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NOTE ON THE RATIONAL COHOMOLOGY
OF THE FUNCTION SPACE OF BASED MAPS

YASUSUKE KOTANI
(communicated by Hvedri Inassaridze)

Abstract
In this paper, for a formal, path connected, finite-dimen-
sional CW-complex X of finite type and a g-connected space
Y of finite type with ¢ > dim X, we determine the necessary
and sufficient condition for the rational cohomology algebra
H*(F.(X,Y);Q) of the function space F,(X,Y) of based maps
to be free.

1. Introduction

Let F(X,Y) and F.(X,Y) be function spaces of free maps and based maps
from a space X to a space Y respectively. Then F(X,Y) and F.(X,Y) are path
connected if X is a path connected, finite-dimensional CW-complex of finite type
and Y is a g-connected space with ¢ > dim X.

A commutative graded algebra A = {AP},> satisfying A° = Q is said to be
free if A is isomorphic to a free commutative graded algebra AV on a graded vector
space V.

A commutative cochain algebra (A, d) satisfying H°(A) = Q is said to be formal
it (A,d) and (H(A),0) are connected by a chain of quasi-isomorphisms. A path
connected space X is said to be formal if the commutative cochain algebra Apy,(X)
of rational polynomial differential forms on X is formal.

It is known that, for an arbitrary n-connected space Y with n > 1, the rational
cohomology algebra

HY(Q"Y;Q) = H* (F.(5",Y); Q)

of the n-fold loop space QY of Y is free, and that spheres S™ are formal.

In this paper, for a formal, path connected, finite-dimensional CW-complex X
of finite type and a g-connected space Y of finite type with ¢ > dim X, we consider
the condition for the rational cohomology algebra H*(F.(X,Y); Q) of the function
space Fi(X,Y) of based maps to be free.

Let H*(X;Q) = {H?(X;Q)},>0 be the rational cohomology algebra for a path
connected space X with the cup product

U: H*(X;Q) ® H*(X;Q) — H*(X;Q).
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Recall that the rational cup length cup(X;Q) of X is defined by

sup{n € Z | fiU---U f, #0for f1,...,fn € H(X;Q)},

where H(X;Q) = {H?(X;Q)}p>0.

Let (AV,d) be a Sullivan algebra. Elements in AV of the form vq A -+ A vy for
v1,...,0; € V are said to have word length k. Then the differential d decomposes
uniquely as the sum

d=do+dy+day+---

of derivations d; raising the word length by i. (cf. [3, Section 12(a)]). Now, we
define the differential length d1(AV,d) of (AV,d) by the least integer m such that
dm—1 # 0. If d; = 0 for all ¢ > 0, that is, d = 0, we define dI(AV,0) = oco. We also
define the differential length d1(Y") of a simply connected space Y of finite type by
that of a minimal Sullivan model for Y. Then we can establish

Theorem 1.1. The differential length of a simply connected space of finite type is
independent of a choice of minimal Sullivan models. Thus it is a rational homotopy
invariant.

Our main theorem is as follows.

Theorem 1.2. Let X be a formal, path connected, finite-dimensional CW-complex
of finite type and Y a g-connected space of finite type with ¢ > dim X. Then
H*(F.(X,Y);Q) is free if and only if cup(X; Q) < dl(Y).

This paper is organized as follows. In Section 2, we recall the construction of a
minimal Sullivan model for F(X,Y") due to E. H. Brown, Jr. and R. H. Szczarba [2,
Thoerem 1.9]. Moreover, we describe a minimal Sullivan model for F,(X,Y) is
obtained by that for F(X,Y) using the evaluation fibration, which is established
by K. Kuribayashi [4, Theorem 3.6]. The proofs of Theorems are given in Section 3
and 4 respectively. In Section 5, we give some examples.

The author would like to express his deepest gratitude to Professor K. Kurib-
ayashi for permitting to use some results in [4, Section 3|, and also to Professor
T. Yamaguchi for helpful suggestions.

2. Minimal Sullivan models for F(X,Y) and F.(X,Y)

Let X and Y be as in Theorem 1.2. Then the construction of a minimal Sullivan
model for F(X,Y’) due to E. H. Brown, Jr. and R. H. Szczarba [2, Theorem 1.9] is
described as follows.

Let my : (AV,d) = Apr(Y) be a minimal Sullivan model for Y. Let H,(X;Q) =
{H,(X;Q)}p>0 be the rational homology coalgebra for X with the coproduct

A: H (X;Q) — Ho (X;Q) ® Hi(X;Q).

Let AV ® H.(X;Q) be a graded vector space with grading |[v ® ¢| = |v| — |¢| for
v e AV and ¢ € H.(X;Q). Let A(AV ® H.(X;Q)) be the free commutative graded
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algebra on AV @ H,(X;Q) with the differential d ® id, and let I be the ideal in
ANAV @ Ho (X;Q)) generated by 1 ® 1 — 1 and all elements of the form

N T Qc— Z(—l)'””“cljl(vl ® C;) A (UH ® C;-I) (2.1)
for v',v" € AV and ¢ € H.(X;Q) with Ac =} c; ®c]. Then (d®id)(I) € I ([2,
Theorem 3.3]) and the composition map

p: ANV @ H(X;Q)) — ANAV @ H (X;Q)) = ANAV @ H(X;Q))/T
is an isomorphism of graded algebras (|2, Theorem 3.3]). Let ¢ be the differential
on A(V® H.(X;Q)) given by § = p~(d®id)p. Then, by [2, Theorem 1.9], F(X,Y)
has a minimal Sullivan model of the form
(AV ® Hi(X;Q)),6).
Next, let us consider the evaluation fibration
FUX,Y) = F(X)Y) ==Y,

where ev, is the evaluation map at the basepoint of X. Let i: (AV,d) — (A(V ®
H.(X;Q)),0) be the inclusion map defined by i(v) = v ® 1 for v € V. From the
consideration in [4, Section 3|, we have a commutative diagram

Apy(evy)

App(Y) App(F(X,Y))

mYTN MTN

(AV, d)—— (A(V @ H.(X;Q)),0),

where m: (A(V @ H,(X;Q)),8) = App,(F(X,Y)) is a minimal Sullivan model for
F(X,Y) described above. Thus the inclusion map ¢ is viewed as a model for the
evaluation map ev.,.

Let J be an ideal of A(V ® H,(X;Q)) generated by v ® 1 for v € V. Let 6 be
the differential on A(V ® H.(X;Q))/J induced from ¢ on A(V @ H.(X;Q)). Then,
by [3, Proposition 15.5] and [4, Theorem 3.6], F.(X,Y) has a minimal Sullivan
model of the form

(MNV © Ho(X;Q))/J,6) = (AV @ Hi(X;Q)),0),
where Hy (X;Q) = {H,(X;Q)}p>o-

3. Proof of Theorem 1.1

It is known that minimal Sullivan models for a simply connected space of finite
type are all isomorphic, and that the isomorphism class of a minimal Sullivan model
for a simply connected space of finite type is a rational homotopy invariant. Hence,
for the proof of Theorem 1.1, it is sufficient to prove the following.

Proposition 3.1. Let (AV,d) and (AV’,d’) be isomorphic Sullivan algebras. Then
dli(AV,d) = dI(AV', d').
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Proof. Let f: (AV,d) =R (AV',d") be an isomorphism of differential graded alge-
bras.
First, suppose that dI(AV’,d') = oo, that is, d = 0. Then, since fd =d'f =0
and f is an isomorphism, we have d = 0. Thus dI(AV,d) = cc.
Next, suppose that dI(AV’,d') = m < oo, that is, d; =0 for 0 < i <m —1 and
'._1 # 0. Then, since f is an isomorphism, for an arbitrary element v € V, there
exists an element v’ € V’ such that

f(v) = v + (higher terms).
Now, assume that dv has terms of the form vy A --- A wvg for vy,...,v € V and
k < m — 1. Then f(dv) has terms of the form
For A Avg) = for) A+ A fog) =) A+ Avy, + (higher terms)

for vi,...,v;, € V' and k < m — 1. However, d’ f(v) = f(dv) has no such terms
because d; =0for 0 <7< m-—1. It is a contradiction. Hence we have d; = 0
for 0 < i < m — 1 since d is a derivation. So we get the inequality dl(AV,d) >
dI(AV’,d"). Since f~! is also an isomorphism, we get the inverse inequality. Thus
dI(AV,d) = dI(AV’,d") = m. O

4. Proof of Theorem 1.2

Let X and Y be as in Theorem 1.2. Let (AV,d) be a minimal Sullivan model
for Y and H,(X;Q) the rational homology coalgebra for X. Then, as described in
Section 2, F.(X,Y) has a minimal Sullivan model of the form

(ANV @ Hi(X;Q)),9),
where ¢ is induced from 6 = p~(d®id)p on A(V ® H,(X;Q)) by reducing elements
contained in the ideal J generated by v ® 1 for v € V. B

It is easy to see that H*(F.(X,Y);Q) = H(A(V ® H(X;Q)),0) is free if and
only if § = 0, and that 6 = 0 if and only if §(A(V ® H(X;Q))) € J. Hence, for the
proof of Theorem 1.2, it is sufficient to prove the following.

Proposition 4.1. (1). If cup(X;Q) < dI(Y), then 6(A(V ® H(X;Q))) € J or
equivalently 6 = 0.
(2). If cup(X;Q) = dI(Y), then §(NV ® Hi(X;Q))) & J.
Thus we need to explain the differential ¢ in detail. Let A be the coproduct on
H.(X;Q). Then the reduced coproduct
A Hy(X;Q) — Hi(X;Q) ® Hi (X;Q)
is defined by Ac = Ac—c® 1—1 ® cfor ¢ € H,(X; Q). Moreover, the k-th coproduct
A®) and the k-th reduced coproduct Z(k) are defined inductively by A = Z(O) =
id, AO = A, AY — A and
AR = (A®id®---®id) o AFD: H (X;Q) — H,(X;Q)®F !,

A = @eide-oid) o A HA(X;Q) - Hy(X;Q)%H,



Homology, Homotopy and Applications, vol. 6(1), 2004 345

where H®**! denotes the (k + 1)-times tensor product of H.

Let H*(X;Q) be the rational cohomology algebra for X with the cup product
U. Since X is of finite type, H*(X;Q) with U and H,.(X;Q) with A are dual each
other. Hence we have immediately

Lemma 4.2. If cup(X;Q) = n, then A" 0 for 0 <k <n and A" = 0
for all k > n.

Let By, = {co = 1,¢1,¢a,...} be abasis for H,(X;Q) with 0 < |c1| < |eo| < -+
Then, for an arbitrary element ¢; € By, and £ > 2, we may denote

AF ey =3 i © - © ¢y,

where 0 # pj,,...5. € Q and ¢j,,...,c;, € By,. By the definition of the reduced
coproduct, we have immediately

Lemma 4.3. E(kil)cj = 0 if and only if there exists an integer s such that c;, =1
in each term of A(k_l)cj.

Moreover, since the cup product U is associative and commutative, so is the
coproduct A, that is, (A ® id)A = (Id®A)A and 7TA = A, where 7 is defined by
T(c® ) = (=1)l€l¢ @ ¢. Hence we have immediately

Lemma 4.4. iy, = (—1)|cjs||cjs+1"ujl)”

'7j5)js+1)“'7jk '7js+17js;~~~7jk'

Let By = {v1,vs,...} be a basis for V with 0 < |v1| < |ve| < ---. Then, if
dv; = vy, A--- AN, for v; € By and A(kfl)cj =Dl nCih @ - @ ¢, for
¢j € By, , we have

5(Ui ® Cj) = Z(_l)E(il’jl;m;ik,jk)p’jlwwjk (vil ® Cj1) ARERRA (vik ® cjlc)7 (41)

where the sign (—1)=(?1:713-5%.7k) i determined by (2.1), that is,

Vig Ao ANy, @¢j = Z(_1)s(il7j1;m;ik7jk)”j17---,jk (vi, ® le) A A (vgy, ® Cjk)
in the graded algebra A(AV ® H.(X;Q))/I. More precisely, (i1, j1;...; ik, Jr) s
given by

k—1

Lemma 4.5. 5(7;17].1; s ;ikajk) = Z(|viz+1| +ot "l)ik|)|le|
=1

~

Proof. We prove by induction on k. Let k = 2. Then, if Ac; =) pj, j,¢5, @ ¢, for
¢j € By, , we have

Vi NV, @Cj = Z(_l)lviz“ch‘/j‘jl»h (vil ® cjl) A (Uiz ® Cj2)7

and so €(i17j1;i2a.j2) = |’U1‘2||Cj1|.

Let k¥ > 3 and assume that the formula is true until ¥ — 1. Since A*—1 =
(ARid®- - ®@id) o AF=2 if Ab=De, =5, icjy @+ ®c¢j, for ¢; € By, , we
can denote

.....

(k=2) . _ o s . )
A ¢ = Hjt gssein Gl & Cig @ -0+ & Cjy,
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with Acj = Y pf ocjy @ cjy and gy, = Wy 5 Mt s, g+ Lhen, by putting
vir = vi; A Vj,, we have
Vi, /\"'/\fl}i,C ®Cj
:7)1'/1 /\’Ui3 /\/\'U“L ®Cj
= Z(_l)s(“Jl;13’]3;"';%’“)/%{,js,...7jk (Ui’l ® Cj{) A (Ui3 ® st) A A (Uik ® Cjk)'
Furthermore, since
'Uill ® Cj{ = V4, A (% ® Cji = Z(_l)lvizllchlﬂgl,p (Uh ® le) A (’1)1'2 ® Cjz),
we have
Vi N ANy, ® ¢y
_ Z(_1)5(1"1J{;is,js;...;im]‘k)ﬂviz llesy ‘le,“.,jk (vi, @ cjy) Ao+ A (Vi ®cjp)s

and so
(i, Jus- - - ik k)
= E(lea.]iv iS,jS; cey ikmjk) + |Ui2||cj1|
k—1
= (|Ui3| +ooe Tt |U2k|)‘cj{| + Z('vil+1| +oe Tt |vik|)|cjl,| + |vi2||cj1|
=3
k—1
= (|viz+1|+"'+ ‘Uik|)|cjz|
=1
because [cj; | = |cj, | +[cj, |- O

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. Notice that cup(X; Q) < oo since X is finite-dimensional.
First, suppose that dl(Y') = co. Then, since d = 0, we have § = p~!(d®id)p = 0,
and so ¢ = 0.
Next, suppose that d1(Y) = m < co. Fix a basis By, = {co = 1,¢1,c¢2,...} for
H,.(X;Q) with 0 < |e1] < |e2| < -+ and a basis By = {v1,v2,...} for V with

0 < |v1] < |vz| < ---. Then, for an arbitrary element v; € By, we may denote
dvi = Z )\1'17.__,%’[}1'1 VARERIVAN Vi y
k>m
where 0 # A;, ;. € Qand v;,,...,v;, € By with i1 <--- < .

(1). For an arbitrary element ¢; € By, with ¢; # 1 and k > m, we may denote

A(kil)cj = Zu’jlv---vjkcjl @ Cjys
where 0 # 1, ;. € Q and ¢j,,...,¢;, € Bg,. Since cup(X;Q) < dI(Y) = m, by

Lemma 4.2, Z(k_ )cj = 0 for k£ > m, and so, by Lemma 4.3, there exists an integer
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s such that ¢;, = 1 in each term of A~Ye¢; for k > m. Hence we have
6(v; ® ¢;)
= Z (_1)8(i17j1;m;ilmjk)>‘i1,~~~,ik:u’j1,-~wjk (vil ® cjl) ARERRA (vik ® Cjk) eJ
k>m

for an arbitrary element v; € By. Thus §(A(V ® H(X;Q)) € J since § is a
derivation.

(2). Since cup(X;Q) > dlI(Y) = m, by Lemma 4.2, there exists an element
¢j € By, such that ¢; # 1 and

A(m=1)
A Cj :Zlu'jlw--v.jWLle ®'.'®Cj7n #O'
Since dI(Y') = m, there exists an element v; € By such that dv; has a term of the
form X;, . i, Ui, Ao A, with A; 5 # 0and ép < -+ < 4. Then §(v; ® ¢;)
has terms of the form
Z(—1)8(i1Jl;"'”"“””»‘h 7777 ity i (Vi @i ) A A (v, ®¢y,)

with ¢;, #1 for 1 <s<m.
If i1 < -+ < i, we see that each term (v;, ® ¢j,) A--- A (v;, @ c¢j,,) cannot be
canceled by other terms.
If is = is41 for some s, |v;,

(vi, ® ¢j,) A (vi, ® ¢j,,4)
= (—)Uvesl=les Dl Hle D, @ e, ) A (v, ®¢j,)
= (*1)|CJSHCJS+1|(UZ'S ® Cj.<+1) A (vis ® st)

must be even. Then we have

and, by Lemma 4.5,

(it 15 50y Jisi Uss Jst1s - - 5 by Jim)
— (i1, J15 -+ 50y Jst15 085 Jsi - - 5 Gms Jm)
= (lvi | + |vis |+ + v Dles, | + (Vi |+ + v Dles |
— (lvi, | + [vie |+ v Dleso | = (igga | 4+ [viDleg,
= ‘/Uis|(‘cjs| - |st+1|) = 0 mod 2.

Hence, by considering the coefficients with Lemma 4.4, we see that each term (v;, ®
¢ )N+ A(v;, ®cj,. ) cannot be canceled by other terms. (For example, see Example 3
in Section 5).

Thus there exists an element v; ® ¢; € A(V @ H(X;Q)) such that §(v; ® ¢;) &
J. O

5. Some examples

Since cup(X;Q) < oo if X is finite-dimensional and dI(Y) > 1 for any simply
connected space Y of finite type, we have

Proposition 5.1. Let X be a formal, path connected, finite-dimensional CW -
complex of finite type and Y a q-connected space of finite type with ¢ > dim X.
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Then, if Y has a minimal Sullivan model of the form (AV,0) or all cup products on
HY(X;Q) are trivial, H*(F.(X,Y); Q) is always free.

Example 1. The following spaces have a minimal Sullivan model with a trivial
differential:

e odd dimensional spheres,

e path connected H-spaces of finite type (cf. [3, Section 12(a), Example 3]),

e classifying spaces of path connected topological groups of finite type (cf. [3,
Proposition 15.15]),

e Eilenberg-MacLane spaces of type (7w,n) with n > 1, 7 is Abelian and 7 ®7 Q
is finite dimensional (cf. [3, Section 15(b), Example 2]),

e a product of above spaces. O
Example 2. The following spaces are formal and all cup products on the positive
dimensional rational cohomology algebra are trivial:

e spheres,

e suspensions of spaces (cf. [3, Proposition 13.9]),

e co-H-spaces,

e a wedge of above spaces.

Note that a co-H-space is rationally homotopy equivalent to a wedge of spheres (cf.

[1, Section 7]), and a wedge of formal spaces is also formal. O

A product of spheres S x - - - x S is an (i1 +- - - +1, )-dimensional CW-complex
and a formal space with cup(S% x --- x S;Q) = n.

It is known that the n-th James reduced product space J,,(S%) of a 2i-dimen-
sional sphere 52! is a 2ni-dimensional CW-complex which has the rational coho-
mology

H*(J,(5*); Q) = Qle]/(c"*)
with |¢| = 2i, and has a minimal Sullivan model of the form
(A(v,0),d0 = v™t)

with |v| = 2i. Hence we have

Proposition 5.2. (1). Let Y be a g-connected space of finite type with q > i1 +
-+ +14,. Then

H*(F (S x --- x 8™ Y);: Q)
is free if and only if AI(Y') > n.
(2). LetY be a 2ni-connected space of finite type. Then
H*(Fo(Ju(5*),Y); Q)
is free if and only if AI(Y) > n.
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(3). Let X be a formal, path connected, p-dimensional CW-complex of finite type
with p < 2i. Then

H*(Fu(X, Ja(5)); Q)
is free if and only if cup(X;Q) < n + 1.
Example 3. H*(F,(S! x $3,5%);Q) is not free.
Notice that d1(S®) = 2 = cup(S! x S3;Q). A basis for H,(X;Q) is given by

{1,c1,¢3,¢4} with |¢;| = j, Ac; = Acg =0 and
Acy = p1,3¢1 @ €3 + pg 163 Q cq,

where p13 = (=1)"3u31 = —ps31. A minimal Sullivan model for S° is given by
(A(ve,v11),d) with |v;| = i, dve = 0 and dvy; = ve?. By applying the construction
described in Section 2, F,(S* x S2,5%) has a minimal Sullivan model of the form

(A{vs,v11} @ {c1,¢3,¢4}),6).
Then, by the formula (4.1) and Lemmas 4.4 and 4.5, we have
d(v11 ® c4)
= (=) (wg @ cs) A(vg @ 1) + (=1)5%(vg @ 1) A (v6 ® c4)
+ (=1)% 1 3(vs ®@ 1) A (v6 @ ¢3) + (—1)3 g1 (ve @ c3) A (v6 @ 1)
= (vg ®ca) A (v @1) + (=1)E7DE=D (e @ ¢)) A (vg ® 1)
+ p1.3(v6 @ ¢1) A (vg ® c3) 4+ (—=1)E=IEDH ) S0 @ ¢1) A (vs @ c3)
=2(vg ®ca) A (6 ®@ 1) + 241 3(v6 @ c1) A (v ® c3),
and 0 6(v11 ® ¢4) = 211 3(v6 ® 1) A (v6 ® c3) # 0. O



Homology, Homotopy and Applications, vol. 6(1), 2004 350

References

[1] M. ArkowiTz, Co-H-spaces, Handbook of algebraic topology, 1143-1173,
North-Holland, 1995.

[2] E. H. BRowN, JR. AND R. H. SzCzZARBA, On the rational homotopy type of
function spaces, Trans. Amer. Math. Soc. 349 (1997), 4931-4951.

[38] Y.FELix, S. HALPERIN AND J.-C. THOMAS, Rational homotopy theory, Grad-
uate Texts in Mathematics 205, Springer-Verlag, 2001.

[4] K. KURIBAYASHI, Rational model for the evaluation map and iterated cyclic
homology, preprint.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2004/n1al8/v6nlal8.(dvi,ps,pdf)

Yasusuke KOTANI kotani@math.kochi-u.ac.jp

Department of Mathematics
Faculty of Science

Kochi University

Kochi 780-8520, Japan



