that there is an epimorphism π : qg∈GK0,0g −→ Kern(vp+1,q+1) ∩
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Kern(hp+1,q+1). Set v(g) := π(g) and h(g) := 0. We choose F such that there is an
epimorphism π′ : qf∈F K0,0f −→ Kern(vp,q+1). Set v(f) = π′(f) and choose h(f)
in qK0,0g in such a way that v(h(f)) = −h(v(f)).

Definition 1.22. For a g-finite free DG module M =
∐

e∈E Ae in gr(M) with
differential d (this construction can be done more generally in gr(M)N ), we define
the exterior algebra ∧∧A M to be the free DDG algebra A〈Ê〉 in gr2(C), where
Ê contains for each e ∈ E a free algebra generator ê of bidegree (g(e),−1). The
vertical differential of ∧∧A M is set to be trivial, and the horizontal differential h is
defined in such a way that the assignment e 7→ ê identifies M as DG module with
the line A〈Ê〉∗,−1. The total complex ∧AM := tot(∧∧A M) has the structure of a DG
algebra in gr(C) and corresponds to the ordinary definition of the exterior algebra.
In this situation, let ∧j

AM be the DG module in gr(M) with (∧j
AM)n = A〈Ê〉(n,−j),

for all j > 0.

In particular, we have ∧0
AM ∼= A and ∧1

AM ∼= M and

∧AM = tot(∧∧A M) =
∐

j>0

∧jM [j]. (1.1)

1.6. The (cyclic) bar complex
For convenience of the reader and to motivate our definitions in Section 2, in

this section, we state several statements about the (cyclic) bar complex. In the
algebraic context they are well-known and they apply directly to admissible pairs
of categories.
Let (C,M) be an admissible pair of categories. Consider a homomorphism k −→ A

of DG algebras in gr(C). The tensor product R := A⊗gr(C)
k A is a DG algebra with

differential dR defined by

dR(a⊗ a′) = dA(a)⊗ a′ + (−1)aa⊗ dA(a′)

and the natural “multiplication” map µ : A⊗Ck A −→ A respects the differentials.
Let M be a DG A-bimodule in gr(M), which is a symmetrical k-bimodule.

We can consider M as DG object of gr(M)(R), where the scalar multiplication
R × M −→ M satisfies (a ⊗ a′,m) 7→ (−1)a′mama′, for homogeneous elements
a, a′ ∈ A and m ∈ M . To see this, we have to apply Axioms (5.3), (5.5) and (5.6).
The same axioms must be used to define the mappings in the sequel.
For n = 0, 1, . . . set Ccycl

n (A,M) := M ⊗ A⊗n and Cbar
n (A,M) := M ⊗ A⊗n ⊗ A.

(All tensor products are formed in the category gr(M)(k).) Consider the homomor-
phisms

di : M ⊗A⊗n −→ M ⊗A⊗n−1,

sending elements a0 ⊗ ... ⊗ an to a0 ⊗ ... ⊗ ai · ai+1 ⊗ ... ⊗ an, for i = 0, ..., n −
1, and the homomorphism dn, sending homogeneous elements a0 ⊗ ... ⊗ an to
(−1)an(a1+...+an−1)a0 ·an⊗a1⊗...⊗an−1. Each di is a homomorphisms in gr(M)(A),
if we regard the tensor products M⊗A⊗ ...⊗A as A-modules by left-multiplication
on the first factor. Remark that when M is only a A-right module, we consider it
as an antisymmetrical A-bimodule by setting m · a := (−1)maa ·m.
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Set b′n−1 := d0−...+(−1)n−1dn−1 and bn := b+(−1)ndn. Exactly as in the algebraic
case (see paragraph III.2.1 of [1]), b defines a differential on Ccycl

• (A,M), i.e. b2 = 0.
The pair (Ccycl

• (A,M), b) is called cyclic bar complex. b′ defines a differential on
Cbar
• (A, M). The pair (Cbar

• (A,M), b′) is called (acyclic) bar complex. For later
use, we set Cbar(A,M)−n := Cbar

n (A,M) and Ccycl(A,M)−n := Ccycl
n (A,M), for

n > 0.
Observe that Cbar

• (A,M) is even a complex in gr(M)(R), when we define the R-
module structure on M ⊗A⊗n ⊗A by

(a⊗ a′) · (m⊗ α⊗ an+1) = (−1)a(a′+m+α)a′m⊗ α⊗ a · an+1

for homogeneous elements a, a′, α and m. In the sequel, we write Ccycl
• (A) for

Ccycl
• (A, A) and Cbar

• (A) for Cbar
• (A,A).

In gr(M)(k) there exist homomorphisms Cbar
n (A) −→ Cbar

n+1(A), sending elements
a1 ⊗ ... ⊗ an to 1 ⊗ a1 ⊗ ... ⊗ an. They define a contracting homotopy for the bar
complex. Hence the bar complex Cbar(A) is acyclic. By Theorem III.2.2 of [1], we
can even define a DDG algebra structure on Cbar(A). Hence tot(Cbar(A)) is a DG
algebra resolution of A over R. But it can only serve as resolvent in the algebraic
case since:
Attention: In the analytic case, tot(Cbar(A)) is not a free object in gr(C).
Recall two well-known relations between the cyclic and acyclic bar complexes. We
consider R as A-bimodule via a(a1 ⊗ a2) = aa1 ⊗ a2 and (a1 ⊗ a2)a = a1 ⊗ a2a.

Proposition 1.23. We have an isomorphism Ccycl
• (A,R) −→ Cbar

• (A) of complexes
in gr(M)(A), which is in the n-th component given by

Ccycl
n (A,R) −→ Cbar

n (A)

(a⊗ a′)⊗ α 7→ (−1)a(a′+α)a′ ⊗ α⊗ a

with α ∈ A⊗n. Furthermore, we have an isomorphism Ccycl
• (A,M) −→ M ⊗R

Cbar
• (A) of complexes in gr(M)(A), where the differential of the second complex is

given by 1⊗ b′. The n-th component has the following form:

Ccycl
• (A,M) −→ M ⊗R Cbar

• (A)
m⊗ α 7→ m⊗ 1⊗ α⊗ 1.

Proof. Analogue to the proof of Proposition 1.1.13 of [15].

In the algebraic literature, the cyclic bar complex is often called Hochschild chain
complex and the Hochschild cochain complex is defined as the complex C•(A,M) =
(C•(A,M), β) where C0(A,M) = M and Cn(A,M) = Homk(A⊗n,M), for n =
1, 2, . . . The differential β is given by:

β(f)(a1, . . . , an+1) = a1f(a2, . . . , an+1)− f(a1 · a2, . . . , an+1) + . . .

+(−1)nf(a1, . . . , anan+1) + (−1)n+1f(a1, . . . , an)an+1.

We will define the Hochschild complex in a more general way in Section 2.
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Proposition 1.24. If M is a graded symmetric A-bimodule, then there exists an
isomorphism of complexes

Homk(A⊗n,M) −→ HomA(Ccycl
n (A),M),

where the differential on the left complex is β and the differential on the right com-
plex is the one induced by the differential b on Ccycl

• (A). Furthermore, we have an
isomorphism of complexes

HomR(Cbar
• (A),M) −→ Homk(A⊗n,M),

sending an f : Cbar
n −→ M to the mapping a1⊗ . . .⊗ an 7→ f(1⊗ a1⊗ . . .⊗ an⊗ 1).

Proof. Analogue to the proof of the corresponding statements in Section 1.5 in
[15].

1.7. Regular sequences
In this section we want to define a regular sequence for the graded commutative

context. In our definition the question if a sequence is regular won’t depend on
the order of its elements. We suppose that the ground ring K contains the rational
numbers.
We work with an admissible pair of categories (C,M), equipped with a marking
((Ft)t∈T , (Gu)u∈U ), which induces the marking ((grG(F ))τ ′∈T ′ , (gr(G))u′∈U ′) on
(gr(C), gr(M)) and the marking ((gr2G(F ))τ ′′∈T′′ , (gr2)u′′∈U ′′) on (gr2(C), gr2(M)).

Definition 1.25. Let R be an algebra in gr(C). We call a g-finite subset
X of R a handy sequence if for each x, there is an u(x) ∈ U such that
x ∈ gr(G)(u(x),g(x))(R) = Gu(x)(Rg(x)). When R = (R, s) is a DG algebra, then
a handy sequence X ⊆ is called handy s-sequence if we have s(X) ⊆ (X). For a
handy sequence X ⊆ R, let E be a set of free algebra generators, containing for each
x ∈ X a generator e(x) ∈ gr2G(F )(u(x),g(x),−1)(R〈E〉) of bidegree (g(x),−1). Then
we call the free DG algebra K(X) := R〈E〉 in gr2(C) over R, whose differential (of
bidegree (0,−1)) is given by e(x) 7→ x, the Koszul complex of X over R.

For practical reasons, when we work with a handy sequence X = {xi : i ∈ J},
we define an ordering on the index set J , subject to the condition g(xi) 6 g(xj),
for i 6 j. Remark that for a handy sequence X ⊆ R and each subset Y ⊆ X, the
quotient7 R/(Y ) exists in gr(C). And if R is a DG algebra (R, s) and X is s-handy,
then the quotient R/(X) is also a DG algebra.

Definition and Theorem 1.26. Suppose that Q ⊆ K.
Let X ⊆ R be a handy sequence and let I be the ideal (X) ⊆ R. Suppose that for
each subset Y ⊆ X, we have ∩n>1I

nR/(Y ) = 0. The set X is called a regular
sequence, if one of the following equivalent conditions holds:
(i) Let T be a set of free algebra generators that contains for each x ∈ X, an

element t(x) with g(t(x)) = g(x). The map R/I[T ] −→ grI(R) = R/I⊕I/I2⊕
... in gr(Q−Alg)R/I , sending t(x) to the class of x in I/I2 is an isomorphism
of (differential) graded R/I-algebras.

7By “quotient”, we mean the cokernel in gr(M) of the embedding (X) ↪→ R.



Homology, Homotopy and Applications, vol. 6(1), 2004 317

(ii) For each x ∈ X and for each ideal J ⊆ R, which is generated by a subset
Y ⊆ X with x 6∈ Y , we have: If g(x) is even, then x is no zero divisor in R/J .
If g(x) is odd, then the annulator of x in R/J is just the ideal, generated by
the class of x.

(iii) The Koszul complex K(X) is a DG resolvent of R/(X) over R.
(iv) H−1(K(X)) = 0.

Proof. The implication (iii)⇒(iv) is trivial.
Proof of (i)⇒(ii) For an element r ∈ R, let n(r) be the greatest n such that r
is contained in In and let in(r) be the class of r in In(r)/In(r)+1 ⊆ grI(R). For
elements r, r′ ∈ R, we have that:

in(r) · in(r′) = rr′ + In(r)+n(r′)+1. (1.2)

Claim: A subset X ⊆ R satisfies condition (ii), if the subset {in(x) : x ∈ X} ⊆
grI(R) satisfies condition (ii).
Proof of the claim: First step: For x ∈ X, if g(x) is even and in(x) is no zero divisor,
then x is no zero divisor. If g(x) is odd and the annulator of in(x) in grI(R) is the
ideal, generated by in(x), then the annulator of x in R is the ideal generated by x.
The even case follows immediately by (1.2). In the odd case, let r be in the annu-
lator of x, i.e rx = 0. By (1.2), we get in(x) · in(r) = 0. By the assumption, there
is an a1 ∈ R, such that in(r) = in(x) · in(a1). This implies that r1 := r − xa1 is
in In(r)+1 and n(r1) > n(r) + 1. Since x2 = 0, we have r1x = rx = 0, and in the
same way we find a a2 ∈ R with r2 := r1 − xa2 ∈ In(r−1)+1. Inductively, for each
m > n(r), we find a1, ..., ak such that rk := r−x(a1 + ...+ak) ∈ Im. Thus r belongs
to ∩k>0((x) + Ik), which, by the condition ∩n>1I

nR/(x) = 0, equals (x).

Second step: For x ∈ X, if either g(x) is even and in(x) is no zero divisor, or g(x)
is odd and the annulator of in(x) in grI(R) is (in(x)), then (x)∩ In(x)+n = xIn, for
each n > 0.
One inclusion and the even case are easy to see. Suppose that g(x) is odd and that
rx is in In(x)+n. We have to find r′ ∈ In such that xr = xr′. If r ∈ In, we are
done. Otherwise, we have n(r) < n and in(r) · in(x) = rx + In(r)+n(x)+1 = 0. So
there exists a y ∈ R such that in(r) = in(x) · in(y). This means that r1 := r − xy
is in In(r)+1 and we have r1x = rx. Inductively, we find an r′ := rn−n(r) such that
r′ ∈ In and r′x = rx.
As consequence, taking R̄ := R/(x) and Ī := I/(x), we get an isomorphism

grI(R)/(in(x)) ∼= grĪ(R̄).

We deduce inductively that for R̄ := R/(x1, ..., xs) and Ī := I/(x1, ..., xs), we get
an isomorphism

grI(R)/(in(x1), ..., in(xs)) ∼= grĪ(R̄).

Last step: When g(x) is even, we have to show that x is no zero divisor in
R/(x1, ..., xs). We know that in(x) is no zero divisor in grI(R)/(in(x1), ..., in(xs)) ∼=
grĪ(R̄). By the first step, the assumption follows. For the odd case, we use the ana-
logue argument. This proves the claim.
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When (i) is true, it is clear that {in(x) : x ∈ X}, which corresponds to the set T ,
satisfies condition (ii) and by the claim, X satisfies condition (ii).
Proof of (ii)⇒(iii) We have to show that, for p 6 0, the p-th row of the dou-
ble complex K(X) is a DG resolution in M over R0 of the p-th component of
R/(X). For this we can suppose that X is finite with g(x) > p, for all x ∈ X. Say
X = {x1, ..., xn}. We have that K(X) = K(x1)⊗ ...⊗K(xn).
Each K(X)(p,q) is obviously a finite R-module, so by Remark 1.12, we only have to
show that K(X)(p,∗) is a resolution of (R/(X))p in the category of R-modules. We
show it by induction.
For n=1, we write x instead of x1 and e instead of e1. Set m := g(x). Remark that
if m is even, then the total degree m− 1 of e is odd, so in this case we have e2 = 0.
If m is odd, then the total degree of e is even, so e2 6= 0. In the first case, K(x) is
just the complex

0 . . . 0 0 . . . 0 0 . . .
↓ ↓ ↓ ↓ ↓
0 . . . 0 R0e . . . Rm−1e Rme . . .
↓ ↓ ↓ ↓ ↓

R0 . . . Rm+1 Rm . . . R2m−1 R2m . . .
↓ ↓ ↓ ↓ ↓

R0 . . . Rm+1 Rm/R0x . . . R2m−1/Rm−1x R2m/Rmx · · ·

s is injective since x1 is no zero divisor in R, hence the rows are exact. In the second
case, K(x) is the complex

0 . . . 0 0 . . . 0 R0e2 . . .
↓ ↓ ↓ ↓ ↓
0 . . . 0 R0e . . . Rm−1e Rme . . .
↓ ↓ ↓ ↓ ↓

R0 . . . Rm+1 Rm . . . R2m−1 R2m . . .
↓ ↓ ↓ ↓ ↓

R0 . . . Rm+1 Rm/R0x . . . R2m−1/Rm−1x R2m/Rmx · · ·

In Ri, for i < m, there is no element that annulates x, so up to the row m− 1, the
situation is as above. In the m-th row, the kernel of Rme −→ R2m is just R0xe, so
it coincides with the image of the map R0e2 −→ Rme. Remark that here - fore we
use that 2 is invertible in R. Inductively we see that all rows are exact. Here - fore
we use that all naturals are invertible.
Now suppose that the statement is proved for n. Set L := K(x1, ..., xn) = R〈e1, ..., en〉
and K(X) = K(x1, . . . , xn+1). We write x and e instead of xn+1 and en+1. K(x) is
(as object of gr2(M)(R)) a direct sum K0⊕K−1⊕K−2⊕. . ., where in the case where
x is even, we have K0

∼= R, K−1
∼= R[−m, 1] and Ks = 0 for s < −1 and in the odd

case, we have Ks = R[sm,−s] for all s 6 0. Hence, we have Kp,q
q

∼= Rp+qm, for all p,
and in the even case for −1 6 q 6 0 and in the odd case for q 6 0. The differential
on K(x) is given by the maps dq : K∗,q

q −→ K∗,q+1
q+1 , where dp

q : Kp,q
q −→ Kp,q+1

q+1 is



Homology, Homotopy and Applications, vol. 6(1), 2004 319

just the multiplication by x. We have

K(X)p,q = (K(x)⊗R L)p,q

= (K0 ⊗R L)p,q ⊕ (K−1 ⊗R L)p,q ⊕ . . .

∼= Lp,q ⊕ Lp−m,q+1 ⊕ . . . ,

where in the even case the sum has only two factors. Hence in the even case, for
p 6 0, the complex K(X)p,∗ is the total complex of the double complex

²² ²² ²²
Lp,−2

δ

²²

Lp−m,−2

δ

²²

x
oo 0

²²

oo oo

Lp,−1

δ

²²

Lp−m,−1

δ

²²

x
oo 0

²²

oo oo

Lp,0 Lp−m,0
x

oo 0oo oo

In the odd case, K(X)p,∗ is the total complex of the double complex

²² ²² ²²
Lp,−2

δ

²²

Lp−m,−2

δ

²²

x
oo Lp−2m,−2

δ

²²

x
oo oo

Lp,−1

δ

²²

Lp−m,−1

δ

²²

x
oo Lp−2m,−1

δ

²²

x
oo oo

Lp,0 Lp−m,0
x

oo Lp−2m,0
x

oo oo

The first double complex is a DDG resolution in gr2(M)(R0) of the DG module

(R/(x1, . . . , xn))p ← (R/(x1, . . . , xn))p ← 0 ← . . . ,

where the left arrow stands for multiplication by x. But this DG module is a res-
olution of (R/(x1, . . . , xn, x))p over R0, since g(x) is even. So K(X)p,∗ is a reso-
lution of (R/(x1, . . . , xn, x))p. The second double complex is a DDG resolution in
gr2(M)(R0) of the DG module

(R/(x1, . . . , xn))p ← (R/(x1, . . . , xn))p ← (R/(x1, . . . , xn))p ← . . . ,

where the arrows stand for multiplication by x. But this DG module is a resolution of
(R/(x1, . . . , xn, x))p over R0, since g(x) is odd. So K(X)p,∗ is a resolution of
(R/(x1, . . . , xn, x))p. For both cases, the induction step is done.
Proof of (iv)⇒(i) Without restriction, we can suppose that C is the category of
commutative Q-algebras. For each j > 0, we have to show that the j-th homo-
geneous component (R/I[T ])j in the T -grading of R/I[T ] maps isomorphically to
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Ij/Ij+1. We will already make use of the implication (ii)⇒(iii). Set S := Q[T ]. We
consider R as S-algebra via the map t(x) 7→ x. Obviously T ⊆ S satisfies condition
(ii), so by (iii), the Koszul complex KS(T ) is a DG resolution of Q over S.
We consider the exact sequence

0 −→ (T )j/(T )j+1 −→ S/(T )j+1 −→ S/(T )j −→ 0

of graded S-modules. (T )j/(T )j+1 is a free graded g-finite Q-vector space, which
is a S-module via the canonical map S −→ Q. We write

∐
i∈J Qei for it. Now∐

i∈J KS(T )ei is a free resolution of
∐

i∈J Qei over S. So we get

TorS
1 ((T )j/(T )j+1, R) = H−1(

∐

i∈J

(KS(T )ei ⊗S R)) =
∐

i∈J

H−1(K(X)ej) = 0.

By the property of left derived functors, there is an exact sequence

0 −→TorS
1 (S/(T )j+1, R) −→ TorS

1 (S/(T )j , R) −→
(T )j/(T )j+1 ⊗S R −→ S/(T )j+1 ⊗S R −→ S/(T )j ⊗S R −→ 0

By induction on j and the exactness of the first line, we see that TorS
1 (S/(T )j , R) = 0

for any j > 0. The second line gives rise to a short exact sequence

0 −→ (R/I[T ])j −→ R/Ij −→ R/Ij+1 −→ 0,

which implies the desired isomorphism.

Remark 1.27. The assumption Q ⊆ K is used only to prove the implications
(ii)⇒(iii) and (iv)⇒(i). The assumption that for each subset Y ⊆ X we have
∩n>1I

nR/(Y ) = 0 is used only to prove (i)⇒(ii). So if you want to get rid of
it, use condition (ii) for the definition of regular sequences. It can be stated in a
slightly modified manner, which depends on the order of the elements of X, then.

Definition 1.28. Let R be a DG algebra in gr(C)N . Let (αi, ui, gi)i∈J be a family
in N ×U ′ and X = {xi : i ∈ J} a family of elements with xi ∈ Gui(R

gi
αi

) such that,
for β, β′ ⊆ α, the sets {ρβα(xi) : αi = β} and {ρβ′α(xi) : αi = β′} are disjoint.
Suppose that

Xα := ∪β⊆α{ρβα(xi) : αi = β}
is a regular (resp. handy) (sα-)sequence in Rα, for each α. Then X is called a
regular (s-)sequence (resp. handy (s-)sequence) in R.

Corollary 1.29. If R = (R, s) is a DG algebra in gr(C)N and X a handy s-sequence
in R, then K(X) is a DG algebra in gr2(C)N and if X is regular, then K(X) is a
DG resolution of R/(X) over R.

Remarks: When R carries the structure of a DG algebra (R, s), one would like
the Koszul complex to carry the structure of a DDG module. In general, this is not
the case.
If X is an s-handy sequence then, since I = (X) is s-stable, then the algebra grI(R)
has the structure of a DG algebra in gr(Alg), such that each In/In+1 is a DG
submodule of grI(R). If, for example, R is already a free DG algebra in gr(Q−Alg)
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with a set X of free algebra generators, i.e. R = R/I[X], then the differential of
grI(R) = R differs in general from the differential s. In this way we get a modified
differential s̃ on R. In a similar way we get a modified differential, when R is a free
DG algebra in gr(C), for any good pair of categories (C,M). This will play a role
in Section 3. In geometric language, going over from s to s̃ is a deformation to the
normal cone.

1.8. The universal module of differentials
Fix an admissible pair of categories (C,M). Let k −→ A be a morphism of DG

algebras in gr(C).
As in paragraph I.6.12 of [1], we define universal module ΩA/k of k-differentials
as the first homology of the complex Ccycl

• (A), i.e. the cokernel in gr(M)(A) of the
map b2 : A⊗k A⊗k A −→ A⊗k A, sending a⊗ b⊗ c to ab⊗ c−a⊗ bc+(−1)bcac⊗ b,
for homogeneous elements a, b, c ∈ A. ΩA/k is a DG module over A and there is an
A-derivation d : A −→ ΩA/k (i.e. a homomorphism of DG k-modules, which is a
derivation), sending elements a ∈ A to the class of a⊗1. ΩA/k is universal in the sense
that, for each A-module M in gr(M), the natural map Homgr(M)(A)(ΩA/k,M) −→
Derk(A,M) is bijective.
Set R := A⊗Ck A and denote the kernel of the multiplication map µ : R −→ A in the
category gr(M)(R) by I. (Attention: In general A is the cokernel of the inclusion
I ↪→ R only in the category R-Mod.) A natural question is if ΩA/k is isomorphic
to the “quotient” I/I2. But we already need several assumptions for the existence
of I/I2 in the category gr(M)(A). An answer which is sufficient for our purpose is
given by the following remark. The prove is left to the reader as exercise.

Remark 1.30. Suppose that (C,M) is a good pair of categories satisfying Axiom
(S1) and that the marking G on M is canonical. Suppose that A ∈ gr′(C) (i.e.
all Ai are finite A0-modules) and that I is a g-finite R-module. Then we have
A = R/I := Cokern(I ↪→ R), I/I2 is in a natural way a module in gr(M)(A).
Furthermore, the map A −→ I/I2, sending a ∈ A to the class of a⊗1−1⊗a is a k-
derivation and the quotient I/I2 is a universal module of derivations. In particular
I/I2 ∼= ΩA/k.

Denote the differential of R = A ⊗k A by s. The next remark is a consequence
of Remark 1.30 and Definition and Theorem 1.26:

Remark 1.31. Take the assumptions of Remark 1.30. Suppose that the ideal I ⊆ R
is generated by an s-regular sequence X ⊆ R. Then ΩA/k is a free DG A-module in
gr(M), generated by a set E = {e(x)| x ∈ X}, containing one free module generator
for each element x ∈ X.

The definitions and statements of this subsection carry over directly to N -objects
in gr(C) and gr(M).

2. Hochschild complex and Hochschild cohomology

In the (algebraic) literature, for an algebra homomorphism k −→ a, the notions
Hochschild complex and cyclic bar complex of a over k are synonyms. However,
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as observed by Buchweitz and Flenner, there are reasons to define the Hochschild
complex in the case where a and k are analytic algebras in a different manner. In
this case, if a is flat over k, then the bar complex Cbar(a) is still a complex of flat
a-modules but even if k is just the field C, Cbar(a) is not a complex of projective
a-modules. Thus, for the definition of Hochschild homology, the cyclic bar complex
would do, but for the definition of Hochschild cohomology as cohomology of the
a-dual of the cyclic bar complex, it is not a good choice. Thus, for a morphism
a −→ k of algebras in good pairs of categories, we will give a different definition
of the Hochschild complex H(a/k) of a over k. We will see that in the flat case it
coincides up to a quasi-isomorphism with the cyclic bar complex.

The definitions of this subsection were inspired by the article [6]. For simplicity,
we restrict ourselves to the Noetherian context. Fix a simplicial complex N and
a good pair of categories (C,M) with marking (F, G), where G is the canonical
marking of M. Suppose that the Axioms (N) and (F2) are satisfied.
Using a Čech construction (for more details, see paragraph I.10.1 of [1]), we get a
functor Č• : gr(M)N −→ gr(K−Mod), sending a DG module M ∈ gr(M)N to the
total complex tot

Q
(C•(M•)) of the double complex

²² ²²
C0(M−1) //

²²

C1(M−1) //

²²
C0(M0) // C1(M0) //

where Cp(Mq) =
∐
|α|=p Mq and the differentials as usual. This functor sends quasi-

isomorphisms to quasi-isomorphisms. We will write Ȟn(M) for Hn(Č•(M)).

Let k −→ a be a finite morphism of N -objects in C, i.e. a is a quotient of a free
k-algebra b in CN such that, for each α ∈ N , the algebra bα is a a free finite kα-
algebra. (More generally, we may assume that k −→ a is a morphism in gr(C)N , as
long as there exists a g-finite resolvent of a over k.) By Proposition 8.8 of [1], there
exists a g-finite resolvent of a over k. Fix such a resolvent A. Set R := A ⊗gr(C)

k A
and consider A as algebra over R by the multiplication map µ : R −→ A. Let S be
a free g-finite resolvent8 of A over R.

Definition 2.1. The simplicial Hochschild complex H∗(a/k) of a over k is the
object represented by the complex S ⊗R a in the homotopy category K−(MN (a)).
The Hochschild complex H(a/k) is the object represented by the complex
Č•(H∗(a/k)) in the derived category D(K−Mod).

Proposition 2.2. H∗(a/k) is a well defined object in K−(MN (a)) and conse-
quently, H(a/k) is a well-defined object in D(K−Mod).

8Again by [1], such a resolvent exists. We can even construct it in such a way that S0 = R0.
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Proof. For i = 1, 2, let Ai be a g-finite resolvent of a over k, Ri := Ai ⊗k Ai and
let Si be a g-finite resolvent of Ai over Ri. We have to find a homotopy equivalence
S1⊗R1a ' S2⊗R2a over a. By Proposition 1.14, there is a homomorphism A1 −→ A2

in gr(C)N which is a homotopy equivalence over k. Hence,

R1 ≈ A1 ⊗k a ' A2 ⊗k a ≈ R2.

By Proposition 1.14, the quasi-isomorphism R1 ≈ R2 is even a homotopy-equivalence
over k. Thus we get a quasi-isomorphism

S1
∼= S1 ⊗R1 R1 −→ S1 ⊗R1 R2

over R1. S2 and S′1 := S1 ⊗R1 R2 are both resolvents of a over R2. Hence, there is
a homomorphism S′1 −→ S2 in gr(C)N , which is a homotopy equivalence over R2.
We can tensorize both sides over R2 with a and still get a homotopy equivalence
S1 ⊗R1 a −→ S2 ⊗R2 a.

Recall that the notion Cbar(a) = Cbar(a)• stands for the complex Cbar
−• (a).

Proposition 2.3. Suppose that a is flat over k. There is an isomorphism
H∗(a/k) −→ Ccycl(a) is the derived category D(a−Mod). More precisely, for each
representation S ⊗R a of H∗(a), there exists a morphism S ⊗R a −→ Ccycl(a) in
gr(C)N , which is a quasi-isomorphism over a.

Proof. Set r := a⊗k a. Since a is flat over k, R is a resolvent of r and Cbar(a) a flat
resolution of a over r. Another one is s := S⊗R r. By Theorem I.8.4 of [1], there is a
morphism s −→ Cbar(a) in gr(C)N over r. By flatness, we get a quasi-isomorphism

Ccycl(a) ∼= Cbar(a)⊗r a ∼= s⊗r a ∼= S ⊗R a.

Definition 2.4. We define the n-th Hochschild homology of a over k as
Ȟ−n(H∗(a/k)).

Definition 2.5. Let M be an object of MN over a. We define the Hochschild
cochain complex of a over k with values in M to be the complex

HomN
a (H∗(a/k),M),

with the differential induced by the differential of H∗(a/k). We define the Hoch-
schild cohomology HH(a/k, M) of a over k with values in M to be the cohomology
of the Hochschild cochain complex.

Proposition 2.6. The Hochschild cochain complex is well defined up to homotopy
equivalence.

Proof. This is a consequence of Lemma I.3.7 of [1] and Proposition 2.2.

3. Decomposition of Hochschild (co) homology

For the whole section, let (C,M) be a good pair of categories with marking (F, G),
such that G is canonical and suppose that Axioms (N) and (F2) are satisfied. Fix an
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algebra k in CN and a free g-finite DG algebra A over k in gr(C)N . Set R := A⊗k A
and denote the differential of R by s. Let I be the kernel of the multiplication
R −→ A. The Hochschild complex of A over k is represented by S ⊗R A, for each
g-finite resolvent S of A over R. The HKR theorem for free DG algebras is due
to the following key observation: If (C,M) is the pair (C(0),M(0)), then R is as
graded algebra isomorphic to R̃ := grI R, but the isomorphism does not respect the
differentials. This makes the free DG case more difficult then the classical case. In
contrast, the natural map R̃ −→ A does respect the differentials and one may ask,
if for a g-finite resolvent S̃ of A over R̃, the Hochschild complex is represented by
S̃ ⊗R̃ A in the homotopy category. In fact, this is true by the algebraic version of
Theorem 3.7. The HKR-type theorem is a consequence of this theorem, since by a
Koszul construction, we will find an appropriate S̃, such that S̃ ⊗R̃ A = ∧AΩA/k.
In the analytic case, R and grI R can’t be identified as graded algebras, hence, for
the general theory, we have to modify the construction of R̃, slightly.

3.1. Balanced and convex markings
Let k be an algebra in gr(C) and A := k〈T 〉 a free algebra over k in gr(C) with a

g-finite set T of free generators t ∈ Fτ(t)(Rg(t)). Then A⊗k A is a free algebra over
k with two free algebra generators t1 = t ⊗ 1 and t2 = 1 ⊗ t, for each t ∈ T . For
t ∈ T , set t+ := 1

2 (t1 + t2) and t− := 1
2 (t1 − t2). Let T+ be the set of all t+ and T−

be the set of all t−.
We say that the marking F on C is balanced, if for each τ ∈ T and each A in C
and each t ∈ Fτ (A), we have −t ∈ Fτ (A). We say that the marking F is convex if
for each τ ∈ T, each A in C, each t1, t2 ∈ Fτ (A) and each a, b ∈ K with a + b = 1
we have at1 + bt2 ∈ Fτ (A).

Remark 3.1. If the marking grG(F ) on gr(C) is balanced and convex, we have
A⊗k A ∼= k〈T+ ∪ T−〉.
Example 3.2. (1) The trivial marking on C is balanced and convex.

(2) If C is the category C(1) of (local) analytic algebras and M the category
M(1) of DFN-modules over C(1), then the marking F on C (see Example 1.5)
is balanced and convex.

Proof. The first example is trivial. For the second example, we show that if a free
generator t is in Fτ (R), then t+ and t− are in Fτ (R ⊗B R). Here, τ stands for a
positive real number and Fτ (R) is the set of all r ∈ R such that, for each character
ξ ∈ X (R), we have |ξ(r)| 6 τ . Now, t1 = t⊗1 and t2 = 1⊗ t belong to Fτ (R⊗B R),
so for each character ξ ∈ X (R ⊗B R), we have |ξ(t1)| 6 τ and |ξ(t2)| 6 τ . Hence
|ξ(t+)| = | 12 (ξ(t1) + ξ(t2))| 6 τ and |ξ(t−)| = | 12 (ξ(t1) − ξ(t2))| 6 τ . The case of
local analytic algebras is clear, since maximal ideals are additively closed.

3.2. Deformation to the normal cone
For the rest of this section, suppose that the marking F on C is balanced and

convex. Take A and R as in the beginning of this section. We have R ∼= k〈T+∪T−〉.
Since T− is s-stable and g-finite, it is a regular s-sequence. Each element r of
R has a unique decomposition r = ř + ṙ + r̂ with ř ∈ Ř := k〈T+〉, ṙ ∈ Ṙ :=
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∑
t∈T− tk〈T+〉 and r̂ ∈ R̂ :=

∑
t,t′∈T− tt′k〈T+〉. We define a R0-derivation s̃ on R,

setting s̃(t) := (s(t))∨, for t ∈ T+, and s̃(t) := (s(t))· for t ∈ T−. The philosophy
of this modification is that s̃ preserves the T−-degree of homogeneous elements in
R. More precisely we have s̃(Ř) ⊆ Ř, s̃(Ṙ) ⊆ Ṙ and s̃(R̂) ⊆ R̂, in contrast to
s(Ṙ) ⊆ Ṙ q R̂ and s(R̂) ⊆ R̂.

Proposition 3.3. s̃ is a differential, i.e. s̃2 = 0.

Proof. First remark that for a ∈ k〈T+〉, we have that (s(a))∨ = s̃(a). To prove this
we can suppose that a is of the form a0t1 · . . . · tn with a0 ∈ k〈T+,0〉 and ti ∈ T+,<0.
The proof of this case is immediate.

Now suppose that t is in T+. We have that s(t) = s̃(t) + rest, where rest is in
Ṙ q R̂. Thus s2(t) = s̃2(t) + rest′ where rest′ is in Ṙ q R̂. Since s̃2(t) is in Ř and
s2(t) = 0, we get s̃2(t) = 0. Similarly, we see that s̃2(t) = 0 for t ∈ T−, which proves
the Proposition.

According to Section 1.7, we write X for the regular s̃-sequence T−. We will see
that for R̃ = (R, s̃), the Koszul complex (K(X), v) has the structure (K(X), h, v) of
a DDG algebra, so its total complex is a resolvent of A = R̃/(X) over R̃: We denote
by E the set of free algebra generators, containing for each xi ∈ X an element ei of
bidegree (g(xi),−1). Here s̃(xi) is a sum of the form

∑
ajxj , where no aj belongs

to the ideal (X). In fact all aj belong to B = k〈T+〉. There is exactly one choice
for the element hi, which shall be the image of ei by the horizontal differential h of
R〈E〉, namely hi =

∑
ajej . We have that 0 = s̃2(xi) = s̃(

∑
ajxj) =

∑
j,k aijajkxk

and the coefficients aijajk belong to k〈T+〉. So, we get h2(ei) = h(
∑

aijej) =∑
j,k aijajkek = 0. I.e. the hypothesis of Remark 1.19 is satisfied. Thus the Koszul

complex (K(X), v), equipped with the horizontal differential h, is a DDG resolvent
in gr2(C) of A = R/(X) over R̃ = (R, s̃). And the total complex S̃ of K(X) is a
resolvent of A over R̃.

The reason for this construction is that there is a nice description of the tensor
product

S̃ ⊗R̃ A = tot(K(X))⊗R̃ A = tot(K(X)⊗R̃ A).

Namely:

Remark 3.4. The double complex K(X)⊗R̃ A is isomorphic to ∧∧·A ΩA/k.

Proof. This follows immediately by Proposition 1.30 and Definition 1.22.

The going over from s to s̃ is natural, i.e. when (R, s) = (Rα, sα)α∈N is a DG
algebra in gr(C)N , then R̃ := (Rα, s̃α)α∈N is again a DG algebra in gr(C)N and
Remark 3.4 keeps true in the simplicial case.

3.3. Construction of the resolvent S
To get a resolvent S of A over R, which is good for our purpose, we have to

work harder. The strategy is to construct again a DDG resolvent K in gr2(C)N ,
which is free over the double graded object K(X) and such that the projection
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K −→ K(X) is a morphism of DG algebras in gr2(C)N (of course, it will not be a
morphism of DDG algebras), and such that the induced map K⊗RA −→ K(X)⊗R̃A
is a morphism of DDG algebras in gr2(C)N , inducing an isomorphism on vertical
homology. When we have managed to realize this, with S := tot(K) we get a
resolvent of A over R and a quasi-isomorphism

S ⊗R A −→ S̃ ⊗R̃ A (3.1)

over A.
First, we explain heuristically the construction of K: We take the Koszul-complex

K(X) with its vertical differential v. The problem is to define a horizontal differen-
tial h on it, since here in general there are no good candidates for the values h(e)
of h on the free generators e ∈ E. When we have s(x) =

∑
axyy, to get commu-

tative diagrams, h(e(x)) must be up to a vertical cocycle
∑

axye(y). In general,
h(

∑
axye(y)) is not zero. Inductively, for e we add free algebra- generators f of

bidegree (g(x) + 1,−1) with v(f) = 0, in such a way that we can find candidates
for h(e) in K(X)g(x)+1,−1 +

∑
R0f . When this is done for all e ∈ E, we get a DDG

structure on the extension K(X)〈F 〉 = R〈E ∪F 〉. This extension is not any more a
resolvent. To get a resolvent again, we apply the construction of Remark 1.21.
Now we start with the construction of K. First we consider the affine situation. For
each x ∈ X, we fix a finite family (axy)y∈Y , for a finite subset Y ⊆ X, such that
s(x) =

∑
y∈Y axyy.

Set K(X) := R〈E〉 as double graded algebra.

Proposition 3.5. There is a g-finite family F = ∪p60F
p of free algebra generators

with g(f) = (p,−1), for f ∈ F p, and a DDG algebra structure (L, h, v) on L :=
R〈E ∪ F 〉 such that

(1) v(e(x)) = x

(2) v(f) = 0

(3) h(f) is in the ideal (X ∪ F ), generated by X and F .

(4) h(e(x)) =
∑

y axye(y) + γ(x) with γ(x) ∈ (F ).

Proof. We construct a decreasing sequence Lk = (Lk, hk, vk) of free DDG algebras
over R and a family {γ(x) : x ∈ X∧g(x) > k−1} with γ(x) ∈ Lk,−1

k , for x ∈ Xk−1,
such that the following conditions hold:

(a) L0 = R〈E0〉.
(b) Lk−1 = Lk〈Ek−1 ∪ F k−1〉 is a free DDG algebra over Lk, where F k−1 is
a finite set of algebra generators of bidegree (k − 1,−1) and we have that
vk−1(e(x)) = x (as in the Koszul-construction) and vk−1(f) = 0.

(c) hk−1 maps the submodule qf∈F k−1R0f of Lk−1,−1
k−1 surjectively onto

Kern(hk,−1
k ) ∩Kern(vk,−1

k ) ⊆ Lk,−1
k .

(d) For all i > k − 1, the sequence Li,−1
k−1 −→ Ri −→ Ai in M(R0) is exact.

(e) For x ∈ Xk−1, we have γ(x) ∈ qf∈F kR0f and hk,−1
k (γ(x)) =

hk,−1
k (

∑
y axye(y))



Homology, Homotopy and Applications, vol. 6(1), 2004 327

For L0 = R〈E0〉, we have already seen that by setting v(e(x)) := x, we get an exact
sequence L0,−1

0 −→ R0 −→ A0. Now suppose that Lk and {γ(x) : g(x) > k} is
already constructed. We choose finitely many free algebra generators f of bidegree
(k − 1,−1) such that there exists an epimorphism

π : qR0f −→ Kern(hk,−1
k ) ∩Kern(vk,−1

k ) ⊆ (X ∪ F ).

To explain the inclusion: The vertical differential on the subalgebra K(X) is exact.
Thus a homogeneous element of K(X)〈F 〉, which is in the kernel of v, is a sum of
an element in the image of v and an element in the ideal (F).
We set hk−1(f) := π(f) and vk−1(f) := 0. For x ∈ Xk−1, to see that there ex-
ists a good candidate for γ(x), we only have to show that hk(

∑
y axye(y)) belongs

to Kern(hk+1,−1
k )∩Kern(vk+1,−1

k ). But we have hk(
∑

y axye(y)) =
∑

y s(axy)e(y)+∑
y ±axy[

∑
z ayze(z)+γ(y)] = (

∑
y s(axy)e(y)+

∑
y,z ±axyayze(z))+

∑
y ±axyγ(y).

The first term maps vertically to s2(x) which is zero, the second factor maps obvi-
ously vertically to zero.
Finally, we can set hk−1,−1

k−1 (e(x)) :=
∑

axye(y)−γ(x) and vk−1,−1
k (e(x)) := x. This

gives the desired Lk−1. We set L := lim Lk.

The free DDG algebra L = R〈E ∪ F 〉 has the following properties:
(1) L0,∗ = K(X)0,∗, hence this is a resolvent of A0 over R0.
(2) L0,p = Rp, for all p 6 0.
(3) The sequence Lp,−1 −→ Lp,0 −→ Ap −→ 0 is exact, for all p 6 0.
(4) The inclusion K(X) ↪→ L and the projection L −→ K(X) are homomorphisms

of DG algebras over (R, 0), so in the category of DG modules in gr(M) there
is a decomposition L = K(X)q L′.

Proposition 3.6. There is a g-finite family G = ∪p60,q6−2G
p,q of free algebra

generators and extensions of h and v on K := L〈G〉, such that
(1) The i-th row of K is a R0-module resolution of Ai.
(2) v(g) ∈ (F ∪G)
(3) h(g) ∈ (G)

Proof. We can construct the free DDG resolvent K of A over R with the method
of Remark 1.21.

Comparing the values of h on the free generators e with its values by the differ-
ential h̃ of the Koszul-complex over R with the modified differential, we see that
h̃(e)− h(e) ∈ qR0f +

∑
x∈X xK.

Consequence: Consider the projection π : K = R〈E∪F∪G〉 −→ R〈E〉 = K(X)
(a priori only as algebra homomorphism in gr2(C)). By Proposition 3.5 and 3.6, π
respects the vertical differential. By the construction of s̃ and Proposition 3.5,

π ⊗ 1 : K ⊗R A −→ K(X)⊗R̃ A

is a homomorphism of DDG algebras in gr2(C) over A.



Homology, Homotopy and Applications, vol. 6(1), 2004 328

Now we can prove the (affine case of the) crucial result of this chapter. It says
that to construct the Hochschild complex it is enough to work with a resolvent of
A over R̃.

Theorem 3.7. Let S := tot(K) and S̃ := tot(K(X)). There exists a homotopy-
equivalence

S ⊗R A −→ S̃ ⊗R̃ A

over A.

Proof. We have seen that the projection π : K −→ K(X) is a homomorphism of
DG Algebras in gr2(C) over (R, 0). Since both double complexes are free resolutions,
for each p, the restriction Kp,∗ −→ K(X)p,∗ is a homotopy equivalence over R0.
For each p, the restriction (K ⊗R A)p,∗ −→ (K(X)⊗R̃ A)p,∗ of π⊗ 1 is a homotopy
equivalence. Hence, π ⊗ 1 induces a quasi-isomorphism

S ⊗R A = tot(K)⊗R A = tot(K ⊗R A) −→ tot(K(X)⊗R̃ A)

= tot(K(X))⊗R̃ A = S̃ ⊗R̃ A.

But a quasi-isomorphism of free algebras is already a homotopy-equivalence.

We have to explain that the construction of K also works in the simplicial case.
Suppose that k is an object of gr(C)N and A is a free algebra over k in gr(C)N .
Take A = k〈T 〉, where each t ∈ T is associated to a pair (αt, τt, gt) ∈ N ×T×Z60.
Now T+ and X := T− are sets of free generators in the simplicial sense. Write
X = {xi : i ∈ I} and (αi, τi, gi) for the triple associated to xi. For α ∈ N set

Xα := {ρααi(xi) : αi ⊆ α}.
In the sequel, we will simply write xi for the element ρααi(xi) of Rα. Let E = {ei :
i ∈ I} be a family of free algebra generators containing for each xi ∈ X an ei of
degree (g(x),−1), belonging to the simplex αi. We form the free algebra K(X) =
R〈E〉 in gr2(C)N . Set Eα := {ρααi(ei) : αi ⊆ α}. We have K(X)α = Rα〈Eα〉. For
each x = xi in X, we fix a family axy; y ∈ Y with Y ⊆ Xαi and axy ∈ Rαi , such
that sα(x) =

∑
y axyy.

Proposition 3.8. There exists a g-finite family F = {fj : j ∈ J} of free algebra
generators, where fj belongs to αj and is of bidegree (gj ,−1) and a DDG algebra
structure (L, h, v) on L = R〈E ∪F 〉 over R, such that for all α and all x ∈ Xα and
all f ∈ Fα := {fj : αj ⊆ α}, the following conditions hold:

(1) vα(e(x)) = x

(2) vα(f) = 0
(3) hα(f) ∈ (Xα ∪ Fα)
(4) hα(e(x)) =

∑
y axye(y) + γ(x) for a γ(x) in (Fα).

Proof. We reduce the Proposition by induction on the following statement: Sup-
pose that there exists a family F (n) of free simplicial algebra generators and a DDG
algebra structure on
(R〈E〉α)|α|6n〈F (n)〉, such that the conditions (i)-(iv) hold for all α ∈ N (n), then
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there exists a family F (n+1) and a DDG algebra structure on (R〈E〉α)|α|6n+1〈F (n+1)〉
such that the conditions (i)-(iv) hold for all α ∈ N (n+1). The case n = 0 as well as
the induction step can be done easily as in the affine case.

Proposition 3.9. There is a g-finite family G = {gj : j ∈ J} of free algebra
generators, where gj belongs to αj and is of bidegree gj and a DDG algebra structure
on K = L〈G〉 over L such that for all α ∈ N and all x ∈ Xα and all g ∈ Gα the
following conditions hold:

(1) K is a DDG resolvent of A over R.

(2) vα(g) ∈ (Gα ∪ Fα)

(3) hα(g) ∈ (Gα).

Proof. With the same method as above, we reduce the statement to the affine
case.

Using Propositions 3.8 and 3.9, we can generalize Theorem 3.7 to the simplicial
context.

3.4. A HKR-type theorem
Theorem 3.10. For each free DG algebra A in gr′(C)N , we have a homotopy
equivalence

∧ΩA/k −→ H(A/k)

over A.

Proof. Glue together Remark 3.4 and Theorem 3.7 and use Proposition 1.14.

In the textbook [15], one can find a plan for the proof of Theorem 3.10. This plan
doesn’t work in the analytic situation, since the fact that the cyclic bar complex is
a complex of free modules is involved, which is false for analytic algebras.
Recall that for an algebra a over k in CN with resolvent A in gr′(C)N , the cotangent
complex L(a/k) of a over k is defined as the class of ΩA⊗Aa in the homotopy cate-
gory K(MN (a)). By Theorem III.2.4 of [1], the homotopy class does not depend on
the resolvent A. Choosing A in Theorem 3.10 as resolvent of a, we immediately get
the announced generalization of the classical Hochschild-Kostant-Rosenberg theo-
rem:

Theorem 3.11. Consider a homomorphism k −→ a in CN . Suppose that Q ⊆ k.
There exists a homotopy equivalence

∧La/k −→ H(a/k)

in gr(C)N over a.

An algebraic version of this theorem can be found in Quillen’s article [18].
Quillen’s proof does not work in our situation, since the category M is not, in
general, Abelian.
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Corollary 3.12. If a is already free over k (in this case there is no need to assume
that Q ⊆ a) and A = a, then Ωa/k is an object of CNa and we get isomorphisms

∧n
aΩa/k

∼= Hn(H(a/k))

Dually, with TA/k := HomA(ΩA/k, A) we get

Hn(Homa(H(a/k), a)) ∼= ∧nTa/k.

3.5. Decomposition of Hochschild (co-) homology
Let M be a module in MN (a).

Theorem 3.13. We have the following decomposition of Hochschild (co)homology:

HHn(a/k) ∼=
∏

i−j=n

Ȟi(∧jL(a/k)), (3.2)

HHn(a/k, M) ∼=
∐

i+j=n

Hi(Homa(∧j
aL(a/k),M)). (3.3)

Proof. The first isomorphism is a direct consequence of Theorem 3.11. We show the
second one:

HHn(a/k,M) = Hn(Homa(H(a/k),M)) ∼= Hn(Homa(∧L(a/k),M))

∼= Hn(HomA(tot(∧∧· ΩA/k),M)) ∼= Hn(HomA(
∐

j>0

∧j
AΩA/k[j],M))

∼= Hn(
∏

j

HomA(∧j
AΩA/k[j],M)) ∼=

∏

j>0

Hn−j(HomA(∧jΩA,M))

∼=
∐

i+j=n

Hi(HomA(∧j
AΩA/k,M)).

The first equality holds by definition. The second one follows by Theorem 3.11. The
other equalities are elementary.

Remark that tangent cohomology is a direct factor on the right hand-side of
isomorphism (3.2).

4. Application to complex spaces and Noetherian schemes

In this section, all schemes and complex spaces are supposed to be paracompact
and separated. For more details on many of the constructions, we refer to [5] and
[6].
First, we will sketch the correlation between the the theory of coherent sheaves on
schemes or complex spaces and the theory of N -objects in good pairs of categories.
The main tools that we need here are:

(1) Instead of considering a space X, we consider the simplicial scheme, associated
to an affine covering of X. By an affine subspace, we mean an open affine



Homology, Homotopy and Applications, vol. 6(1), 2004 331

subscheme in the case of schemes and a Stein compact9 in the case of complex
spaces. There are functors that make simplicial modules out of sheaves of
modules and functors doing the inverse.

(2) Let X be a complex space or a Noetherian scheme. For affine subsets U ⊆ X,
we use the equivalence of categories of coherentOU -modules and finite modules
over the ring Γ(U,OX). (Remember that Γ(U,OX) is Noetherian, when X is
a complex space.) This equivalence is given by Cartan’s theorem A in the
analytic case and by Exercise II.2.4 of [12] in the algebraic case.

More generally, let X be a ringed space and (Xi)i∈I a locally finite covering of X.
The nerf N of this covering is the set of all subsets α ⊆ I, such that ∩i∈αXi 6= ∅.
N is a simplicial scheme in the sense of Section 1.3. Further, there is a contravariant
functor from N in the category of ringed spaces, mapping an object α to the object
Xα := ∩i∈αXi. For α ⊆ β, denote the inclusion Xβ −→ Xα by pαβ . Such a functor
is called simplicial scheme of ringed spaces. Let X∗ = (Xα)α∈N be a simplicial
scheme of ringed spaces. Following [7], we define the category of OX∗-modules as
follows: Its objects are families F∗ = (Fα)α∈N with Fα in Mod(Xα), together with
compatible maps p∗αβFα −→ Fβ . For OX∗-modules F ,G, we set HomX∗(F ,G) to be
the set of compatible families fα : Fα −→ Gα. We denote this category byMod(X∗).
The full subcategory of those F∗, where each Fα is coherent is denoted by Coh(X∗).

Definition 4.1. Let A and B be simplicial schemes over the index sets A0 and B0.
Suppose that X∗ = (Xα)α∈A and Y∗ = (Yβ)β∈B are simplicial schemes of ringed
spaces. A morphism f : X∗ −→ Y∗ consists of a mapping τ : A0 −→ B0, such that
for α ∈ A, we get τ(α) ∈ B, and a family of compatible maps fα : Xα −→ Yτ(α).

As in [7], we can form the adjoint functors

f∗ :Mod(Y∗) −→Mod(X∗) and
f∗ :Mod(X∗) −→Mod(Y∗).

For F in Mod(Y∗) and α ∈ A, we have (f∗F)α := f∗αFτ(α). The construction of f∗ is
more complicated. For the general case, we refer to [7]. We need only the following
particular case:

Remark 4.2. Let F∗ be an object of Mod(X∗). Here, for elements β ∈ B of the
form β = τ(α), we have

(f∗F)β = fα∗Fα.

Hence, if the map τ : A0 −→ B0 is surjective, then the construction of f∗ becomes
very simple.

Examples 4.3. (1) If X is a Noetherian scheme or a complex space and
(Xi)i∈I is a covering by affine subspaces, then by the separated condition, all
Xα are affine. Now let (C,M) be the good pair (C(0),M(0)) or (C(1),M(1)) (see
Example 1.1). Then, a∗ := (Γ(Xα,OXα))α∈N is an N -object in C and there is

9Remember that a Stein compact is a compact subset of a complex space, having a base of
neighborhoods, consisting of Stein spaces. A Stein compact is only a pseudocomplex space.
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a 1:1-correspondence between the objects of Coh(X∗) and the N -objects M∗
in M over a∗, such that each Mα is finite over aα.

(2) If X is a complex space and the covering (Xi)i∈I is locally finite and chosen
in such a way that each Xi admits a closed embedding into a polydisc Pα, then
we get another simplicial scheme of Stein compacts: Set Pα :=

∏
i∈α Pi. For

α ⊆ β, we have the projection Pβ −→ Pα. This makes P∗ = (Pα)α∈N a
simplicial scheme of Stein compacts and there is a closed embedding X∗ −→
P∗.

(3) Let X be a scheme of finite type over a Ring K and (Xi)i∈I an open
affine covering of X. We can construct a new simplicial scheme: Set aα :=
Γ(Xα,OXα), for α ∈ N . For each α, there is a free, finitely generated algebra
K[T ] that maps surjectively onto aα. We get a closed embedding Xα −→
Spec(K[X]) =: Pα. As above, we get a simplicial scheme P∗ and a closed
embedding X∗ −→ P∗.

The inclusions jα : Xα −→ X give rise to a map j : X∗ −→ X of simplicial
schemes of ringed spaces. Next, we will study the adjoint functors j∗ and j∗:
j∗ is just the exact functor, mapping an OX -module F to the OX∗-module
(F|Xα)α∈N . To describe j∗, we consider the Čech -functor: For an OX∗-module
F∗, set

Čp(F∗) :=
∏

|α|=p

jα∗Fα

and define a differential on Č•(F∗) in the usual sense. Then, j∗F∗ is just H0(Č•(F∗)).
j∗j∗ is the identity functor. One can prove the adjointness of j∗ and j∗ directly by
a gluing argument. Since j∗ is an exact functor and j∗ is right adjoint to j∗, we see
that j∗ transforms injective objects in Mod(X∗) into injective objects in Mod(X).
For each α ∈ N , we define a functor pα∗ : Mod(Xα) −→ Mod(X∗) via

(pα∗)β :=
{

pβα∗Fα for β ⊆ α
0 for all other cases

By Proposition 2.26 of [5], each OX∗ -module admits an injective resolution by mod-
ules of the form

∏
α∈N pα∗Iα with injective OXα-modules Iα. We will use the fol-

lowing properties of the functor Č•:

Remark 4.4. (1) For p > 0, the functor Čp is exact.

(2) If Fα is an OXα -module, then Č•(pα∗Fα) is a resolution of j∗(pα∗Fα).

(3) If F is an OX -module, then Č•(j∗F) is a resolution of F .

We generalize a part of Proposition 2.28 of [5] for the case where X is only
assumed to be a ringed space and X∗ is the simplicial scheme of ringed spaces
associated to an open or closed covering (Xi)i∈I of X:

Proposition 4.5. The functor j∗ : D(X) −→ D(X∗) embeds D(X) as a full and
exact subcategory into D(X∗) and Č• = Rj∗ is an exact right adjoint. In particular,
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for F ,G ∈ D(X) and M∗ ∈ D(X∗), there are functorial isomorphisms

Extk
X(F ,G) ∼= Extk

X∗(j
∗F , j∗G) and

Extk
X∗(j

∗F ,M∗) ∼= Extk
X(F , Č•(M)).

If all the maps p∗αβ(Mα) −→ Mβ, for α ⊆ β in N , are quasi-isomorphisms, then
the natural map

j∗Č•(M∗) −→M∗

is a quasi-isomorphism, and in consequence, for all n, there are isomorphisms

Extn
X∗(M∗, j∗F) ∼= Extn

X(Č•(M∗),F).

Proof. For the proof that Č• is the right derived functor of j∗, we use an injective
resolution I∗ of an OX∗-module F∗ of the same form as above. We have

(Rj∗)(F∗) = (j∗I∗)• =
∏

j∗(pα∗Iα)• ≈
∏

Č•(pα∗Iα) = Č•(I•∗ ) ≈ Č•(F∗).
We only prove the first formula for Ext. Here, I•∗ denotes an injective resolution of
j∗G.

Extn
X∗(j

∗F , j∗G) = Hn(HomX∗(j
∗F , I•∗ )) = Hn(HomX(F , j∗I•∗ )) =

Extn
X(F , j∗I•∗ ) = Extn

X(F , (Rj∗)(j∗G)) =

ExtnX(F , Č•(j∗G)) = Extn
X(F ,G).

In the sequel, let X be a complex space or a scheme of finite type over a Noethe-
rian ring.
The structure sheaf OX defines an N -Object a = a∗ in C. In the algebraic case each
OX -module F defines an N -object F = F∗ in M over a. In the analytic case each
coherent OX -module F defines an N -object F = F∗ in M over a. Here, (C,M)
stands for (C(0),M(0)) in the algebraic case and for (C(1),M(1)) in the analytic case
(see Example 1.1).
We make the following convention to avoid the distinction between analytic and
algebraic tensor products:

Convention: Let f : X∗ −→ Y∗ be a morphism of simplicial schemes of Stein
compacts and let F ,G be graded objects in Mod(X∗), coherent in each degree. By
F ⊗OY

G, we mean the object in Mod(X∗), which is given by the sheafification of
the object T∗ in gr(C)N , defined as follows:
For α ∈ N , set Bα := Γ(Yτ(α),OYτ(α)), Fα := Γ(Xα,Fα) and Gα := Γ(Xα,Gα).
Then, Fα and Gα are modules over Bα via the comorphism of fα. Set Tα := Fα⊗Bα

Gα. This defines a simplicial DG algebra T∗.
In the same manner, we define the tensor product F ⊗R G, when F and G are
modules over a sheaf of OX∗-modules R, coherent in each degree.

4.1. Hochschild-cohomology for complex spaces and Noetherian schemes
Let f : X −→ Y be a morphism of complex spaces or a morphism of finite type

of Noetherian schemes.
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A resolvent of X over Y is a collection of the following things:
(1) The simplicial scheme Y∗ associated to a local finite affine covering (Yj)j∈J of Y ;
(2) the simplicial scheme X∗ = (Xα)α∈N associated to a local finite affine covering
(Xji)j∈J,i∈Ij of X. This covering is chosen in such a way that for a fixed j ∈ J ,
the family (Xji)i∈Ij

is a covering of f−1(Yj); (3) a simplicial scheme P∗ = (Pα)α∈N
with the same index category; (4) a commutative diagram

X∗
ι //

f̄

²²

P∗

g
~~||

||
||

||

Y∗

Here, f̄ = (f̄ , τ) is the induced map of simplicial schemes; ι is a closed embedding
and g is a smooth map10; (5) a free resolution A∗ of OX∗ as sheaf of DG-algebras
on P∗ with A0

∗ = OP∗ , such that in each degree there is only a finite number of free
algebra generators.
If A∗ −→ B∗ is a morphism of sheaves of DG-algebras, coherent in each degree,
on a simplicial space X∗, where each Xα is affine, then, going over to global
sections, we can construct a free resolution S∗ of B∗ := (Γ(Xα,Bα))α∈N over
A∗ := (Γ(Xα,Aα))α∈N , at least when B0

∗ is a quotient of a free algebra over A0
∗

in gr(C)N . This follows by Proposition I.8.8 of [1]. Sheafifying S∗, we get a free
resolution S∗ of B over A. Using this remark, it is easy to deduce the existence of
resolvents in both situations we are going to consider.

Example 4.6. Suppose that X is smooth and Y is just the single point Spec(C).
For i ∈ I, we can choose Pi = Xi. Then, Xα is a diagonal in Pα and A can be chosen
to be a Koszul resolution of a = (Γ(Xα,OXα))α∈N over A0 = (Γ(Pα,OPα))α∈N . In
this case, one can prove that for each α, ΩAα is a module resolution of Ωaα . It follows
that for α ⊆ β, the restriction maps Lα(a/C) −→ Lβ(a/C) are quasi-isomorphisms.
Consequently, the canonical map L(X) −→ ΩX is a quasi-isomorphism.

Let (X∗, Y∗, P∗,A∗) be a resolvent of the morphism f : X −→ Y . Set R :=
A ⊗OY∗ A and let S be a free resolution of A over R. The following definition
coincides for complex spaces with the corresponding definition in [6]:

Definition 4.7. The simplicial Hochschild complex of X over Y is the object
in the derived category D(X∗) of OX∗-modules, represented by

H∗(X/Y ) := S ⊗R OX∗ .

The Hochschild complex of X over Y is defined as the object in D(X), repre-
sented by

H(X/Y ) := Č•(H∗(X/Y )).

When Y is just the simple point, we will write H(X) instead of H(X/Y ).

10This means that for each α ∈ N and each p ∈ Pα the stalk OPα,p is free (in the analytic case
as local analytic algebra) over OYτ(α),y.
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To show the independence of the Hochschild complex of the choice of the resol-
vent, we have to use the following version of Lemma I.13.7 of [1]:

Lemma 4.8. Let f : X −→ X ′ be a flat homomorphism of complex spaces (resp.
schemes) and (Xi)i∈I and (X ′

i)i∈I′ be compact locally finite coverings of X and X ′

by Stein compacts (resp. open affine subsets). Let τ : I −→ I ′ be a mapping, such
that f(Xi) ⊆ Xτ(i) for all i ∈ I. Denote the associated simplicial schemes by X∗
and X ′

∗. Then, f defines a homomorphism (f̄ , τ) of simplicial schemes of ringed
spaces. Let G• be a complex in Coh(X ′) such that, for α ⊆ β, the restriction map
p∗αβG•α −→ G•β is a quasi-isomorphism. Then, the canonical homomorphism

f∗Č(G•) −→ Č(f̄∗G•)
is a quasi-isomorphism.

Proposition 4.9. The definition of H(X/Y ) depends neither on the resolvent
(Y∗, X∗, P∗,A∗) nor on the choice of the resolvent S.

Proof. Let (Y∗, X∗, P∗,A∗) and (Ỹ∗, X̃∗, P̃∗, Ã∗) be two resolvents, S a free resolu-
tion of A over A ⊗ A and S̃ a resolvent of Ã over Ã ⊗ Ã. We have to show that
there is a quasi-isomorphism

Č(S̃ ⊗R̃ OX̃∗) −→ Č(S ⊗R OX∗).

First case: Suppose that Y∗ = Ỹ∗, X∗ = X̃∗ and P∗ = P̃∗. By Proposition 2.2,
there is a quasi-isomorphism

S̃ ⊗R̃ OX̃∗ −→ S ⊗R OX∗

in Mod(X∗). Applying the Čech functor this case is proved.
General case: Let Y ′

∗ be the simplicial scheme associated to the covering {Yj} ∪
{Y ′

j }, and let X ′
∗ be the simplicial scheme associated to the covering {Xij}∪{X ′

ij}.
We construct P ′∗ in the canonical way and can find a resolvent A′, such that
(Y ′
∗ , X

′
∗, P

′
∗,A′∗) forms another resolvent of f : X −→ Y . There is a commutative

diagram

X∗
h //

f∗
²²

X ′
∗

f ′∗
²²

Y∗ // Y ′
∗

By the first case, there is a quasi-isomorphism

h∗(S ′ ⊗R′ OX′∗) ≈ S ⊗R OX∗ .

By Lemma 4.8, there is a quasi-isomorphism

Č(S ′ ⊗R′ OX′∗) ≈ Č(h∗(S ′ ⊗R′ OX′∗)).

Hence, we get Č(S ⊗R OX∗) ≈ Č(S ′ ⊗R′ OX′∗). In the same way we get Č(S̃ ⊗R̃
OX̃∗) ≈ Č(S ′ ⊗R′ OX′∗).
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As in [6], we define the n-th Hochschild cohomology of X over Y with values
in the sheaf F as Extn

X (H(X/Y),F). We define the n-th Hochschild homology
of X over Y as H−n(X,H(Y/Y )). At least, in the case where F is coherent, we
want to show that this definition is equal to the following one, which seems to be
more natural from the viewpoint of good pairs of categories:

Definition 4.10. [alternative]
Suppose that F is coherent. Let a be the algebra (Γ(Xα,OXα

))α∈N in CN , let k
be the algebra ((Γ(Yτ(α),OYτ(α)))α∈N in CN . To the map f : X −→ Y , there is
associated a homomorphism k −→ a in CN . Let F be the module (Γ(Xα,Fα))α∈N .
We define the n-th Hochschild cohomology of X over Y with values in F as

HHn(X/Y,F) := Hn(Homa(H∗(a/k), F )).

We define the n-th Hochschild homology of X over Y as

HHn(X/Y) := Ȟ−n(H∗(a/k)).

We see directly, that the Hochschild cohomology is concentrated in non-negative
degrees, whereas Hochschild homology, in general has positive and negative degrees.

Remark 4.11. For M∗ := H∗(X/Y), the assumption of the second part of Propo-
sition 4.5 is satisfied, i.e., for α ⊆ β, the maps p∗αβ(Mα) −→ Mβ are quasi-
isomorphisms.

Proof. See Lemma 1.7 of [6].

Corollary 4.12. For coherent OX -modules F , the two definitions of Hochschild
(co)homology coincide, i.e.

HHn(X/Y,F) ∼= Extn
X (H(X/Y),F) and

HHn(X/Y ) ∼= Hn(X,H(X/Y )).

Proof. Since H∗(X/Y) is a complex of free OX∗-modules, by Proposition 4.5 we get

Extn
X (H(X/Y),F) = Extn

X∗(H∗(X/Y), j∗F) =

Hi(Homa(H∗(a/k), F∗)) = HHi(X/Y,F).

The second isomorphism is obtained as follows:

H(X,H(X/Y )) ∼= H(totΠ Γ(X, Č•(j∗H(X/Y )))) ∼=
H(totΠ Γ(X, Č•(j∗Č•H∗(X/Y ))) ∼= H(totΠ Γ(X, Č•H∗(X/Y ))) ∼=

H(Č•H∗(a/k)) = Ȟ(H∗(a/k)).

In the third step, we have made use of Remark 4.11.

In the absolute case, i.e. in the case where Y = SpecC, Definition 4.7 is up to
quasi-isomorphism equivalent to the definition proposed by Weibel/ Geller [21].

Proposition 4.13. Let X be a Noetherian scheme of finite type over a field or
a complex space. Let Ccycl(X) be the complex of sheaves in Mod(X) associated
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to the presheaf U 7→ Ccycl(Γ(U,OX)). (In the analytic case, the cyclic bar com-
plex is formed, using the analytic tensor product, of course.) There exists a quasi-
isomorphism of sheaves

H(X) −→ Ccycl(X).

Proof. Choose a resolvent (X∗, P∗,A∗) of X. Let S be a resolvent of A over R =
A ⊗ A. Let a,A, R and S be the simplicial algebras in gr(C)N corresponding to
OX∗ ,A,R and S. By Remark 4.4, there is an quasi-isomorphism

Č(j∗Ccycl(X)) −→ Ccycl(X).

Now, j∗Ccycl(X) corresponds to Ccycl(a). Set r := a ⊗k a. In the absolute case, R
is a resolvent of r over k, hence S ⊗R r is a resolvent of a over r. Thus, there is a
quasi-isomorphism

S −→ Cbar(a).

Since Cbar(a) is a complex of flat r-modules, after tensoring over r with a, we get
a quasi-isomorphism S ⊗r a −→ Ccycl(a), i.e. a quasi-isomorphism

S ⊗R OX∗ −→ j∗Ccycl(X)

in Mod(X∗). Applying the Čech functor, we get the desired result.

4.2. The decomposition Theorem
The quasi-isomorphism ∧La/k −→ H(a/k) in gr(M)N over a in Theorem 3.11

defines a quasi-isomorphism

∧L∗(X/Y ) −→ H∗(X/Y )

in Mod(X∗). Since the Čech -functor is exact, we get the following HKR-type
theorem:

Theorem 4.14. There is an isomorphism

∧L(X/Y ) −→ H(X/Y )

in the derived category D(X).

Corollary 4.15. There are natural decompositions

HHn(X/Y,M) ∼=
∐

p+q=n

Extp
X(∧qL(X/Y ),M)

HHn(X/Y ) ∼=
∏

p−q=n

Hq(X,∧pL(X/Y )).

For complex spaces, this is just Theorem 4.2 of [6]. There is another nice de-
scription of Hochschild cohomology of complex spaces or Noetherian schemes over
a field K in any characteristic:

Remark 4.16. HHn(X) = ExtX2(OX ,OX).
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Proof. We use the letter K for the field K or for the complex numbers, depending
on the context. With the notations as above, we get:

HHn(X ) = Hn(Homa(S ⊗R a, a)) = Hn(HomR(S, a)) =
Hn(Homa⊗Ka(S ⊗R (a⊗K a), a)) = Hn(HomOX2∗

(S ⊗R OX2∗ ,OX∗))

= Extn
OX2∗

(OX∗ ,OX∗) = ExtX2(OX ,OX).

Here, we have used that S ⊗R OX2∗ is a free resolution of OX∗ over OX2∗ .

4.3. Hochschild-cohomology for manifolds and smooth varieties
Theorem 4.17. Let X be a complex analytic manifold or a smooth scheme of finite
type over a field K of characteristic zero. There is the following decomposition of
Hochschild (co)homology:

HHn(X) ∼=
∐

i+j=n

Hi(X ,∧jTX ) (4.1)

HHn(X) ∼=
∏

i−j=n

Hj(X,∧iΩX). (4.2)

Proof. For complex analytic manifolds, we work with a fixed covering by Stein
compacts and its associated simplicial scheme X∗. For the case of smooth schemes
of finite type over K, we work with an open affine covering by schemes of the form
Spec(A), where A is a finitely generated K-algebra. Denote the associated simplicial
scheme also by X∗.
By Proposition 4.11, Theorem 3.11 and Example 4.6, there are quasi-isomorphisms

j∗(H(X)) = j∗C(H∗(X)) ≈ H∗(X) ≈ ∧L∗(X) ≈ ∧OX∗ΩX∗ = j∗(∧OX ΩX)

of OX -modules. j∗j∗ is the identity functor, so there exists a quasi-isomorphism11

of OX -modules
H(X) ≈ ∧OX

ΩX . (4.3)

We consider ∧OX ΩX as complex in negative degrees, so ∧ΩX =
∐

j>0 ∧jΩX [j] and

HHn(X) = Extn
X(H(X),OX) ∼=

∐

j>0

Extn−j
X (∧jΩX ,OX).

By Theorem 7.3.3 of [10], there exists a (bounded) spectral sequence with

Ep,q
2 = Hp(X, Extq

X(∧jΩX ,OX)),

converging to ExtX(∧jΩX ,OX). But ∧jΩX is a locally free OX -module, so
Extq

X(∧jΩX ,OX) is zero for q > 0 and HomX (∧jΩX ,OX) for q = 0. Hence, the
spectral sequence degenerates at once and we get

Extq
X(∧jΩX ,OX) = Hq(X,HomX(∧jΩX ,OX)).

11Remark that for smooth schemes in positive characteristic, by [19] Lemma 2.4, there are nat-
ural isomorphisms ∧n

OX
ΩX −→ Hn(H(X)), but I don’t know if they are induced by a quasi-

isomorphism of complexes.
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There is a natural isomorphism of sheaves

∧jTX = ∧jHomX(ΩX ,OX) −→ HomX(∧jΩX ,OX),

which, by Proposition 7, p. 154 of [2], is an isomorphism. As consequence,

HHn(X) ∼=
∐

j>0

Hn−j(X,∧jTX) ∼=
∐

i+j=n

Hi(X,∧jTX).

The second equality is a direct consequence of (4.3).

The decomposition (4.1) for analytic manifolds was announced in Kontsevich’s
famous paper [14]. For smooth schemes it was proved in a different way by Yekutieli
[23]. A similar statement for quasi-projective smooth schemes is due to Gersten-
haber/ Schack [9] and Swan [19]. For smooth schemes, decomposition (4.2) was
proved in a different way by Weibel [22].
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1967

[5] Ragnar-Olaf Buchweitz and Hubert Flenner: Semiregularity maps and de-
formations, preprint arXiv:math. AG/9912245

[6] Ragnar-Olaf Buchweitz and Hubert Flenner: Hochschild (co-)homology of
complex spaces, in preparation
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