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CLASS 2 GALOIS REPRESENTATIONS OF KUMMER TYPE

HANS OPOLKA

(communicated by Hvedri Inassaridze)

Abstract
The purpose of this note is to give a description of class

2 representations of the absolute Galois group of a field k of
characteristic 0 which satisfy a certain condition of Kummer
type. This description is based on Galois cohomology and on
the theory of projective representations of finite abelian groups.

1. Central pairs and twisted group algebras

In this section we recall some well known basic facts from the theory of projective
representations and twisted group algebras over fields of characteristic 0, see e.g.
[11], Kap.V; [12]; [26]; [27].

Let k be a field of characteristic 0 and let k be an algebraic closure of k. A
central pair over k consists of a finite group A and of a central 2-cocycle f on A
with values in k∗, i.e. f : A×A → k∗ is a mapping which satisfies f(x, y)f(xy, z) =
f(x, yz)f(y, z) for all x, y, z ∈ A. Two central pairs (A, f), (B, g) are said to be
isomorphic if there is an isomorphism α : A → B such that the cocycle gα : A×A →
k∗ defined by gα(x, y) := g(α(x), α(y)), x, y ∈ A, is cohomologous to the cocycle f.
Every central pair (A, f) over k determines the so called twisted group algebra

(k, A, f) =
⊕

x∈A

kex, aex = exa, exey = f(x, y)exy

for all a ∈ k and all x, y ∈ A. Since char(k) = 0 this k-algebra (k, A, f) is
semisimple, see [26], Theorem 4.1, p.171.

Examples. (a) We mention the central pair which is constructed by E. Artin
in [1], p.10 ff, from a nondegenerate quadratic form over k. In this case the corre-
sponding twisted group algebra is isomorphic to the Clifford algebra of the quadratic
form.

(b) Assume that the field k contains a primitive root of unity ω of order m, let
a, b ∈ k∗ and denote by Aω(a, b) the corresponding symbol algebra, i.e. Aω(a, b) =
〈X,Y : XY = ωY X, Xm = a, Y m = b〉. Then there is a central pair (Z/mZ ×
Z/mZ, f) over k such that Aω(a, b) ∼= (k,Z/mZ×Z/mZ, f). Moreover every tensor
product of symbol algebras is isomorphic to (k,A, f) for some central pair (A, f)
over k with an abelian group A; see e.g. [13], 1.3.21.
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There is a bijective correspondence R 7→ T between the set of (irreducible)
representations of the twisted group algebra (k, A, f) and the set of (irreducible)
f -cocycle representations of A over k which is given by R(ex) = T (x), x ∈ A.
Moreover, the group Hom(A, k∗) of linear characters of A with values in k∗ acts by
multiplication on the set of irreducible representations of the twisted group algebra
(k, A, f) and therefore on the set of irreducible f -cocycle representations of A over
k, see [12], §4; [26], §5. If A ∼= A1 × A2 is isomorphic to the direct product of
the groups A1 and A2 then every central 2-cocycle f on A is cohomologous to the
2-cocycle g : A×A → k∗ given by

g((a1, a2), (b1, b2)) = f(a1, b1)f(a2, b2)β(a1, b2), a1, b1 ∈ A1, a2, b2 ∈ A2.
β(a1, b2) = f(a1, b2)/f(b2, a1)
It turns out that β : A1 × A2 → k∗ , β((a1, a2)) = f(a1, a2)/f(a2, a1), is a

bimultiplicative pairing, see e.g. [26], 2.2. The direct product A1 ×A2 is said to be
orthogonal with respect to the central 2-cocycle f if the pairing β is trivial; in this
case we write (A, f) ∼= (A1, f1) ⊥ (A2, f2). The next proposition is obvious.

Proposition 1.1. If (A, f) ∼= (A1, f1) ⊥ (A2, f2) then there is an isomorphism of
k-algebras

(k,A, f) ∼= (k, A1, f1)⊗k (k,A2, f2)

given by e(a1,a2) 7→ ea1 ⊗ ea2 .

Assume that A is abelian. Then the symplectic pair associated with the central
pair (A, f) is given by (A,ωf ), where ωf : A×A → µk is the symplectic pairing on A
with values in the group of roots of unity µk of k given by ωf (x, y) := f(x, y)/f(y, x)
for all x, y ∈ A; see [12], [26], [27]. Obviously, if f is cohomologous to another central
cocycle g on A, then ωf = ωg. The central pair (A, f) is said to be nondegenerate
if the symplectic pairing ωf is nondegenerate. In this case µk contains a primitive
root of unity of order e(A) = exp(A). Moreover, it is easily seen that the center
of (k,A, f) is (k,R, f), where R = R(ωf ) is the kernel=radical of the symplectic
pairing ωf . Hence (k,A, f) is central simple if and only if ωf is nondegenerate.

Assume that the central pair (A, f) over k with abelian A is nondegenerate. Then
according to [27] the symplectic pair (A,ωf ) is isomorphic to the orthogonal sum
of ”hyperbolic planes”, i.e.

(A,ωf ) ∼= (A1, ωf1) ⊥ ... ⊥ (Ar, ωfr )

where Ai is isomorphic to a direct product of two isomorphic cyclic groups and fi

is the restriction of f to Ai, i = 1, ..., r. Proposition (1.1) yields

(k, A, f) ∼= ⊗r
i=1(k, Ai, fi),

the isomorphism being given by ea 7→ ea1⊗...⊗ear for all a = (a1, ..., ar) ∈ A = A1×
...×Ar. For abelian A, which we are assuming, this decomposition follows also from
[3], corollary, p. 294. Every algebra in this decomposition is isomorphic to a symbol
algebra: (k, Ai, fi) ∼= Aωi(ai, bi), where Ai = 〈xi〉× 〈yi〉 , mi =order(xi) =order(yi),
ωi = ωf (xi, yi), ai = emi

xi
, bi = emi

yi
. For every i = 1, ..., r let αi, βi ∈ k be elements

such that αmi
i = ai, β

mi
i = bi and put Ki := k(αi, βi). Every extension Ki/k
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is a Kummer extension. Denote by Gi := G(Kik) its Galois group. Every symbol
algebra Aωi(ai, bi) is similar to a crossed product algebra (Ki/k, ci) with a 2-cocycle
ci : Gi ×Gi → µmi

⊂ µk, i = 1, ..., r. It follows from the multiplication theorem for
crossed products, see e.g. [4], V, §2, that (k, A, f) is similar to a crossed product
of the form (K/k, c), K = compositum of all Ki, i = 1, ..., r, with a 2-cocycle
c : G(K/k)×G(K/k) → µexp(A). So we have

Remark 1.2. If A is abelian and if the central pair (A, f) over k is nondegenerate
then the corresponding twisted group algebra (k, A, f) is a central simple k-algebra
which is k-isomorphic to a tensor product of symbol algebras over k. Moreover
(k, A, f) is similar to a crossed product algebra of the form (K/k, c) where K is
defined as above and c is a 2-cocycle on the Galois group G(K/k) such that all
values of c belong to µexp(A) ⊂ µk.

Crossed product algebras of the type desribed in this remark belong to the class
of regular crossed product algebras in the sense of [2].

We shall also make use of the following result from the cohomology theory of
finite groups; for a proof see e.g. [12], Lemma 1.2, p.133, and [26], Theorem 2.2, p.
160; Proposition 2.1, p. 159.

Lemma 1.3. Let G be a finite abelian group acting trivially on k∗ and k
∗

and as-
sume that k contains a primitive root of unity of order exp(G). Then the embedding
k∗ ⊂ k

∗
yields a split exact sequence

1 → H2
sym(G, k∗) → H2(G, k∗) ι→ H2(G, k

∗
) → 1 (~)

where H2
sym(G, k∗) is the group of cocycle classes which can be represented by a

symmetric cocycle t on G, i.e. t satisfies t(x, y) = t(y, x) for all x, y ∈ G. If

G ∼= ×r
i=1Gi

is a decomposition of G as a direct product of cyclic groups Gi of order mi, i =
1, ..., r, then

H2
sym(G, k∗) ∼= ×r

i=1H
2
sym(Gi, k

∗)

and
H2(Gi, k

∗) ∼= H0(Gi, k
∗) ∼= k∗/k∗

mi
, i = 1, ..., r;

the last isomorphism being induced by mapping a cocycle t on Gi = 〈xi〉 to

mi∏

j=1

t(xi, x
j
i )modk∗

mi ∈ k∗/k∗
mi

.

2. Central pairs and Galois representations

In this section we explain and state the main results of this note. The proofs will
be given in the next sections.

Let (A, f) be a central pair over k with a finite abelian group A. Let k denote
an algebraic closure of k and for every subextension K/k of k/k let GK = G(k/K)
denote the profinite Galois group of the extension k/K. For every x ∈ A define
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df (x) := f(x, x)f(x, x2)...f(x, xm(x)), where m(x) = order of x,

and for every x ∈ A let αf (x) denote an m(x)-th root of df (x) in k. Denote by
kf the field which is obtained from k by adjoining to k all αf (x), x ∈ A. If (A, f) is
isomorphic to (B, g) then kf = kg.

Assume that (A, f) is nondegenerate. Then k contains a primitive root of unity
of order e = e(A) = exp(A). Hence Hom(A, k∗) ∼= Hom(A, k

∗
) ∼= Â. Moreover,

kf/k is a Kummer extension. It coincides with the field K defined in (1.2). The
nondegenerate central pair (A, f) is said to be full if αf (x) has degree m(x) over k
for all x ∈ A and if (kf : k) = |A|.

Example. Let a, b be squarefree integers and assume ab = a0a
2 where a0 is square-

free and 6= 1. Then any central pair (Z/2Z×Z/2Z, f) over Q such that df (x) = a,
df (y) = b, where Z/2Z× Z/2Z = 〈x〉 × 〈y〉 , is full.

Assume that (A, f) is nondegenerate and full. For every λ ∈ Â and every x ∈ A
put σλ(αf (x)) := λ(x)αf (x). σλ induces a k-automorphism of kf in an obvious
way. In this way we get an isomorphism Â → G(kf/k), λ 7→ σλ. Composing this
isomorphism with the isomorphism A → Â given by x 7→ ωf (x,−) we get an
isomorphism

γf : A → G(kf/k). (2.1)

Denote by Gk = G(k/k) the absolute Galois group of k. A linear resp. projective Ga-
lois representation of degree n of Gk is a continuous homomorphism Gk → GL(n, k)
resp. Gk → PGL(n, k), where Gk is regarded as a topological group with respect
to the profinite topology, and GL(n, k) resp. PGL(n, k) are regarded as discrete
groups; so the kernel of every linear resp. projective Galois representation of Gk is a
closed subgroup of finite index in Gk which by Galois theory corresponds to a finite
Galois extension L resp. K of k contained in k; L resp. K is called the kernel field of
the corresponding Galois representation. Many familiar concepts for linear and pro-
jective representations of finite groups, e.g. irreducibility or rationality, carry over
to Galois representations. A projective Galois representation P of Gk is said to be
of Kummer type if P is absolutely irreducible of degree greater than 1, if the image
P (Gk) is abelian and if k contains a primitive root of unity of order exp(P (Gk)).

The first observation which will be proved in §3 is as follows.

Proposition 2.2. The isomorphism in (2.1) induces a bijective correspondence
between the set of isomorphism classes of nondegenerate full central pairs (A, f)
over k (with an abelian group A) and the set of isomorphism classes of irreducible
projective Galois representations P of Gk of Kummer type with kernel field kf ;
under this correspondence the degree of P is 2

√
|A|.

Let e be a natural number such that the group µe of e-th roots of unity in k is
contained in k. As is well known, the exact sequence

1 → µe → k
κ→ k

∗ → 1, κ(a) := ae, (*)
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of discrete Gk-modules with respect to the natural Gk-Galois action induces an
isomorphism

H2(Gk, µe) ∼= Br(k)e, (**)

where Br(k)e is the subgroup of the Brauer group of k of elements of order dividing
e. And the exact sequence of discrete Gk-modules (*) with respect to the trivial
Gk-action induces an exact sequence of cohomology groups

... → Hom(Gk, k
∗
) δe→ H2(Gk, µe) → H2

tr(Gk, k
∗
) → ... (***)

(Here and in the following the index ”tr” means ”cohomology with respect to the
trivial group action”.) Motivated by arguments in [16], p. 233/234, we denote by
C(k, e) the subgroup of the Brauer group Br(k)e which corresponds to the image
of δe under the isomorphism (**). Obviously every element of C(k, e) can be rep-
resented by a regular cyclic crossed product algebra (k′/k, c), i.e. k′/k is a cyclic
extension and all values of the 2-cocycle c on its Galois group G(k′/k) belong to µe.
A nondegenerate central pair (A, f) with abelian A is said to be regular cyclic if
the Brauer class of the central simple k-algebra (k, A, f) is contained in C(k, e(A)),
e(A) = exp(A). (The name ”regular cyclic” is suggested by a similar terminology
in [2].)

From the exact sequence (***) the following proposition is obvious.

Proposition 2.3. If M(k) := H2
tr(Gk, k

∗
) is trivial then every nondegenerate cen-

tral pair (A, f) over k with abelian A is regular cyclic.

For instance, M(k), which is sometimes called the Schur multiplier of Gk or of k,
is trivial in the following cases: k a local or global number field; see [22], and for a
proof [16], §6. k a field (of characteristic 0) such that its cohomological dimension is
1, e.g. k = C(t), the rational function field in one variable over the complex number
field C, according to Tsen’s result [24]. For a discussion of fields of cohomological
dimension 1 see e.g. [17], chapitre II, §3.

Proposition 2.4. If a nondegenerate central pair (A, f) over k with an abelian
group A is regular cyclic then there is a multiple m of e(A) = exp(A) such that
the central simple k-algebra (k, A, f) splits over µm, i.e. the cocycle class (t) ∈
H2(Gk, µe(A)) corresponding to the Brauer class of (k, A, f) belongs to the kernel of
the homomorphism H2(Gk, µe(A)) → H2

tr(Gk, µm) which is induced by the embed-
ding µe(A) ↪→ µm. Especially the cyclotomic extension k(µm) is a splitting field for
the central simple k-algebra (k, A, f).

On the basis of this proposition we call for a regular cyclic central pair (A, f)
with abelian A the smallest multiple m = m(A, f) of e(A) such that (k,A, f) splits
over µm the regularity index of (A, f).

Proof of proposition (2.4). By assumption (k, A, f) is similar to a regular cyclic
crossed product algebra (k′/k, c). Since G(k′/k) is cyclic the homomorphism
H2(G(k′/k), µe) → H2

tr(G(k′/k), k
∗
) induced by the embedding µe ↪→ k

∗
is triv-

ial. This implies that there is a function α : G(k′/k) → k
∗

such that c(σ, τ) =
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α(σ)α(τ)/α(στ) for all σ, τ ∈ G(k′/k). Hence αe(A) is a character of G(k′/k), and
it follows that αe(A)(k′:k) is the trivial character. So (k, A, f) splits over µe(A)(k′:k)

and k(µe(A)(k′:k)) is a splitting field of (k,A, f).

Two linear Galois representations D1, D2 of Gk are said to belong to the same
genus if there is a linear character λ of Gk, i.e. a Galois representation of Gk of
degree 1, such that D2 is isomorphic to λD1. In this way an equivalence relation
is defined on the set of all linear Galois representations of Gk which is compatible
with irreducibility. For a linear Galois representation D of Gk we denote by (D) the
corresponding equivalence class which is sometimes called the genus of D. Let D
be an irreducible linear Galois representation of Gk and let D be the corresponding
projective representation of Gk which is obtained by composing D with the natural
epimorphism GL(n, k) → PGL(n, k). Let K be the kernel field of D. The restriction
of D to the subgroup GK is a multiple of a linear character χ = χD of GK ,
the so called central character of D. The index g((D)) of the genus (D) of an
irreducible Galois representation D of Gk is defined to be the minimal order of
a central character χF for all F ∈ (D). An absolutely irreducible linear Galois
representation is said to be of class 2 if its image is a nonabelian nilpotent group
of class 2, and it is said to be of Kummer type if the corresponding projective
representation is of Kummer type. Our main result is as follows.

Theorem 2.5. There is a bijective correspondence between the set of isomorphism
classes of nondegenerate full regular cyclic central pairs (A, f) over k with an abelian
group A and the set of genera (D) of linear class 2 Galois representations D of Gk

of Kummer type; under this correspondence the degree of (D) is 2
√
|A|, and the index

of (D) divides the regularity index of (A, f).

A nondegenerate central pair (A, f) over k with an abelian group A is said to
be rational if the central simple k-algebra (k, A, f) splits, i.e. is similar to a matrix
algebra over k.

Corollary 2.6. There is a bijective correspondence between the set of isomorphism
classes of nondegenerate full rational central pairs (A, f) over k with an abelian
group A and the set of genera (D) of linear class 2 Galois representations D of Gk

of Kummer type such that the index of (D) divides e(A).

3. Duality of central pairs

Assume that A is a finite abelian group and that (A, f) is a nondegenerate full
central pair over k. Then, as noted ealier, the symplectic pairing ωf : A × A → k∗

is nondegenerate, hence k contains a root of unity of order e(A) = exp(A), and
the twisted group algebra (k, A, f) is central simple. Let (fι) denote the image of
the cohomology class (f) ∈ H2(A, k∗) under the homomorphism ι : H2(A, k∗) →
H2

tr(A, k
∗
), see (1.1). There is up to isomorphism a unique absolutely irreducible

projective representation of A over k of degree 2
√
|A| with cocycle class (fι). Com-

posing this representation with the inverse of the isomorphism γf : A → G(kf/k)
from (2.1) yields an absolutely irreducible projective Galois representation of Gk
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over k of Kummer type whose isomorphism class is uniquely determined by the
isomorphism class of (A, f).

Now let P be a projective Galois representation of Gk of Kummer type and
let K be its kernel field; so P (Gk) ∼= G(K/k). It follows that K/k is a Kummer
extension. Hence there is a subgroup ∆ of k∗ containing k∗

e

, e = exp(G(K/k)),
such that G(K/k) is canonically isomorphic to Â, where A = ∆/k∗

e

. Assume that
a1, ..., ar ∈ ∆ are elements such that a1 modk∗

e

, ..., ar modk∗
e

is a basis of A. De-
note by mi the order of ai modk∗

e

, i = 1, ..., r. Writing e = limi we see that
A = ×r

i=1Ai where Ai =
〈
bli
i modk∗

mi
〉

for some element bi ∈ k∗, i = 1, ..., r.

Let g : A × A → k∗ denote a symmetric cocycle in the cocycle class which is de-
termined by (b1 modk∗

m1
, ..., br modk∗

mr ) under the isomorphism H2
sym(A, k∗) ∼=

×r
i=1k

∗/k∗
mi described in lemma (1.3). Let (t) ∈ H2

tr(G(K/k), k
∗
) denote the

cocycle class of P . Since P is faithful on G(K/k) the symplectic pairing ωt on
G(K/k) is nondegenerate and induces an isomorphism G(K/k) → G(K/k)∧ ∼= A.

Let (h) ∈ H2
tr(A, k

∗
) denote the cocycle class corresponding to (t) under the in-

duced isomorphism H2
tr(G(K/k), k

∗
) ∼= H2

tr(A, k
∗
). Using a splitting of the exact

sequence ~ in lemma (1.3) we see that (g) and (h) uniquely determine a cocycle
class (f) ∈ H2(A, k∗). By construction the central pair (A, f) is nondegenerate and
full, and its isomorphism class is uniquely determined by the isomorphism class of
P. Obviously the degree of P is 2

√
|A|. Moreover, this construction P Ã (A, f) is

inverse to the previous one (A, f) Ã P .
Altogether we have proved proposition (2.2).

4. Regular cyclic central pairs and Galois representations of
class 2

In the proof of theorem (2.5) we make use of the following result, see [14].

Proposition 4.1. Every absolutely irreducible projective representation of a finite
abelian group G over k is projectively equivalent to a projective representation such
that a corresponding cocycle representation of G is regular, i.e. has all its matrix co-
efficients in k(µexp(G)) and all values of the corresponding cocycle belong to µexp(G).

Let A be a finite abelian group and let (A, f) be a nondegenerate full central
pair over k. Let P denote an absolutely irreducible projective Galois representation
of Gk over k of Kummer type corresponding to (A, f) in the sense of proposition
(2.2). According to (4.1) let

Wf : G(kf/k) → GL(n, k), n = 2
√
|A|,

be a regular cocycle representation with cocycle

c : G(kf , k)×G(kf/k) → µe 6 µk, e = exp(A),

such that W f is isomorphic to P . There is an absolutely irreducible f -cocycle
representation T : A → GL(n, k) such that T (x)m(x) = df (x)Idn for all x ∈ A, for
the definition of df see §2. Hence we may and do assume that all matrix coefficients
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of T belong to kf . Recall the isomorphism γf : A → G(kf/k) in (2.1). From the
proof of proposition (2.2) we see that the cocycle representations Wf ◦ γf and T
of A are projectively equivalent over k. For every x ∈ A write T (x) = (αij(x)),
1 6 i, j 6 n. Then w.l.o.g. we get the relation

ωf (y, x)T (x) = (T (x))γf (y) = Wf (γf (y))T (x)Wf (γf (y))−1

for all x, y ∈ A, where

(T (x))γf (y) = (γf (y)(αij(x))), 1 6 i, j 6 n.

It follows that the central simple crossed product k-algebra (kf/k, c) is similar to the
central simple k-algebra (k, A, f); compare the construction of the crossed product
e.g. in [4], V, §1.

For any multiple m of e let

cm : G(kf/k)×G(kf/k) → µm

denote the cocycle which is obtained by composing c with the embedding µe ↪→ µm

and let G(cm) denote the group extension of G(kf/k) with kernel µm which is
defined by cm. If (A, f) is regular cyclic and if m = m(A, f) is its regularity index,
then the inflation c̃m of cm to Gk splits. In view of [9], 1.1, this implies that the
underlying embedding problem is solvable, i.e. there is a homomorphism ψ : Gk →
G(cm) such that the composition of ψ with the natural projection G(cm) → G(kf/k)
coincides with the restriction epimorphism of Galois theory Gk → G(kf/k). Lifting
Wf to a linear representation of G(cm) and composing this lifting with ψ yields
a linear Galois representation D : Gk → GL(n, k) such that the corresponding
projective representation D is isomorphic to Wf =: P and such that the central
character χD has order dividing m. Moreover the construction shows that D is of
class 2 and of Kummer type, and that its genus is uniquely determined by the
isomorphism class of (A, f).

Conversely assume that there is a linear Galois representation D of Gk of class
2 of Kummer type such that the central character χD of D has order equal to the
index g of the genus of D. Let (A, f) be a nondegenerate full central pair over k
which corresponds to the projective Galois representation P = D in the sense of
proposition (2.2). Let K denote the kernel field of P and let c : G(K/k)×G(K/k) →
µe, e = exp(A), denote a 2-cocycle corresponding to P, see (4.1). Let h denote the
least common multiple of g and e. Then (ch) ∈ H2(G(K/k), µh) is the image of χD

under the transgression homomorphism

τ : Hom(GK , µh)G(K/k) → H2(G(K/k), µh)

which arises from the exact sequence 1 → GK → Gk → G(K/k) → 1, see [26],
proposition 1.4, p.155. Therefore by the profinite version of the Hochschild-Serre
exact sequence [10] in e.g. [19] the cocycle c̃h = inf(ch) : Gk × Gk → µh splits.
Hence (A, f) is regular cyclic and its regularity index m(A, f) coincides with h
which by definition is divisible by g.

Altogether we have proved theorem (2.5).
A nondegenerate central pair (A, f) over k with an abelian group A is said to be

cyclotomic if there is a multiple d of exp(A) such that k(µd) is a splitting field of
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(k, A, f); and the smallest such d is called the cyclotomic index of (A, f).

Remark 4.2. Let (A, f) be a nondegenerate cyclotomic central pair over k. If the
extension k(µd(A,f)) is cyclic then (A, f) is regular cyclic and the regularity index
of (A, f) coincides with its cyclotomic index d(A, f).

Indeed, since k(µd) splits (k,A, f) and since k(µd) is cyclic, by (3.8) in [9] the
embedding problem corresponding to cd : G(kf/k)×G(kf/k) → µd is solvable and
therefore by a similar reasoning as in the above proof of theorem (2.5) we have
m(A, f) = d(A, f).

Combining this result with theorem (2.5) yields corollary (2.6).

Example. Let k = R(C) be the rational function field of a real algebraic curve
C. In this case every k-central division algebra is isomorphic to a symbol algebra
of the form A−1(−1, a), a ∈ k, a 6= 0; see [24]; [25], p. 10; [5]. As shown in (1.2)
such a symbol algebra is similar to a crossed product algebra (k( 2

√
a, 2
√−1)/k, c)

where all values of the cocycle c belong to µ2. Since k( 2
√−1)/k is a cyclic splitting

field of this algebra we deduce from remark (4.2) that the regularity index of any
central pair (Z/2Z×Z/2Z, f) over k whose twisted group algebra is isomorphic to
A−1(−1, a) divides 4.

5. The case of number fields

Remark 5.1. Let k be a number field and let (A, f) be a nondegenerate central
pair over k with abelian A. Let S = S(A, f) denote the finite set of places v of k
such that the completion kv of k at v is not a splitting field of (k, A, f). Then the
cyclotomic index of (A, f) - which exists by the remarks following proposition (2.3)
and by proposition (2.4) - divides the smallest multiple d of exp(A) such that the
local degrees (kv(µd) : kv), v ∈ S, are all divisible by the exponent of the central
simple k-algebra (k, A, f).

This can be seen as follows: For every v ∈ S the local extension kv(µd)/kv,
whose degree by assumption is divisible by the exponent of (k,A, f), is a splitting
field of (kv, A, f), see [4], VII, §2. By the local global principle [4], VII, §5 k(µd) is
therefore a splitting field of (k,A, f). (Compare also the reasoning in the proof of
the Lemma on p. 92 in [23].) The assertion follows from proposition (4.1).

There is an extensive literature on general class 2 extensions of local and global
number fields; see e.g. [6], [7], [8], [20], [21]. In the number field case a relation
between central pairs, Galois representations and automorphic forms has been es-
tablished in [15]. Although the present note is quite diverse from those investigations
it seems appropriate to discuss the example from [8] in the light of our context.

So let d1, d2 be squarefree integers and assume d1d2 = d0d
2, where d0 is sqarefree

and 6= 1. Put A := Z/2Z × Z/2Z. Using (2.3), the fact that M(Q) is trivial and
lemma (1.3) we see that the element (d1 mod(Q∗)2, d2 mod(Q∗)2) ∈ (Q∗/(Q∗)2)2

together with the unique nontrivial element in H2
tr(A, k

∗
) ∼= Z/2Z defines a non-

degenerate full regular cyclic central pair (A, f) over Q. Using results from [8] we
derive an upper bound for the index g of the genus of class 2 Galois representations
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of GQ of Kummer type corresponding to (A, f) in the sense of (2.5): Put l := 4dd0.
Let R(l) denote the ray class field mod l of Q( 2

√
d0) in the narrow sense, see [20],

and denote by Kc(l) resp. Ka(l) the central class field resp. the genus class field
with respect to R(l), i.e. the maximal subfield of R(l) such that G(Kc(l)/K) is
contained in the center of G(Kc(l)/Q) resp. the maximal subfield of R(l) such that
Ka(l) is abelian over Q. From [8] we quote the following explicit formular

Ka(l) =
∏

q prime /d0

Q( 2
√

q∗)Q(µl)(compositum in k), (‡)

where D =
∏

q∗ is the discriminant of Q( 2
√

d0), i.e. q∗ = (−1)(q−1)/2q resp.= −4
resp.= ±8.

The transgression homomorphism induces an isomorphism

Hom(G(Kc(l)/Ka(l)), k
∗
) ∼= H2

tr(G(K/Q), k
∗
).

The last group is cyclic of order 2. Hence there is a character

χ ∈ Hom(G(Kc(l)/K), k
∗
)

which is mapped under the transgression homomorphism

Hom(GK , k
∗
)G(K/Q) → H2

tr(G(K/Q), k
∗
)

to the unique nontrivial element (f) ∈ H2
tr(G(K/Q), k

∗
). Using again [26], propo-

sition 1.4, p. 155, we see that χ is a central character χD for a linear class 2 Galois
representation D of GQ of Kummer type such that the corresponding projective
representation D has cocycle class (f). The index of the genus of D is g. The order
of χ and therefore also g divides the degree (Kc(l) : K) = 2(Ka(l) : K) which can
be computed from (‡).
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