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Abstract
This work is devoted to an interpretation and computation

of the first homology groups of the small category given by
a rewriting system. It is shown that the elements of the first
homology group may be regarded as the equivalence classes of
the flows in a graph of the rewriting system. This is applied
to calculating the homology groups of asynchronous transition
systems and Petri nets. Examples of calculations are given.

Introduction

This paper is devoted to the study of the first homology group of a category
with coefficients in a diagram of abelian groups. It was shown in [9] that, for a free
category generated by a directed graph, this homology group consists of generalized
flows in the graph. In this paper we shall extend this assertion to all small categories.
We prove that each member of the first homology group may be interpreted as a
class of generalized flows (Theorem 3.2). This result was announced in [8], but the
proof was not published.

The most important subject of this paper is concerned with the introduction and
calculation of homology groups of concurrent computing models. We use the models
which are studied by the theory of categories in [26]. A well known problem is to
define homology groups for such models; such homology groups are of interest for
computer science. E. Goubault [5] and P. Gaucher [3], [4] have given a definition of
homology groups for higher dimensional automata. In the work [11] it was proved
that the category of asynchronous transition systems admits a functor into the
category of pointed sets over partially commutative monoids. This allows us to
introduce a definition for homology groups of asynchronous transition system.

We prove (Theorem 1.2) that if a presentation (E,R) of a partially commutative
monoid has no distinct elements a, b, c ∈ E for which ab = ba and bc = cb and
ac = ca, then the 2-category Ω(R) related to (E,R) is trivial in the sense of [18].

Using Mitchell’s results we give in Corollary 3.5 conditions under which the
homology groups Hn(C, F ) of a category C are zero for all diagrams F and n > 3.
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This allows us to describe all the homology groups of asynchronous transition
systems which do not contain triples of mutually independent events (Corollary
5.4).

The homology groups of a category of states augmented by an “infinitely distant
state” were studied in the work [11]. The investigation of the homology groups
of the augmented category is reduced to studying the homology of partially com-
mutative monoids (Theorem 5.3). Nevertheless we consider mainly the homology
of the category of states without the infinitely distant state. In terms of flows we
describe the homology groups of the asynchronous transition system for the reader
and writer problem. Then we consider integer homology groups for a Petri net.
Finally, we calculate the integer homology of the pipeline Petri net.

I am grateful to an anonymous referee and to the Editor for many comments on
various versions which have helped to improve this paper.

1. Presentations of categories

Let A be a category. Given objects a, b ∈ ObA denote by A(a, b) the set of
all morphisms a → b. Each morphism α ∈ A(a, b) has a domain dom α = a and a
codomain cod α = b. We write a

α→ b or α : a → b if α ∈ A(a, b). We use the notation

β◦α (or βα) for the composition of morphisms a
α→ b and b

β→ c instead of Mitchell’s
αβ. Morphisms α and β are parallel if dom α = dom β and cod α = codβ. In this
case (α, β) is called a parallel pair. By analogy with the building of the category
of topological spaces and homotopy classes of continuous maps we can consider a
“homotopical” category for an arbitrary category if we declare to be homotopic
morphisms of some parallel pairs. This leads us to a quotient category notion.

Quotient categories. Let C be a small category. Put C(a, b)2 = C(a, b)× C(a, b).
The set

PC =
⋃

a,b∈ObC
C(a, b)2

thus consists of all parallel pairs in C.
For each parallel pair p = (α, β) we denote by dom p = dom α = dom β their

common domain and cod p = cod α = cod β their codomain.

Definition 1.1. A subset Q of PC is called a congruence relation on C if the
following conditions hold:

(i) if q = (α, β) ∈ Q, then (f ◦α◦g, f ◦β ◦g) ∈ Q for all morphisms f, g ∈ MorC
satisfying dom f = cod q and cod g = dom q;

(ii) for each pair (a, b) of objects in C the set Q(a, b) = C(a, b)2 ∩ Q is an
equivalence relation on the set C(a, b).

Definition 1.2. Let C be a small category and Q a congruence relation on C.
The quotient category C/Q is a category with the set of objects ObC, in which the
morphism sets (C/Q)(a, b) for a, b ∈ C are the equivalence classes with respect to
Q(a, b) on the sets of morphisms a → b in C.
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The map α 7→ π(α) defines a functor π : C → C/Q such that π(α) = π(β) for
all (α, β) ∈ Q. If F : C → D satisfies the same property, then there is an unique
functor F ′ : C/Q → D such that F ′ ◦ π = F .

The functor π is the canonical projection.

Lemma 1.1. Let R ⊆ PC be an arbitrary set of parallel pairs in C and R the
smallest congruence relation containing R on C. Suppose that π : C → C/R is
the canonical projection. Let α, β : a → b be a parallel pair with α 6= β. Then the
equality π(α) = π(β) holds if and only if there are morphisms zi with cod zi = b, yi

with dom yi = a, and a sequence of pairs (si, ti) ∈ R ∪R−1, 1 6 i 6 k, such that

α = z1s1y1,
z1t1y1 = z2s2y2,
z2t2y2 = z3s3y3,

· · ·
zktkyk = β.

(1)

for some k > 0. The sequence (yi, si, ti, zi), 1 6 i 6 k, will be denoted by (y, s, t, z) :
α → β and called a 2-path of length k from α to β. Also we consider the empty
2-path denoted by ( )α from α to α by taking k = 0.

We recommend the paper [25] for a good discussion of 2-paths.
Let R be a set of parallel pairs. The quotient category C/R is denoted by C/R.

If there is a 2-path (y, s, t, z) : α → β, then we say α and β are equivalent with
respect to R and write α ' β mod R.

2-categories. B. Mitchell [18] used 2-categories in the study of small categories
with Hochschild-Mitchell dimension 6 2. To apply his results [18] we recall the
properties of a presentation and the definition of a 2-category.

Definition 1.3. A 2-category is a class of objects, ObC, together with a family
{HomC(a, b)}(a,b)∈ObC×ObC of some small categories. We assume also that there is
given for every triple (a, b, c) ∈ ObC×ObC×ObC a functor

∗a,b,c : HomC(a, b)×HomC(b, c) → HomC(a, c)

and for every a ∈ ObC there is given an object ia ∈ Ob(HomC(a, a)). We write
β ∗α = ∗a,b,c(α, β) for α ∈ Mor(HomC(a, b)) and β ∈ Mor(HomC(b, c)). For arbi-
trary α ∈ Mor(HomC(a, b)), β ∈ Mor(HomC(b, c)) and for f ∈ Ob(HomC(a, b)),
g ∈ Ob(HomC(b, c)) we write g ∗ α = 1g ∗ α, β ∗ f = β ∗ 1f . The objects of the
categories HomC(a, b) are called 1-morphisms and the morphisms of the categories
HomC(a, b) are called 2-morphisms. The functors ∗ have to satisfy the following
axioms:

(i) (γ ∗ β) ∗ α = γ ∗ (β ∗ α) for all a, b, c, d ∈ ObC and for all 2-morphisms
α ∈ Mor(HomC(a, b)), β ∈ Mor(HomC(b, c)), γ ∈ Mor(HomC(c, d));

(ii) α ∗ ia = α = ib ∗ α for all a, b ∈ ObC and α ∈ Mor(HomC(a, b)).
The operation ∗ is called the horizontal composition. The composition in the

categories HomC(a, b) is denoted by · and called the vertical composition.
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Every 2-category C has the category structure where ObC is the class of objects
and MorC =

⋃
(a,b)∈ObC×ObC

Ob(HomC(a, b)) is the class of morphisms with the

composition g ◦ f = ∗a,b,c(f, g) for f ∈ Ob(HomC(a, b)), g ∈ Ob(HomC(b, c)) and
the identity morphisms ia ∈ Ob(HomC(a, a)). So we write g ◦ f for 1-morphisms
instead of g ∗ f and 1a instead of ia.

Remark 1.4. Since the composition ∗a,b,c : HomC(a, b)×HomC(b, c) → HomC(a, c)
is functorial, we have the interchange law

(β′ ∗ α′) · (β ∗ α) = (β′ · β) ∗ (α′ · α)

where the point denotes the vertical composition. This is also called the “distributive
law” [18] or sometimes the “Godement law”.

Example 1.5. The category Cat of all small categories is the 2-category whose
1-morphisms are functors and 2-morphisms are natural transformations. The com-
position β ∗ α : g ◦ f → g′ ◦ f ′ of natural transformations α : f → f ′, β : g → g′ is
defined by

β ∗ α = (g′ ∗ α) · (β ∗ f)

where g′ ∗ α and β ∗ f have components (g′ ∗ α)a = g′(αa) and (β ∗ f)a = βf(a).

A 2-category and 2-paths. We consider the application of 2-categories to quotient
categories following B. Mitchell [18]. Let C be a small category and R a set of
parallel pairs in C.

For finite sequences x = (x1, · · · , xm) and y = (y1, · · · , yn) denote their con-
catenation by x · y = (x1, · · · , xm, y1, · · · , yn) by x · y, and the reverse by x =
(xm, · · · , x1). If a sequence (x1, · · · , xm) consists of morphisms with a common do-
main d, then for each morphism α : a → d let xα = (x1α, · · · , xmα). We define
similarly αx. For every 2-paths (x, α, β, y) : f → g and (x′, α′, β′, y′) : g → h we let
(x′, α′, β′, y′) · (x, α, β, y) = (x · x′, α · α′, β · β′, y · y′). We get a 2-path from f to h.
The reverse (x, β, α, y) yields a 2-path from g to f . There exists an identity 2-path
of length k = 0 from f to f . Hence pairs of morphisms (f, g) which have 2-paths
from f to g define an equivalence relation. Moreover, if (x, α, β, y) is a 2-path from
f to g, then (xh, α, β, y) is a 2-path from fh to gh and (x, α, β, hy) is a 2-path from
hf to hg.

For any pair a, b ∈ ObC, denote by Ω0(R)(a, b) the set of all 2-paths between the
morphisms of C(a, b). The concatenation of 2-paths gives Ω0(R)(a, b) the structure
of category. It is the category of paths in a directed graph whose arrows are 2-paths
of length 1. For (x, α, β, y) : f → g and (x′, α′, β′, y′) : f ′ → g′, define the 2-path
f ′f → g′g as

(x′, α′, β′, y′) ∗ (x, α, β, y) = (x, α, β, g′y) · (x′f, α′, β′, y′) ,

when f ′f and g′g are defined. The operation ′∗′ gives Ω0(R) a structure of category,
but the interchange law does not hold in it and the horizontal composition is not
functorial. Nevertheless, this operation becomes functorial on a quotient category
of Ω0(R).
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Suppose that R is an antisymmetric and irreflexive relation, i.e. (α, β) ∈ R
implies (β, α) /∈ R. A 2-path (x, α, β, y) : f → g is closed if f = g. A closed 2-path
(1) is said to be degenerate if k is an even number and if the set {1, 2, · · · , k} may be
partitioned into two element subsets {i, j} such that (αi, βi) = (βj , αj) and xi ' xj

mod R, yi ' yj mod R. Otherwise the closed 2-path is said nondegenerate. If
(x, α, β, y) and (x′, α′, β′, y′) are both 2-paths from f to g, then they will be called
equivalent if the vertical composition (x, β, α, y) · (x′, α′, β′, y′) is degenerate.

Following B. Mitchell [18] we define Ω(R) as the 2-category such that

Ob(Ω(R)) = Ob(Ω0(R)) = ObC and Mor(Ω(R)) = Mor(Ω0(R)) = MorC

where the sets of 2-morphisms HomΩ(R)(a, b)(f, g) consist of the equivalence classes
of 2-paths (x, α, β, y) : f → g which inherits the horizontal and vertical composi-
tions. For every a, b ∈ Ob(C) the category HomΩ(R)(a, b) is a groupoid, since the
reverse of a 2-path becomes an inverse for it. If every closed 2-path is degenerate,
then Ω(R) is called trivial.

It is easy to see that Ω(R) is trivial if and only if for every 1-morphism f, g : a → b
the set HomΩ(R)(a, b)(f, g) contains at most of one element.

Rewriting systems. Let Γ be a directed graph. We denote by A(Γ) the set of its
arrows and by V (Γ) the set of its vertices. If C = PaΓ is the path category in a
directed graph Γ and R a set of parallel pairs in PaΓ, then the pair (Γ,R) is called
a presentation of the quotient category PaΓ/R. In this case the pair (Γ,R) is also
said to be a rewriting system for PaΓ/R.

If the graph Γ has one vertex, then its arrows may be regarded as letters in
the alphabet E = A(Γ) and its paths are words w ∈ E∗ = PaΓ. In this case the
rewriting system is denoted by (E,R) and presents a monoid. Rewriting systems
for presentations of categories were applied in [17], [19] to the study of the Hoch-
schild-Mitchell homology of categories.

Definition 1.6. A monoid is said to be partially commutative if it has a presen-
tation (E,R) where E is an arbitrary set and R consists of some pairs (ab, ba) of
words with a, b ∈ E and a 6= b.

Example 1.7. Let E = {a, b, c}, R = {(ab, ba), (bc, cb), (ac, ca)}. This rewriting
system presents the free commutative monoid generated by three members. It has
the closed nondegenerate 2-path

abc = bac,
bac = bca,
bca = cba,
cba = cab,
cab = acb,
acb = abc.

Theorem 1.2. Let (E,R) be a rewriting system of a partially commutative monoid
M where E is a set and R ⊆ E∗ × E∗ an antisymmetric and irreflexive relation
consisting of some pairs (ab, ba) with a, b ∈ E. If there are no distinct letters a, b, c ∈
E for which (ab, ba) ∈ R ∪ R−1 and (bc, cb) ∈ R ∪ R−1 and (ac, ca) ∈ R ∪ R−1,
then the 2-category Ω(R) is trivial.
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Proof. The 2-category Ω(R) has a single object because (E,R) presents a
monoid. We will denote this object by M . Words α ∈ E∗ are 1-morphisms in
Ω(R). Equivalence classes of 2-paths α → β will be 2-morphisms from α ∈ E∗ to
β ∈ E∗. Every 2-path consists of steps (yi, (aibi, biai), zi) : ziaibiyi → zibiaiyi where
(aibi, biai) ∈ R ∪ R−1, yi ∈ E∗, zi ∈ E∗. Since HomΩ(R)(M,M) is a groupoid, it
is enough to prove an assertion about that for every α ∈ E∗ and β ∈ E∗ there is at
most one 2-morphism α → β.

We will prove it by induction on the length of α. Suppose that the assertion is
true for words of length less than the length of α. Let us suppose that there exists
a 2-path α → β. Then the length of α equals the length of β. Let α = aw and
β = bw′, for some letter a, b ∈ E and some words w, w′ ∈ E∗.

We consider the case a 6= b. There are no words of the form cv, with c ∈ E\{a, b},
which are contained in the 2-path α → β; or else we would have (ac, ca) ∈ R∪R−1

and (bc, cb) ∈ R ∪R−1.
Hence all morphisms α → β belong to a full subcategory of HomΩ(R)(M,M)

consisting of words of the form av and bv for some words v ∈ E∗. We denote this
full subcategory by Ω(a,b). Let Ωa ⊆ Ω(a,b) be the full subcategory of words av and
let Ωb ⊆ Ω(a,b) be the full subcategory of words bv, for all v ∈ E∗. (See Fig. 1.)

r rr r
r r
ab · · · ba · · ·
a · · · b · · ·α

β

r

r

Ωa Ωb

&%

'$

&%

'$

Figure 1: A graph containing the 2-paths α → β

The categories Ωa and Ωb are trivial because of the inductive hypothesis. Each
2-path α → β consists of steps av → av′, abv → bav, bv → bv′, bav → abv, for some
v, v′ ∈ E∗. Denote by ψ : ab → ba the equivalence class of the path containing the
single step (1, (ab, ba), 1) : ab → ba. Every 2-morphism α → β equals a composition
of morphisms of forms 1a ∗ η : av → av′, ψ ∗ 1v : abv → bav, 1b ∗ η : bv → bv′,
ψ−1 ∗ 1v : bav → abv, for some 2-morphisms η in Ω(R).

Because of the distributivity law, for each 2-morphism η : v → v′, we have the
following commutative square

abv
ψ∗1v−→ bav

1ab ∗ η ↓ ↓ 1ba ∗ η

abv′
ψ∗1v′−→ bav′

It is easy to see from the commutativity of this square that every 2-morphism α → β



Homology, Homotopy and Applications, vol. 6(1), 2004 445

is the equivalence class of a path which consists of steps

α = av → · · · → abu︸ ︷︷ ︸
Ωa

(u,(ab,ba),1)−→ bau → · · · → bv︸ ︷︷ ︸
Ωb

= β

Since Ωa and Ωb are trivial, it follows from the distributivity law that every two
such paths are equivalent.

Now we prove that all closed 2-paths are degenerate. Let α = aw. For each 2-
path α → α there exists b ∈ E such that this 2-path consists of words which equal
either av or bv for some v ∈ E∗. If a = b, then we obtain a 2-path which has
the equivalence class a ∗ η : aw → aw, for some η : w → w. Such η is equivalent
to a degenerate path by the inductive hypothesis. If a 6= b, then the equivalence
class of the 2-path α → α equals the composition θ · η for some w′ and 2-paths
η : aw → bw′, θ : bw′ → aw. Since η and the reverse of θ are equivalent, we have
that θ · η is degenerate. Hence Ω(R) is trivial. 2

2. Homology groups of a small category

The purpose of this section is to introduce the reader into homology of small
categories. We recommend the survey [8] for a deeper study of this theory. Let
Set be the category of sets and maps and Ab the category of abelian groups and
homomorphisms. A diagram in A on C is a functor C→ A from a small category
C to a category A. In particular, for each object c ∈ C there is defined the diagram
hc : C → Set with hc(a) = C(c, a) for objects a ∈ C. This diagram assigns
to any morphism f : a → b the map C(c, f) : C(c, a) → C(c, b) which acts as
C(c, f)(g) = f ◦ g ∈ C(c, b).

The category of diagrams in Ab. Let AbC be the category of diagrams C→ Ab
in which morphisms are natural transformations. Limits and colimits in the diagram
category may be calculated objectwise. Consequently the category AbC has infinite
products, kernels, and cokernels. The following assertion is well-known [7]:

Proposition 2.1. The category AbC is abelian and has enough projective and in-
jective objects.

Since kernels and cokernels in the diagram category may be calculated objectwise,
the sequence of diagrams and natural transformations

0 → F ′
η′→ F

η′′→ F ′′ → 0. (2)

is exact if and only if the sequences of abelian groups and homomorphisms

0 → F ′(c)
η′c→ F (c)

η′′c→ F ′′(c) → 0 (3)

are exact for all c ∈ C.

Categories of homological dimension 0. A category is connected if it is not
equal to the coproduct of some nonempty categories. A small category is pseudo-
filtered [16] if its maximal connected subcategories are filtered. It is well known that
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if a small category C is pseudo-filtered, then the colimit functor colimC : AbC → Ab
is exact, i.e. for an exact sequence (2) the sequence

0 → colimC F ′ → colimC F→ colimC F ′′ → 0 (4)

is exact. U. Oberst [22] put forward the conjecture that if colimC is exact, then C
is pseudo-filtered. But this was refuted by J. Isbell [12].

Small categories C for which the functor colimC is exact were characterized by
U. Oberst [23], J. Isbell and B. Mitchell [13]. Such categories are called categories
of homological dimension 0 [8]. Nevertheless little is known about these categories.

For example, there is a conjecture from J. Isbell and B. Mitchell [14] which is
concerned with the exactness of colimC : AbC → Ab with a fixed point property of
C. It is possible that our interpretation of colimC

1 F (Theorem 3.2) may be helpful
for the resolution of this problem.

Satellites of the colimit functor. In general, the sequence (4) is not exact at
colimC F ′. The homology theory of small categories measures the failure of exactness
of this sequence. The theory of Abelian categories is the usual tool for the treatment
of this kind of problem.

The exact sequence (2) gives rise to the canonical long exact sequence

· · · → colimC
n F ′ → colimC

n F → colimC
n F ′′ → colimC

n−1 F ′ → · · ·
· · · → colimC F ′ → colimC F → colimC F ′′ → 0,

which defines a sequence of functors colimC
n : AbC → Ab with the property colimC

0 =
colimC. They are the left satellites of colimC. Since AbC has enough projectives,
the left satellites are isomorphic to left derived functors of the colimit.

The values of the satellites are isomorphic to the homology groups of the chain
complex considered below.

For every family {Ai}i∈I we denote by ini : Ai →
⊕

i∈I Ai the canonical mor-
phisms into the coproduct. Let C be a small category. Denote by dn

i , 0 6 i 6 n, the
maps assigning to each sequence σ = (c0

α1→ c1
α2→ · · · αn→ cn) of length n the sequence

of length (n − 1) defined as follows. The maps dn
i , for 0 < i < n, delete objects ci

from c0
α1→ c1

α2→ · · · αn→ cn and insert instead of morphisms ci−1
αi→ ci

αi+1→ ci+1 the
composition ci−1

αi+1◦αi−→ ci+1. For i = 0 or i = n we let dn
0 (c0 → · · · → cn) = c1

α2→
c2 → · · · αn→ cn and dn

n(c0 → · · · → cn) = c0
α1→ c1

α2→ · · · αn−1→ cn−1.
Let F : C → Ab be a diagram of abelian groups. The chain complex C∗(C, F )

consists of the abelian groups

Cn(C, F ) =
⊕

c0→···→cn

F (c0), n > 0,

(with Cn(C, F ) = 0 for n < 0) and the homomorphisms (called “boundary opera-
tors”)

∂n =
n+1∑

i=0

(−1)i∂i
n : Cn(C, F ) → Cn−1(C, F ), n > 0,



Homology, Homotopy and Applications, vol. 6(1), 2004 447

where ∂i
n is the unique morphism satisfying for each

σ = (c0
α1→ c1

α2→ · · · αn→ cn)

the condition

∂i
n ◦ inσ =

{
indn

i σ , for 1 6 i 6 n

indn
0 σ ◦ F (c0

α1→ c1) , for i = 0.

For n > 0, the homology group Hn(C∗(C, F )) = Ker ∂n/ Im ∂n+1 is denoted by
Hn(C, F ) and called the n-th homology group of C with coefficients in F . Let
F : C → Ab, G : C → Ab be diagrams of abelian groups. A natural transfor-
mation η : F → G induces a chain homomorphism C∗(C, F ) → C∗(C, G) and so
homomorphisms Hn(C, F ) → Hn(C, G), for n > 0.

Proposition 2.2. [2, Appl.2] The functors Hn(C,−) : AbC → Ab are naturally
isomorphic to the left satellites colimC

n of the functor colimC : AbC → Ab.

Kan extensions and relative derived functor of the colimit. Let C and D
be small categories and S : D → C a functor. Let c ∈ ObC. The comma category
S ↓ c is the category with objects the pairs (d, f) with d ∈ ObD and f ∈ C(S(d), c)
and with morphisms (d, f) → (d′, f ′) the triples (f, f ′, g) satisfying f ′ ◦ S(g) = f
[16]. Consider the functor AbS : AbC → AbD which assigns to every diagram
G : C → Ab the diagram G ◦ S : D → Ab and to every natural transformation
η : G → G′ the natural transformation η ∗ S, where (η ∗ S)d = ηS(d). The functor
AbS has a left adjoint LanS : AbD → AbC which is called the left Kan extension
along S [16]. According to [16] for each diagram F : D→ Ab the diagram LanS F
may be given as (LanS F )(c) = colimS↓c FQc where Qc : S ↓ c → D is defined as
Qc(S(d) → c) = d. Recall that the diagonal functor ∆D : Ab → AbD [16] assigns
to each abelian group A the functor ∆DA : D→ Ab which has the value A at each
d ∈ ObD and the value 1A at each α ∈ MorD. If f : A → B is a morphism in
Ab, then ∆D(f) : ∆DA → ∆DB is the natural transformation which has the same
value f at each object d ∈ ObD. Since colimD is left adjoint to the diagonal functor
∆D : Ab → AbD, there is a natural isomorphism colimD F ∼= colimC LanS F . If D is
discrete, then LanS F has values { ⊕

S(d)→c

F (d)}c∈C. We will consider any set E as a

discrete category and a family {S(e)}e∈E as the functor S : E → C. Now we define
a proper class in AbC such that the diagrams LanS F are relative projective for
every family {F (e)}e∈E of abelian groups F (e). It allows us to consider the groups
Hn(C, F ) as the values of relative derived functors of the colimit.

A short exact sequence 0 → A′
f ′→ A

f ′′→ A′′ → 0 of abelian groups splits if there
exists a homomorphism ν′′ : A′′ → A such that f ′′ ◦ ν′′ = 1A′′ . This is equivalent to
the existence of ν′ : A → A′ such that ν′ ◦ f ′ = 1A′ . We consider a proper class P in
the sense of S. Mac Lane [15, Ch. XII] in the category AbC. This class consists of
all short exact sequences (2) of diagrams for which the exact sequences (3) split for
each c ∈ ObC. The class of proper epimorphisms Pe consists of all η′′ for which the
sequence (2) with η′ = ker(η′′) belong to P. The class of proper monomorphisms



Homology, Homotopy and Applications, vol. 6(1), 2004 448

Pm consists of all η′ for which the sequence (2) with η′′ = coker(η′) belong to P. The
diagram F ∈ AbC is relative projective if the hom functor AbC(F,−) : AbC → Ab
carries the proper epimorphisms to epimorphisms.

A natural transformation η is proper if it is equal to a composition µ ◦ ε of a
proper monomorphism µ and a proper epimorphism ε.

Lemma 2.3. Let E be a set and C a small category. For each map S : E → ObC
and family {G(e)}e∈E of abelian groups the diagram LanS G is relative projective.

Let S : ObC → C be the inclusion of maximal discrete subcategory of C. We
denote by O = AbS : AbC → AbObC the functor of the restriction and L = LanS :
AbObC → AbC the left Kan extension. Let ε : LO → IdAb C be the counit of the
adjunction. Then for each diagram F ∈ AbC we have by [23] the following exact
sequence consisting of proper morphisms

0 ← F
εF←− F0

d1←− F1
d2←− · · · dn←− Fn

dn+1←− · · ·

with Fn = (LO)n+1F and dn =
n∑

k=0

(−1)kdk
n where dk

n = (LO)k(ε(LO)n−kF ). It is a

relative projective resolution of F by Lemma 2.3. The sequence 0 ← F0
d1← F1

d2← · · ·
is denoted by F∗. The passage to colimit of F∗ gives a complex colimC F∗ ∼=
C∗(C, F ). Hence Hn(colimC F∗) ∼= Hn(C, F ). If P∗ → F is another proper projec-
tive resolution, then there exists a chain morphism P∗ → F∗ which is a homotopy
equivalence. The functor colimC : AbC → Ab is additive and consequently respects
homotopy equivalences. Hence the complexes colimC P∗ and colimC F∗ have the
same homology groups. Thus Hn(colimC P∗) ∼= Hn(colimC F∗) ∼= Hn(C, F ) for all
n > 0 and for each proper projective resolution P∗ → F . We will use this fact in
the proof of Theorem 3.2.

The domain of the functors Hn(−, =) may be extended to a category Dg(Ab)
whose objects are pairs (C, F ) consisting of small categories C and diagrams F :
C → Ab. In the category Dg(Ab) any morphism (S, η) : (C, F ) → (D, G) will
be consisted of a functor S : C → D and a natural transformation η : F →
G ◦ S. The composition of morphisms (C, F )

(S,η)−→ (D, G)
(T,σ)−→ (E,H) is defined

as (T ◦ S, (σ ∗ S) · η)). The identity morphism (1C, 1F ) consists of the functor
1C : C→ C and the identity natural transformation.

Let (C, F )
(S,η)−→ (D, G) be a morphism in Dg(Ab). Then the natural transforma-

tion η : F → G ◦ S defines the coproduct homomorphism
⊕

c0→···→cn

F (c0) →
⊕

c0→···→cn

G(S(c0)).

The universality of the canonical injections

G(S(c0))
λc0−→

⊕
c0→···→cn

G(S(c0))
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and the homomorphisms

G(S(c0))
λ′S(c0)−→

⊕

d0→···→dn

G(d0)

give rise to the homomorphisms
⊕

c0→···→cn

G(S(c0)) −→
⊕

d0→···→dn

G(d0)

inducing a chain homomorphism. This leads to the homomorphisms

Hn(C, F ) → Hn(C, G ◦ S) → Hn(D, G)

for all n > 0. The composition gives functors Hn(−, =) : Dg(Ab) → Ab, n > 0.

3. Interpretation of the first homology group of a category

The work [9] gave an interpretation of the first homology group of the free cate-
gory generated by a directed graph. The elements of the first homology group were
considered as families of “currents” which are assigned to edges and satisfy the
“First Kirchhoff Law” at every vertex. Homological algebra was used for the study
of abelian groups of flows. This section is devoted to an interpretation of the first
homology group of a category given by a rewriting system.

We first consider the case of a free category. Let Γ be a directed graph. Suppose
that F : PaΓ → Ab is a diagram of abelian groups.

Definition 3.1. A flow in Γ with coefficients in F is a family {fγ}γ∈A(Γ) of mem-
bers fγ ∈ F (dom γ) such that:

(i) the sets {γ ∈ A(Γ) : fγ 6= 0} are finite;
(ii) for each c ∈ V (Γ) the equality

∑
c=cod(γ)

F (γ)(fγ) =
∑

c=dom(γ)

fγ holds.

Flows with intensifications and flows with delays are examples of such generalized
flows [9]. It is clear that the flows in Γ with coefficients in F form a subgroup of
the 1-chain group

⊕
γ∈A(Γ)

F (dom(γ)). Denote the subgroup of all flows by Φ(Γ, F ).

The following assertion was proved in [9]

Proposition 3.1. For every diagram F : PaΓ → Ab there is an isomorphism
Φ(Γ, F ) ∼= colimPaΓ

1 F .

We now introduce the notion of an internal flow. Denote the values ini(a) of
the canonical homomorphisms Ai →

⊕
i∈I

Ai, of a ∈ Ai, by a[i]. Every member of

the coproduct admits a shape
∑
i∈I

ai[i] where ai ∈ Ai with the condition ai 6= 0 for

only a finite set of i ∈ I. Let Γ be a directed graph and R some set of parallel pairs
in the path category PaΓ. Let C be a small category given by a rewriting system
(Γ,R) and π : PaΓ → C the canonical projection. Let F : C→ Ab be a diagram of
abelian groups. Given paths α = αm · · ·α1 and β = βn · · ·β1 with r = (α, β) ∈ R



Homology, Homotopy and Applications, vol. 6(1), 2004 450

b¡
¡

¡
¡µ

@
@

@
@R b - b - b

b - b - b

· · · -

· · · -

¡
¡

¡
¡µ

@
@

@
@R b

f

−f

−F (β1)f

F (α1)f

F (αm−1 · · ·α1)f

−F (βn−1 · · ·β1)f

α1

α2

β1

β2

βn

αm

Figure 2: The internal flow d1(f [r])

we denote by dom r their common domain and cod r the codomain. For any path
w = γk · · · γ1 of edges γi ∈ A(Γ) and a member f ∈ F (dom γ1), k > 0 we denote
δf [γk · · · γ1] = f [γ1] + F (γ1)(f)[γ2] + · · · + F (γk−1 · · · γ1)(f)[γk]. Let δf [w] = 0 if
k = 0 (for the empty path). Then for each member f ∈ F (π(dom(r))) there exists
a flow in Γ with coefficients in F ◦ π which equals the difference of the 1-chains
δf [α]− δf [β]. The values of this flow are pictured in fig. 2.

Denote the flow by d1(f [r]).
A flow ϕ ∈ Φ(Γ, F ◦ π) is called internal with respect to R if there are ri ∈ R,

fi ∈ F ◦ π(dom(ri)), 1 6 i 6 k, such that ϕ =
k∑

i=1

d1(fi[ri]). Denote by I(Γ,R, F )

the abelian group of all flows internal with respect to R.
Consider the sequence of homomorphisms

⊕

r∈R
F (dom r) d1→

⊕

γ∈A(Γ)

F (dom γ) d0→
⊕

v∈ObC
F (v) → 0, (5)

where d0(f [γ]) = f [dom γ]− F (γ)f [cod γ]. It follows from the equality

d0

∑
fγ [γ] =

∑

v∈V (Γ)


 ∑

v=dom γ

fγ −
∑

v=cod γ

F (γ)fγ


 [v],

that Φ(Γ, F ◦π) = Ker d0. Since d1(f [r]) is a flow, we have d0(d1(f [r])) = 0. There-
fore, the sequence (5) is a complex. The colimit of F is isomorphic to the cokernel
of d0. Hence the 0-th homology group

⊕
v∈ObC

F (v)/ Im(d0) of (5) is isomorphic to

colimC F .

Theorem 3.2. Let C be a small category and F : C → Ab a functor. For each
presentation (Γ,R) of C there is an isomorphism

Φ(Γ, F ◦ π)/I(Γ,R, F ) ∼= colimC
1 F

where π : PaΓ → C is the canonical projection.
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Example 3.2. Let Γ be the graph

a
β
−→←−
α

b ,

with V (Γ) = {a, b}, A(Γ) = {α, β}, and R = (1a, αβ). The presentation (Γ,R)
defines the category C in which α ◦ β = 1a. For any diagram F : C → Ab we
have F (α) ◦ F (β) = 1F (a). Every flow in Γ with coefficient in F consists of two
members fα ∈ F (b), fβ ∈ F (a) such that F (α)(fα) = fβ and F (β)(fβ) = fα. It
follows from the second equality that F (α)◦F (β)(fβ) = F (α)(fα) and, consequently,
F (α)(fα) = fβ. Hence the first equality is unnecessary. Therefore Φ(Γ, F ) ∼= F (b)
and each flow is equal to fβ [β] + F (β)fβ [α]. Internal flows consist of sums of lows
f [β] + F (β)f [α]. Thus every flow is internal and H1(C, F ) = 0.

Corollary 3.3. The quotient group Φ(Γ, F ◦ π)/I(Γ,R, F ) does not depend on a
presentation (Γ,R) of C.

For the proof of the theorem, we will use the following lemma which is a direct
corollary of [18, Theorem 28.1].

Let C be a small category given by a presentation (Γ,R) and π : PaΓ → C the
canonical projection. We can let ObC = V (Γ), π(v) = v, for all vertices v ∈ V (Γ).
For c ∈ ObC, the objects of the category π↓c may be regarded as pairs (v, x) with v ∈
V (Γ) and x ∈ C(π(v), c). Consequently Ob(π↓c) = Ob(C↓c). Morphisms of π↓c may
be regarded as triples (α : a → b, x, y) which consist of α ∈ Mor(PaΓ), x ∈ C(a, c),
y ∈ C(b, c) satisfying y ◦ π(α) = x. In these triples, x depends on α and y, hence
morphisms in π↓c may be described as pairs (α ∈ C(a, b), y ∈ C(b, c)). Similarly
morphisms of C↓c may be given as pairs (α ∈ C(a, b), x ∈ C(b, c). Morphisms
(γ, x) of π↓c form the arrows of a directed graph. We will denote this graph by
Γ↓c. Let R↓c consisting of pairs ((α, x), (β, x)) in π↓c such that (α, β) ∈ R. Define
a forgetful functor Uc : π↓c → C↓c by Uc(v, x) = (v, x) and Uc(α, y) = (π(α), y).
Then (Γ↓c,R↓c) is the presentation of C↓c with the canonical projection Uc.

Let Qc : C↓c → C be the functor assigning to every object (a, x) the object
a ∈ C and to every morphism (f : a → b, y) the morphism f . For each diagram
F : C→ Ab, one can consider the diagram FQc.

We replace in the sequence (5) the letters F , R, Γ, C by FQc, R↓c, Γ↓c, C↓c
respectively. After the augmentation by coker d0 = colimC↓c FQc = F (c), this
sequence may be transformed to the sequence, natural in c ∈ C,

⊕

cod(r)→c

F (dom r) d1−→
⊕

cod γ→c

F (dom γ) d0−→
⊕
v→c

F (v)
d−1−→ F (c) −→ 0 (6)

Lemma 3.4. For each c ∈ C the sequence (6) of abelian groups is exact.

Proof. It is enough to show that for each object c ∈ C, there are homomor-
phisms

⊕

cod(r)→c

F (dom r) θ1←−
⊕

cod γ→c

F (dom γ) θ0←− Im d0,
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such that θ0d0 + d1θ1 = 1. Denote for a path w = γn · · · γ1 and morphism x :
cod(w) → c

δ(f [γn · · · γ1, x]) = f [γ1, xγn · · · γ2] + F (γ1)(f)[γ2, xγn · · · γ3] + · · ·
· · ·+ F (γn−1 · · · γ1)(f)[γn, x].

Then d1(f [r, x]) = δ(f [α, x])− δ(f [β, x]), for paths α and β which form r = (α, β).
To construct θ0, for every α ∈ MorC we choose a path γn · · · γ1 such that

π(γn · · · γ1) = α. Denote it by τ(α). Let for τ(x) = γn · · · γ1,

θ0(f [v, x]) = δ(f [τ(x), 1c]) = f [γ1, γn · · · γ2]+
F (γ1)(f)[γ2, γn · · · γ3] + · · ·+ F (γn−1 · · · γ1)(f)[γn, 1c].

Then define a homomorphism θ1 :
⊕

cod γ→c

F (dom γ) → ⊕
cod(r)→c

F (dom r) as follows.

For any γ ∈ A(Γ) and x ∈ C(cod γ, c) we have τ(x) · γ = τ(xγ). This implies that
there exists a 2-path from τ(x) · γ to τ(xγ) given by a sequence (yi, α

i, βi, zi),
with ri = (αi, βi) ∈ R consisting of paths αi = αi

m · · ·αi
1 and βi = βi

n · · ·βi
1. Let

θ1(f [γ, x]) =
k∑

i=1

F (yi)(f)[ri, zi]. It is proved in [18] that θ0d0 + d1θ1 = 1. Then for

z ∈ ⊕
cod γ→c

F (dom γ) satisfying d0z = 0 we have (θ0d0+d1θ1)z = z and consequently

z = d1(θ1z). Hence Ker d0 = Im d1. It follows from d1θ1 = (1 − θ0d0)d1 = d1, that
d1θ1|Im d1 = 1Im d1 . Thus the sequence consists of proper natural transformations.
2

Proof of Theorem 3.2. Recall that for any set E and a family of abelian groups
G = {G(e)}e∈E and a map S : E → ObC the values of the left Kan extension of G
are equal to LanS G(c) =

⊕
S(e)→c G(e). In this case we will have an isomorphism

colimC{
⊕

S(d)→c

G(d)} ∼=
⊕

d∈D
G(d).

The substitutions D = R, G = F ◦ dom, S = cod : R→ C lead us to

colimC{
⊕

cod(r)→c

F (dom(r))} ∼=
⊕

r∈R
F (dom(r)).

Replacing D = A(Γ), G = F ◦ dom, S = cod : A(Γ) → C we get

colimC{
⊕

cod γ→c

F (dom γ)} ∼=
⊕

γ∈A(Γ)

F (dom γ).

If we replace the inclusion ObC ⊆ C by S and substitute D = V (Γ), G = F |ObC ,
then we obtain

colimC{
⊕
v→c

F (v)} ∼=
⊕

v∈V (Γ)

F (v).

Therefore the colimit of the sequence (6) gives a complex of abelian groups and
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homomorphisms
⊕

r∈R
F (dom r) →

⊕

γ∈A(Γ)

F (dom γ) →
⊕

v∈ObC
F (v) → 0 .

The commutativity of the following diagram follows immediately:
⊕

r∈R
F (dom r) d1−→ ⊕

γ∈A(Γ)

F (dom γ) d0−→ ⊕
v∈ObC

F (v)

↑ λ′c ↑ λc ↑ λ′′c⊕
cod r→c

F (dom r) d1−→ ⊕
cod γ→c

F (dom γ) d0−→ ⊕
v→c

F (v)

(7)

where {λc}, {λ′c}, {λ′′c } are the colimit cones. We obtain a complex with homology
groups

H0 = colimC F, H1 = Φ(Γ, F ◦ π)/I(Γ,R, F ).

Since the morphisms of the upper string in (7) making these diagrams commutative
are unique, the upper string complex is the colimit of the relatively projective reso-
lution consisting of proper natural transformations. Therefore by [23], its homology
groups are isomorphic to colimC

n F , n = 0, 1. 2

Corollary 3.5. If a presentation (Γ,R) of C has no nondegenerate closed 2-paths,
then Hn(C, F ) = 0, for n > 3. In this case H2(C, F ) is isomorphic to the kernel
of the homomorphism d1 :

⊕
r∈R

F (dom r) → ⊕
γ∈A(Γ)

F (dom γ) which acts as d1f [r] =

δf [α]− δf [β].

Proof. It follows from [18, Remark 1, p. 108] that if all closed 2-paths (y, s, t, z)
are degenerate, then the kernel of

d1 :
⊕

cod(r)→c

F (dom r) →
⊕

cod γ→c

F (dom γ)

is zero. Hence if Ω(R) is trivial, then we obtain the exact sequence

0 →
⊕

cod(r)→c

F (dom r) d1−→
⊕

cod γ→c

F (dom γ) d0−→
⊕
v→c

F (v)
d−1−→ F (c) → 0

which is a proper projective resolution of F in AbC. The passage to the colimit by
c ∈ C gives the complex which homologies are equal to Hn(C, F ). Thus Hn(C, F ) =
0 for n > 3 and H2(C, F ) is isomorphic to the kernel of d1 :

⊕
r∈R

F (dom r) →
⊕

γ∈A(Γ)

F (dom γ). 2

Smith normal form and calculating the homology groups. Let G′ α→ G
β→

G′′ be homomorphisms of abelian groups such that β ◦α = 0. Then we can consider
the homology group Ker(β)/ Im(α). Let us describe a method of calculation for this
homology group when G′, G, and G′′ are finitely generated free abelian groups.
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Proposition 3.6. [20, Theorem III.4(43)] Let

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




be a matrix with integer entries aij ∈ Z. Then there is an m×m matrix T and an
n× n matrix S with integer entries such that:

(i) det(T ) = ±1, det(S) = ±1;
(ii) A = T ◦D(A) ◦ S for a natural number k > 0 and m× n matrix

D(A) =




d1 0 · · · 0 0 · · · 0
0 d2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · dk 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 0




all entries of which are equal to 0 except the diagonal numbers d1 6 d2 6 · · · 6 dk

which satisfy that di divides di+1 for all 1 6 i 6 k − 1.

The matrix D(A) is said to be a Smith normal form of A. This form is used for
the computation of the homology groups of simplicial complexes in [24]. We refer
the reader to [6], where an algorithm is presented for computing the Smith normal
form of an integer matrix, which performs well in practice. There are packages such
as GAP for the computation of the Smith normal form.

Proposition 3.7. Let a homomorphism α : Zn → Zm be given by a m× n matrix
A and β : Zm → Zp by p × m matrix B. Suppose the sequence Zn α→ Zm β→ Zp

satisfies to β ◦α = 0. If d1, d2, · · · , dk are the nonzero diagonal entries of the Smith
normal form D(A), then

Ker β/ Im α ∼= Z/d1Z× Z/d2Z× · · · × Z/dkZ× Zm−k−b (8)

where b is the rank of the matrix B and may be computed as the number of nonzero
entries of D(B).

Proof. It follows from Proposition 3.7 that one has the commutative diagram

Zn α−→ Zm

↑ σ′ ↑ τ

Zn δ−→ Zm

with isomorphisms σ′ and τ where δ is given by the matrix D(A) which is the Smith
normal form of A. It follows that Zm/ Im α ∼= Zm/ Im δ. Consequently

Zm/ Im α ∼= Z/d1Z× Z/d2Z× · · · × Z/dkZ× Zm−k.
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Similarly, Imα ∼= Im δ.
The inclusion Kerβ ⊆ Zm induces the inclusion Ker β/ Im α ⊆ Zm/ Im α which

gives the short exact sequence

0 → Kerβ/ Im α → Zm/ Imα → Zm/ Kerβ → 0.

It follows from Zm/ Ker β ∼= Imβ that Zm/ Ker β is free because it is isomorphic to
a subgroup of Zp. Its rank is equal to b. Consequently the short exact sequence is
split, and there exists the isomorphism Zm/ Im α ∼= (Ker β/ Im α)

⊕
Zb. Thus Zb is

a direct summand in Zm−k ⊆ Zm/ Imα. Taking the quotient group by Zb we obtain
the isomorphism (8). 2

We conclude that for calculating the homology group Ker β/ Imα it is enough
to find the Smith normal form of matrices defining homomorphisms α and β. Then
we will know the numbers d1, · · · , dk, b, which determine the homology group.

We will apply the methods given above for the interpretation and the calculation
of the homology groups of asynchronous transition systems. Now we supply the
necessary definitions.

4. Asynchronous transition systems

We study models of computations to be executed on a multi-processor machine.
Such computations can be either synchronous or asynchronous. In synchronous com-
putations there is a global clock, and each processor executes the instructions syn-
chronously.

We consider computations in which there is no global clock and communications
are made through channels. They are called asynchronous computations. An asyn-
chronous computation is usually called a distributed computing while a synchronous
computation is called a parallel computing. We suppose that processors have data
communications by means of buffers in the common memory.

Petri nets. In the case when communications yield by means of buffers in the com-
mon memory, the behaviour of computations is well described by a mathematical
model which can be defined as follows:

Definition 4.1. A Petri net N = (T, P, F, M0) consists of two disjoint sets T , P
and two functions F : (P × T ) ∪ (T × P ) → {0, 1}, M0 : P → N = {0, 1, 2, · · · }.
Members of T are called transitions, of P places. The function M0 is said to be
an initial marking. The function F determines a structure of a directed bipartite
graph with the set P ∪ T of vertices in which the set of arrows consists of pairs
(a, b) ∈ (P × T ) ∪ (T × P ) such that F (a, b) = 1.

A marking is a function M : P → N. Transitions act on the set of all markings.
A marking M may be changed if there exists a transition t ∈ T such that F (p, t) 6
M(p) for all p ∈ P . A new marking M ′ is defined by its values M ′(p) = M(p) −
F (p, t)+F (t, p). In this case we will say that the transition t ∈ T happens and write
M

t→ M ′. A Petri net behaviour is a sequence of markings M0
t1→ M1

t2→ M2
t3→ · · · .

Places are pictured as circles and transitions as rectangles. If F (a, b) = 1, then a
and b are connected by an arrow. For each p ∈ P the corresponding circle contains
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Figure 3: The behaviour of a Petri net.

M(p) points. A transition t may happen if every arrow going into t has at least one
point in its domain place. When t happens, a point is deleted from the domain of
each arrow going into t and then a point is added to the codomain of each arrow
going out of t.

Example 4.2. We consider a possible behaviour of the computing system which
contains the operator sequence:

t0 : s := 0; t1 : s := s + a; t2 : s := s + b.

The Petri net (Fig.3) consists of T = {t0, t1, t2}, P = {p0, p1, p2, p3, p4, p5} with
the characteristic function F corresponding to the subset of pairs (p0, t0), (p1, t1),
(p2, t2), (p5, t1), (p5, t2), (t0, p5), (t1, p3), (t1, p5), (t2, p4), (t2, p5) and the initial
marking M0(p0) = M0(p1) = M0(p2) = 1, M0(p3) = M0(p4) = M0(p5) = 0.

The transitions happen in the order M0
t0→ M1

t1→ M2
t2→ M3. At first t0 happens,

it is deleted the point from p0 and is added the point to the place p5. Then it may
happen that either t1 or t2. We have taken t1. When t1 happens, they are deleted
points from p1 and p5; and then they are added points to p3 and p5. Then it happens
t2, similarly. In this example the program is executed by processes t0, t1, t2. The
communications are made through s.

CE nets. In the case of communications by buffers each of which has the 1 member,
the values of the marking M(p) are not greater than 1. Such Petri nets are called
CE nets. For a CE net any marking M : P → {0, 1} may be regarded as the
characteristic function of the subset M−1(1) ⊆ P . This subset is called a state of
CE net. The subset corresponding to the initial marking will be called the initial
state. A transition t may happen if for all p ∈ P the following two conditions hold:

(i) F (p, t) 6 M(p),
(ii) M ′(p) = M(p)− F (p, t) + F (t, p) 6 1.
Transitions of CE nets are called events and places are called conditions. They

are denoted B = P , E = T . Markings M : B → {0, 1} are regarded as subsets
M ⊆ B and are called states.

Let N = (E, B, F, M0) be a CE net. For e ∈ E put

pre(e) = {b ∈ B : F (b, e) = 1}, post(e) = {b ∈ B : F (e, b) = 1}.
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We have the directed graph

E
pre
−→−→
post

2B ,

where 2B is the set of all subsets in B. Conversely, every collection of sets E, B and
functions pre, post : E → 2B and a subset M0 ⊆ B gives a CE net (E,B, F, M0) in
which the function F : (E ×B) ∪ (B × E) → {0, 1} has values

F (x, y) =

{
1, if x ∈ pre(y) or y ∈ post(x),
0, otherwise.

It allows us to consider a CE net as a collection

N = (B,M0, E, pre, post),

which consists of sets B and E, a subset M0 ⊆ B and maps E
pre
−→−→
post

2B .

Morphisms of CE nets are defined as some morphisms of corresponding directed
graphs.

To give the definition we need the category of sets and partial functions [26]. A
partial function f : A ⇀ B is a pair consisting of a subset dom f ⊆ A and a map
f : dom f → B. The composition is defined in the obvious way. We assign to every
set E the set E∗ = E ∪{?} obtained by the addition of an “infinitely distant” point

? which does not belong to E. We assign to every partial function E
f
⇀ E′ the

(based) map f∗ : E∗ → E′
∗ with values

f∗(e) =

{
f(e), if e ∈ dom f,

?, otherwise.

This defines the isomorphism of the category of sets and partial function with
the category Set∗ whose objects are pointed sets (often called “based” sets) and
morphisms are based maps in the sense of [16]. Thus we can consider a partial
function as the corresponding map which preserves base points.

For a CE net (B, M0, E, pre, post) we extend the maps pre and post to E∗ by
pre(?) = post(?) = ∅.
Definition 4.3. For arbitrary CE nets

N = (B, M0, E, pre, post), N ′ = (B′,M ′
0, E

′, pre′, post′)

a morphism (β, η) : N → N ′ is a pair consisting of a based map η : E∗ → E′
∗ and

a partial function β : B′ ⇀ B such that
(i) the diagrams

E∗
pre−→ 2B

↓ η ↓ β−1

E′
∗

pre′−→ 2B′

E∗
post−→ 2B

↓ η ↓ β−1

E′
∗

post′−→ 2B′

are commutative where β−1(M) = {b′ ∈ B′ : (∃b ∈ M)β(b′) = b};
(ii) β−1(M0) = M ′

0.
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If (pre(e1) ∪ post(e1)) ∩ (pre(e2) ∪ post(e2)) = ∅, then e1 and e2 are said to be
independent.

Lemma 4.1. [26] Let N = (B, M0, E, pre, post), N ′ = (B′,M ′
0, E

′, pre′, post′)
be CE nets and (β, η) : N → N ′ a morphism of CE nets. Then

(i) if a transition M
e→ M ′ happens in N , then β−1(M)

η(e)→ β−1(M ′) happens
in N ′;

(ii) if e1 and e2 are independent, then η(e1) and η(e2) are independent in N ′.

Proof. The assertion follows from the fact that β−1 preserves the difference and
intersection of sets.

Asynchronous transition systems. Consider an arbitrary set S of computing
system states with a set of instructions E which act on S. Some of the instructions
can act at the same time.

Definition 4.4. [26] An asynchronous transition system

A = (S, s0, E, I, T ran)

consists of sets S and E, a member s0 ∈ S, a subset Tran ⊆ S × E × S, and an
irreflexive symmetric relation I ⊆ E × E for which

(i) for every e ∈ E there are s, s′ ∈ S such that (s, e, s′) ∈ Tran;
(ii) if (s, e, s′) ∈ Tran and (s, e, s′′) ∈ Tran, then s′ = s′′;
(iii) for every pair (e1, e2) ∈ I and triples (s, e1, s1) ∈ Tran, (s1, e2, u) ∈ Tran

there exists s2 ∈ S such that (s, e2, s2) ∈ Tran, (s2, e1, u) ∈ Tran.
Members of S are called states, members of Tran are transitions, s0 ∈ S is an

initial state, I is an independence relation.

The condition (iii) of Definition 4.4 may be illustrated by the diagram:

s
¡

¡
¡ª

@
@

@R

e1e2

e1 e2

s1s2

¡
¡

¡ª

@
@

@R u

The following asynchronous transition system corresponds to the well known
reader and writer problem and it is considered in computer architecture courses
(see [10]).

Example 4.5. [10] Processes are loaded to execute in accidental times. They can
read data from a common page in the memory. There are processes which have
access for writing data in the common page. They are called writers. The other
processes are called readers. At any time, only one writer can have access to the
common page. Readers have no access if there is a writer which is working with the
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common page. Writers have the following advantage: if a writer is ready to write a
data, then new readers are not allowed to access the common page. There is a queue
of writers.

This problem can be modeled as programs for the readers and writers. By execut-
ing these programs, we obtain a sequence of states which may be described as the
states of the following asynchronous transition system. Every state of the system is
a pair (r, w), where r is the number of readers working with the common page and w
the number of writers which are ready to write in the page. If there are no readers,
then the first writer works with the common page. The initial state is s0 = (0, 0).

(0, 0)
d
←−−→

c

(0, 1)
d
←−−→

c

(0, 2)
d
←−−→

c

(0, 3)
d
←−−→

c

· · ·
a ↓ ↑b ↑ b ↑ b ↑ b
(1, 0) −→

c (1, 1) −→
c (1, 2) −→

c (1, 3) −→
c · · ·

a ↓ ↑b ↑ b ↑ b ↑ b
(2, 0) −→

c (2, 1) −→
c (2, 2) −→

c (2, 3) −→
c · · ·

a ↓ ↑b ↑ b ↑ b ↑ b
· · · · · · · · · · · ·

The letters denote the events:
′a′ a reader got the access to the common page;
′b′ a reader freed the access;
′c′ a new writer appeared;
′d′ a writer finished.

If w > 0, then a new reader cannot get the access. If r > 0, then there are no writers
working with the page. In this case the event d cannot occur. If r > 0, then the event
b can occur that leads to the subtraction of 1 from r. The event c can occur in an
arbitrary time, it adds 1 to w. The event a can occur when w = 0. The event d
can come if r = 0 and w > 0. It is supposed that for w writers in the queue the
first writer gets the access after the exits of all readers. It is clear that b and c are
independent. Thus I = {(b, c), (c, b)}.

The following asynchronous transition system is obtained

(N× N, (0, 0), {a, b, c, d}, {(b, c), (c, b)}, T ran),

where Tran = {((i, 0), a, (i + 1, 0)) : i ∈ N} ∪ {((0, j + 1), d, (0, j)) : j ∈ N} ∪ {((i +
1, j), b, (i, j)) : i ∈ N, j ∈ N} ∪ {((i, j), c, (i, j + 1)) : i ∈ N, j ∈ N}.

The category of asynchronous transition system. We will prove that asyn-
chronous transition systems may be regarded as pointed sets over partially commu-
tative monoids.

Definition 4.6. A right pointed set over a monoid is a triple (M, ·, X) of a monoid
M and a based set X together with a map · : X ×M → X such that the following
three conditions hold

(i) ? · µ = ?, for all µ ∈ M ;
(ii) (x · µ1) · µ2 = x · (µ1µ2), for all x ∈ X and µ1, µ2 ∈ M ;
(iii) x · 1 = x, for all x ∈ X.
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Here 1 is the identity element of the monoid. The symbol ′·′ is omitted usually.
So a (right) pointed set over a monoid is denoted by (M, X).

A morphism of pointed sets over monoids (η, σ) : (M, X) → (M ′, X ′) is a pair
consisting of a monoid homomorphism η : M → M ′ and based map σ : X → X ′

such that σ(x · µ) = σ(x) · η(µ), for all x ∈ X, µ ∈ M .
Let (S, s0, E, I, T ran) be an asynchronous transition system and let M(E, I)

be a monoid given by rewriting system (E, Î), where Î is an antisymmetric and
irreflexive relation consisting of pairs (ab, ba) with (a, b) ∈ I. We will suppose that
for every (a, b) ∈ I either (ab, ba) or (ba, ab) belongs to Î. By the condition (ii)
of Definition 4.4, for any e ∈ E, there is a map S∗ → S∗ which is not equal to
the zero based map by the condition (i) of Definition 4.4. Let us denote it by
S(e) : S∗ → S∗. The values S(e)(s) are denoted by s · e, for s ∈ S∗. According to
(iii) of Definition 4.4 we have (s · a) · b = (s · b) · a, for all (a, b) ∈ I. We obtain the
map S : E → Set∗(S∗, S∗) which determines the unique monoid homomorphism
S̃ : E∗ → Set∗(S∗, S∗). Since S̃(ab) = S̃(a)S̃(b) = S̃(b)S̃(a) = S̃(ba), there exists a
unique extension S̃ : M(E, I) → Set∗(S∗, S∗) of the map E → Set∗(S∗, S∗) which
gives a structure of right pointed set over M(E, I).

If we return to the asynchronous transition system for the reader and writer
problem, then we obtain the right pointed set over M(E, I) where S∗ = N× N∪{?}
and the presentation (E, Î) = ({a, b, c, d} : {(bc, cb)}) of M(E, I) with the action

(m, 0) · a = (m + 1, 0), (m + 1, n) · b = (m,n),

(m,n) · c = (m,n + 1), (0, n + 1) · d = (0, n), ∀m ∈ N, n ∈ N
We let (m,n) · e = ? for all the rest of (m,n) and e ∈ {a, b, c, d}.

Let A be a category whose objects are asynchronous transition systems. A mor-
phism of A

(η, σ) : (S, s0, E, I, T ran) → (S′, s′0, E
′, I ′, T ran′)

consists of a map σ : S → S′ and a partial function η : E ⇀ E′ for which σ(s0) = s′0
and the following conditions hold:

(i) (s, a, t) ∈ Tran ⇒ (σ(s), η(a), σ(t)) ∈ Tran′, if η(a) is defined and otherwise
σ(s) = σ(t);

(ii) if (e1, e2) ∈ I and η(e1), η(e2) are both defined, then (η(e1), η(e2)) ∈ I ′.

Lemma 4.2. [11] Consider the map assigning to every asynchronous transition
system

(S, s0, E, I, T ran)

the right pointed set (M(E, I), S∗) with the action s · µ = S̃(µ)(s) for µ ∈ M(E, I)
and s ∈ S∗. This map may be extended to a functor from the category of asyn-
chronous transition systems into the category of right pointed sets over partially
commutative monoids.

Proof. Let

(σ, η) : (S, s0, E, I, T ran) → (S′, s′0, E
′, I ′, T ran′)
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be a morphism of asynchronous transition systems. Since η : E∗ → E′
∗ carries

interchangeable elements to interchangeable, the homomorphism η∗ : E∗ → E′∗

induces the homomorphism of the quotient monoids M(E, I) → M(E′, I ′). Using
the implication

(s, a, t) ∈ Tran ⇒ (σ(s), η(a), σ(t)) ∈ Tran′ ∪ {(s′, ?, s′) : s′ ∈ S′}
we get σ(s) ·η(a) = σ(s ·a). Consequently any morphism of asynchronous transition
systems is transformed to a morphism of right pointed sets over monoids. 2

Petri nets as asynchronous transition systems. Let N be the category of
CE nets and A the category of asynchronous transition systems. Following [21]
we define a functor U : N → A which assign to N = (B, M0, E, pre, post) the
system U(N) = (S, s0, E, I, T ran) where S = 2B , s0 = M0, I = {(e1, e2) ∈ E ×E :
(pre(e1) ∪ post(e1)) ∩ (pre(e2) ∪ post(e2)) = ∅}, Tran = {(M, e,M ′) : M

e→ M ′}.
For a morphism of CE nets (β, η) : N → N ′ we let U(β, η) = (β−1, η). It is well
known that the functor U : N → A has a left adjoint [21].

5. Homology groups of asynchronous transition systems

For every monoid M and right pointed set (M, X) denote by K∗(M,X) a category
whose objects are x ∈ X and morphisms x → y are triples (x, µ, y), with µ ∈ M ,
satisfying to x · µ = y. If x · µ1 = y and y · µ2 = z, then x · (µ1µ2) = z. We
conclude that the composition (y, µ2, z)◦ (x, µ1, y) must be defined by (x, µ1µ2, z)).
The identity 1x : x → x equals (x, 1, x) where 1 is the identity of the monoid.

Let K(M, X) ⊆ K∗(M, X) denote the full subcategory consisting of all objects
x 6= ?.

Homology groups of a state category. Recall that E∗ is the monoid of all words
over an alphabet E including the empty word 1.

Definition 5.1. Let T = (S, s0, E, I, T ran) be an asynchronous transition system.
Let R(I) ⊆ E∗ × E∗ denote an antisymmetric and irreflexive relation consisting
of pairs (e1e2, e2e1) such that (e1, e2) ∈ I. Consider a right pointed monoid set
(M(E, I), S∗), over the monoid M(E, I) which is presented by (E,R(I)) and acts
on S∗ = S ∪ {?} as follows:

s · e =

{
t, if (s, e, t) ∈ Tran,

?, if there are no t ∈ S such that (s, e, t) ∈ Tran.

An augmented graph of states of T is the directed graph with the set of vertices S∗
and set of arrows s

e→ s′, for e ∈ E, s ∈ S∗, s′ ∈ S∗ satisfying to s · e = s′. Deleting
from the augmented graph of states the vertex ? and all arrows for which the vertex
? is the domain or the codomain we obtain a graph of states of T . The category
K(T ) = K(M(E, I), S∗) is called the category of states, K∗(T ) = K∗(M(E, I), S∗)
is the augmented category of states of T .

Example 5.2. Consider the asynchronous transition system

T = (S, s0, E, I, T ran)



Homology, Homotopy and Applications, vol. 6(1), 2004 462

s0

¡
¡

¡ª

@
@

@R

ba

b a

s2s1

¡
¡

¡ª

@
@

@R
s3

s0

¡
¡

¡ª

@
@

@R

ba

b a

s2s1

¡
¡

¡ª

@
@

@R s3

?

a b

?

A
A
A
A
A
A
A
AAU

a b

¢
¢

¢
¢

¢
¢

¢
¢¢®

?
b
-

a
¾

Figure 4: The graph and augmented graph of states

consisting of S = {s0, s1, s2, s3}, E = {a, b}, I = {(a, b), (b, a)}, and

Tran = {(s0, a, s1), (s0, b, s2), (s1, b, s3), (s2, a, s3)}.
In Fig. 4 there are pictured two graphs which give presentations of the category of
states and augmented category of states.

Let T = (S, s0, E, I, T ran), T ′ = (S′, s′0, E
′, I ′, T ran′) be asynchronous transi-

tion systems. Suppose that (η, σ) : T → T ′ is a morphism. It induces the monoid
homomorphism η∗ : M(E, I) → M(E′, I ′) sending morphisms given by words
w = e1e2 · · · en into the morphisms given by words η∗(e1)η∗(e2) · · · η∗(en) where

η∗(e) =

{
η(e) , if e ∈ dom η,

? , otherwise.

We assign to a morphism of asynchronous transition systems (η, σ) : T → T ′ the
functors K∗(η, σ) : K∗(T ) → K∗(T ′) and K(η, σ) : K(T ) → K(T ′) which are

defined as (s ∈ S∪{?}) 7→ (σ(s) ∈ S′∪{?}) on objects and (s1
w→ s2) 7→ (σ(s1)

η∗(w)→
σ(s2)) on morphisms.

Since the map σ : S → S′ is totally defined on S, the functor K∗(η, σ) : K∗(T ) →
K∗(T ′) maps objects of K(T ) ⊆ K∗(T ) into objects of K(T ′) ⊆ K∗(T ′). These
subcategories are full. Therefore K∗(η, σ) determines a functor K(η, σ) : K(T ) →
K(T ′).

Thus any diagram F : K(T ) → Ab determines the homology group Hn(K(T ), F )
of the category of states, for every n > 0. Similarly, the homology group Hn(K∗(T ), F )
of the augmented category of states is associated to any diagram F : K∗(T ) → Ab.
A morphism of (η, σ) : T → T ′ to a diagram G : K(T ′) → Ab determines the
group homomorphisms Hn(K(T ), G◦K(η, σ)) → Hn(K(T ′), G). Analogously there
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is given a homomorphism

Hn(K∗(T ), G ◦K∗(η, σ)) → Hn(K∗(T ′), G)

for a diagram G : K∗(T ′) → Ab.
For any diagram F : K(T ) → Ab, denote by F∗ : K∗(T ) → Ab the diagram which

has values F∗(s) = F (s), for s ∈ S, and F∗(?) = 0.

Example 5.3. We calculate the homology groups for Example 5.2. The category
K(T ) has a terminal object. Hence, for a diagram F : K(T ) → Ab, the groups
Hn(K(T ), F ) is equal to 0, for n > 0, and H0(K(T ), F ) ∼= F (s3).

Now we calculate the homology groups of the augmented category of states. It is
clear that H0(K∗(T ), F∗) = 0. Since every flow is a sum of internal flows, we have
H1(K∗(T ), F∗) = 0. According to Corollary 3.5 Hn(K∗(T ), F∗) = 0, for n > 3. The
group H2(K∗(T ), F∗) = 0 is isomorphic to the kernel of d1. In this case d1 is a
monomorphism. Thus Hn(K∗(T ), F∗) = 0, for all n > 0 and for every diagram F
of abelian groups on K(T ).

Example 5.4. Let T = (S, s0, E, I, T ran) be an asynchronous transition system
consisting of a single state s0 and a single event e, i.e. S = {s0} and E = {e}.
Suppose that I = ∅, Tran = {(s0, e, s0)}. Then Hn(K∗(T ), F∗) ∼= Hn(K(T ), F ), for
all n > 0. It is easy to see that Hn(K(T ), F ) = 0, for n > 1, and H1(K(T ), F ) is
isomorphic to a subgroup of F (s0) which contains all elements f ∈ F (s0) such that
F (e)(f) = f .

If I = ∅, then the (augmented) category of states is free. It implies the following.

Proposition 5.1. Let T = (S, s0, E, I, T ran) be an asynchronous transition sys-
tem and F : K(T ) → Ab a diagram. If I = ∅, then H1(K(T ), F ) (respectively
H1(K∗(T ), F∗)) is isomorphic to the group of flows in the graph (respectively in
augmented graph) of states with coefficients in F (F∗). In this case Hn(K(T ), F )
and Hn(K∗(T ), F∗) vanish for n > 2.

Definition 5.5. Let N be a CE net and let F : K(U(N)) → Ab be a diagram
where U : N → A the above functor from the category of CE nets to the category
of asynchronous transition systems. The homology groups of the category of states
of N are defined by Hn(K(U(N)), F ), n > 0.

A state s ∈ S of an asynchronous transition system (S, s0, E, I, T ran) is said to
be reachable if there exists w ∈ E∗ such that s0 ·w = c. Consider Example 4.2 (Fig.
3). The set of objects of K(U(N)) equals 2P where P = {p0, p1, · · · , p5}. Let F be
a diagram with values 0 for the states which are not reachable. Since K(U(N)) is
the free category, we have Hk(K(U(N)), F ) = 0, for k > 1. Since F vanishes for
the states which are not reachable, the group consists of flows in the graph
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where s0 = {p0, p1, p2}, s1 = {p1, p2, p5}, s2 = {p2, p3, p5}, s3 = {p1, p4, p5}, s4 =
{p3, p4, p5}, γ0 = (s0

t0→ s1), γ1 = (s1
t1→ s2), γ2 = (s1

t2→ s3), γ3 = (s3
t1→

s4), γ4 = (s2
t2→ s4). Considering this group of flows we get H1(K(U(N)), F ) =

Ker(F (γ4γ1)− F (γ3γ2)).

Homology groups of the category of states for the reader and writer
problem. The category of states of Example 4.5 is given by the presentation (Γ,R),
where Γ is the graph with the set V (Γ) = N × N of vertices and the set A(Γ)
consisting of the arrows an, dn, bi j , ci j defined for n > 0, i > 0, j > 0 by means
of dom(an) = (n, 0), cod(an) = (n + 1, 0), dom(dn) = (0, n + 1), cod(dn) = (0, n),
dom(bi j) = (i + 1, j), cod(bi j) = (i, j), dom(ci j) = (i, j), cod(ci j) = (i, j + 1). The
set R contains the pairs (bi j+1ci+1 j , ci jbi j), with i, j > 0. The graph Γ includes a
subgraph Γ1 corresponding to the asynchronous transition system

(0, 0)
d
←−−→

c

(0, 1)
d
←−−→

c

(0, 2)
d
←−−→

c

(0, 3)
d
←−−→

c

· · ·
a ↓

(1, 0) −→
c (1, 1) −→

c (1, 2) −→
c (1, 3) −→

c · · ·
a ↓

(2, 0) −→
c (2, 1) −→

c (2, 2) −→
c (2, 3) −→

c · · ·
a ↓
· · · · · · · · · · · ·

The set of vertices is V (Γ1) = N × N. The set of arrows A(Γ1) is obtained from
A(Γ) by deleting the arrows bi j with i, j > 0. Let F : PaΓ/R → Ab be a diagram
of abelian groups. Suppose that for each i ∈ N there exists j0 such that F (i, j) = 0
for all j > j0. Then every flow

∑
fγ [γ] ∈ Φ(Γ1, F ) may be regarded as a flow in Γ

obtained by the addition zero values fγ = 0 for γ ∈ {bi j : i, j > 0}. It determines a
homomorphism t : Φ(Γ1, F ) → H1(PaΓ/R, F ).

Proposition 5.2. With the above hypothesis on F , the homomorphism t is an
isomorphism.

Proof. We first prove that t is surjective. For each flow
∑

fγ [γ] choose among
its summands a member gi j [bi j ] with the greatest i for which there is j such that
gi j 6= 0, for some gi j ∈ F (i + 1, j). Then choose the smallest j such that gi j 6= 0.
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Using the commutativity of the diagram:

(i, j)
ci j−→ (i, j + 1)

bi j ↑ ↑ bi j+1

(i + 1, j)
ci+1 j−→ (i + 1, j + 1)

we obtain that the difference

(
∑

fγ [γ])− gi j [bi j ]− F (bi j)(gi j)[ci j ] + gi j [ci+1 j ] + F (ci+1 j)(gi j)[bi j+1]

is a flow which is equivalent to the flow
∑

fγ [γ]. If we repeat these subtractions
every time by choosing (i, j) with above properties, then we obtain a flow which
is equivalent to

∑
fγ [γ]. It does not contain the summands g[bi j ] with g 6= 0.

Therefore t is surjective.
We prove now that t is injective. We calculate Ker t. Let z be a flow such that

t(z) = 0. Then z is a sum of some internal flows

fi j [bi j ] + F (bi j)(fi j)[ci j ]− fi j [ci+1 j ]− F (ci+1 j)(fi j)[bi j+1].

Choose among them an internal flow with greatest i, for which there exists j sat-
isfying fi j 6= 0. Then we take a smallest index among such indices j. Because of
z ∈ Φ(Γ1, F ) we will get fi j [bi j ] = 0, and consequently fi j = 0. The contradiction
shows that it follows from t(z) = 0 that z = 0. Thus Ker(t) = 0 and t is an injection.

2

We assume that the first homology group of the category of states for the reader
and writer problem is isomorphic to the abelian group of flows Φ(Γ1, F ).

For example, if

F (i, j) =

{
Z, if 0 6 i 6 p− 1 and 0 6 j 6 q − 1,

0, otherwise,

and if the diagram F satisfies to the following equalities

F (an) = 1Z, for all 0 6 n 6 p− 2,
F (dn) = 1Z, for all 0 6 n 6 q − 2,
F (bi j) = 1Z, for all 0 6 i 6 p− 2, 0 6 j 6 q − 1,
F (ci j) = 1Z, for all 0 6 i 6 p− 1, 0 6 j 6 q − 2,

then H1(PaΓ/R, F ) ∼= Zp+q−1.

Kan extensions and homology of partially commutative monoids. Let M
be a monoid considered as a category with the single object M . Any right pointed set
X over M may be regarded as a functor X : Mop → Set∗. Let S : K∗(M,X) → Mop

be the functor defined as S(x
µ→ y) = µ. For each diagram F : K∗(M,X) → Ab we

have its Kan extension LanS F : Mop → Ab. Every maximal connected subcategory
of the category S ↓ M has a terminal object of the form (x, 1) with x ∈ X. Hence
LanS F is the right M -module LanS F (M) =

⊕
x∈X

F (x) with the action

f [x] · µ = F (x
µ→ xµ)(f)[xµ].
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The work [11] was devoted to the homology of the augmented category of states.
The following assertion is one of its main results. It was proved by means of the
Andre spectral sequence. Here we prove it by a rather simple method.

Denote LanS F by F̃ .

Theorem 5.3. Let M be a monoid and X a right pointed set over M . Let F be a
diagram of abelian groups on K∗(M,X). Then Hn(K∗(M, X), F ) ∼= Hn(Mop, F̃ ),
for all n > 0, where Hn(Mop, F̃ ) is a n-th homology group of the monoid M with
coefficients in the right M -module F̃ .

Proof. Since the functor LanS is left adjoint to the exact functor AbS , it carries
projective objects into projective [1, Prop. 6.3]. The sum of exact sequences is exact,
consequently LanS is exact. Hence LanS carries any projective resolution

0 ← F ← P0 ← P1 ← · · ·
into a projective resolution of F̃ . Applying the functor colimMop

to the resolution
LanS P∗ of F̃ , we will get a complex of abelian groups colimMop

(LanS Pn). Therefore
Hn(colimC LanS P∗) ∼= Hn(Mop, LanS F ). Using the isomorphism

colimMop

(LanS P∗) ∼= colimK∗(M,X) P∗

we obtain Hn(K∗(M, X), F ) ∼= Hn(Mop,LanS F ) for all n > 0. 2

Homology of asynchronous transition without triples of mutually inde-
pendent events. Let T = (S, s0, E, I, T ran) be an asynchronous transition system
and let n > 0 be a positive integer. We will say that T contains n mutually indepen-
dent events, if there exists a subset {e1, · · · , en} ⊆ E such that (ei, ej) ∈ I for all
i 6= j, 1 6 i, j 6 n. Otherwise we say that T does not contain n-tuples of mutually
independent events.

It follows from Theorem 1.2 and Corollary 3.5 that if T does not contain triples
of mutually independent events, then Hn(K∗(T ), F ) = 0 for all n > 3 and functors
F : K∗(T ) → Ab. We prove that this is true for K(T ).

Let C be a category. A subcategory D ⊆ C is called convex if the following
conditions are satisfied:

(i) D ⊆ C is a full subcategory;
(ii) if d1, d2 ∈ ObD and c ∈ ObC have morphisms d1 → c → d2, then c ∈ ObD.
It is clear that K(T ) and K∗(T ) are convex subcategories of K∗(T ).
For any convex subcategory K ⊆ K∗(T ), we consider a set Tran(K) which

consists of all arrows γ of the augmented graph of states such that γ ∈ MorK. In
particular Tran(K(T )) = Tran. The set Tran(K∗(T )) consists of all arrows of the
augmented graph of states. Let RK(I) contains all pairs (x a→ y

b→ z, x
b→ y′ a→ z)

for which (ab, ba) ∈ R(I) and x, z ∈ Ob(K).

Corollary 5.4. Let T = (S, s0, E, I, T ran) be an asynchronous transition system
and K ⊆ K∗(T ) a convex subcategory. Let F : K → Ab be a functor. If T does
not contain triples of mutually independent events, then Hn(K, F ) = 0 for n > 3
and Hn(K, F ) are isomorphic to the homology groups of the following complex for
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n = 0, 1, 2:

0 →
⊕

r∈RK(I)

F (dom r) d1−→
⊕

γ∈Tran(K)

F (dom γ) d0−→
⊕

x∈ObK

F (x) → 0. (9)

Proof. We denote by Tran(K) the subgraph of the augmented graph which
consists of arrows Tran(K). It easy to see that the category K∗(T ) has the presen-
tation

(Tran(K∗(T )),RK∗(T )(I)).

Using Lemma 1.1 we obtain that (Tran(K),RK(I)) is the presentation of K. Let
α = αn · · ·α1 and β = βn · · ·β1 are 1-paths in the graph Tran(K). Denote M =
M(E, I). Let αi = (xi−1, ai, xi) and βi = (x′i−1, bi, x

′
i) where x0 = x′0 = x and

y0 = y′0 = y. Since K is convex, the map

Ω0(RK(I))(x, y)(α, β) → Ω0(R(I))(M, M)(an · · · a1, bn · · · b1)

is bijective and induces the bijection of 2-morphisms. The set HomΩ(RK(I))(x, y)(α, β)
contains at most one element by Theorem 1.2. Hence Ω(RK(I)) is the trivial 2-
category. Using Corollary 3.5, we complete the proof. 2

Homology of asynchronous transition systems and Petri nets. If s0 is the
initial state of an asynchronous transition system T , we will consider the full sub-
category T (s0) ⊆ K(T ) of all reachable states. Let ZT (s0) : K(T ) → Ab be a
diagram such that ZT (s0)(s) = Z for all reachable states s, and ZT (s0)(s) = 0 if
s /∈ Ob(T (s0)). The diagram ZT (s0) assign to all morphisms of T (s0) the iden-
tity homomorphism 1Z. Other morphisms are sent to zero homomorphisms. Write
Hn(T ) = Hn(K(T ),ZT (s0)), for n > 0. The group Hn(T ) will be called the n-th
integer homology of T . Each morphism of asynchronous transition systems T → T ′

carries the initial state s0 into the initial state s′0. Consequently, it induces a mor-
phism (K(T ),ZT (s0)) → (K(T ′),ZT ′(s′0)) in the category Dg(Ab). This gives homo-
morphisms Hn(T ) → Hn(T ′), for all n > 0.

Since T (s0) is a connected category, we have H0(T ) = Z.

Proposition 5.5. Let T be an asynchronous transition system with an initial state
s0. Then for every n > 0 the group Hn(T ) is isomorphic to n-th homology group of
the nerve of the category T (s0).

Proof. Recall that for arbitrary small category C the functor ∆CZ : C → Ab
has the value Z at each c ∈ ObC and the value 1Z at each α ∈ MorC. The sub-
category T (s0) ⊆ K(T ) contains for any s ∈ Ob(T (s0)) all objects s′ ∈ S for which
there exist s → s′. Hence the complexes Cn(K(T ),ZT (s0)) and Cn(T (s0),∆T (s0)Z)
are isomorphic. It is well known [2] that for every category C the homology of the
nerve of C may be defined as Hn(C, ∆CZ). Substituting C = T (s0) we get the
required result. 2

The group H1(T ) may be calculated by means of Smith normal form for the
differential d1 of Theorem 3.2. This allows us to calculate the first homology group
of a Petri net.
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Definition 5.6. Let N be a CE net and n > 0 an integer. The n-th homology
group Hn(N) of the CE net N is the integral homology group Hn(U(N)) where
U(N) is the asynchronous transition system defined in the end of Section 4.

For example, consider a pipeline consisting of the three threads (processes) a, b, c
which transfer data by means of common integer variables p and q. Suppose that f
and g are functions N→ N. The thread a computes p := f(n) for n = 0, 1, · · · ; the
thread b computes q := g(p); the thread c displays the values of q. Each computing
executes a random run time. The states are described by the following CE net
denoted N :

µ´
¶³

µ´
¶³

p q

- -- -a b c

The functor U : N → A assign to N an asynchronous transition system with
the following graph of states:

∅
¡

¡
¡ª @

@
@I ca

c a

{q}{p} -b

¡
¡

¡ª@
@

@I

{p, q}

Here U(N) = (S, s0, E, I, T ran) has S = {∅, {p}, {q}, {p, q}}, s0 = ∅, E =
{a, b, c}, I = {(a, c), (c, a)}. The set Tran contains triples corresponding to the
arrows of graph of states: γ1 = (∅ a→ {p}), γ2 = ({q} c→ ∅), γ3 = ({q} a→ {p, q}),
γ4 = ({p, q} c→ {p}), γ5 = ({p} b→ {q}). Let R = {(γ2γ1, γ4γ3)}.

Calculate the groups Hn(N). Write entries of matrices of homomorphisms
⊕

r∈R
Z d1−→

⊕

γ∈Tran

Z d0−→
⊕

s∈S

Z .

By Corollary 3.5 we have Hn(N) = 0 for n > 3. The group H2(N) is isomorphic
to Ker d1. Denote matrices corresponding to the homomorphisms di by Ai, i ∈
{0, 1}. Any element of

⊕
γ∈Tran Z is an integer vector. It will be considered as a

matrix consisting of a single column. The element d0(z) is a column obtained by
the multiplication of A0 with a column corresponding to z ∈ ⊕

γ∈Tran Z. We have

A0 =




1 −1 0 0 0
−1 0 0 −1 0

0 1 1 0 1
0 0 −1 1 −1


 A1 =




1
1

−1
−1

0



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where the states are corresponded to strings of A0 in the following order: ∅, {p},
{q}, {p, q}. The columns are corresponded to transitions in the order γ1, · · · , γ5.
We get a sequence of matrices

0 A2−→ Z A1−→ Z5 A0−→ Z4

with A2 = 0. Transforming A1 and A0 to Smith normal form we obtain the matrices:

D(A0) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0


 D(A1) =




1
0
0
0
0




According to Proposition 3.7 we have H2(N) = 0, H1(N) ∼= Z. Since T (s0) =
U(N)(∅) is connected, we have H0(N) ∼= Z.

Concluding remarks

We introduced homology groups of asynchronous transition systems as the ho-
mology of the category of states with coefficients in some diagram. The existence of
the functor U : N → A allowed us to define homology groups for CE nets. Analo-
gously it would have been possible to define homology groups for event structures
(in the sense of [26]) or for objects of any category which admits a functor into
A. Thus we can obtain information about invariants of these objects such as Betti
numbers, Euler characteristic, homological dimension. It is still an open problem to
calculate and to interpret these invariants. A CE net is finite if its sets of conditions
and events are finite.

Open problem 1. Find an algorithm for the computation of the integer homology
groups Hn(N) of finite CE nets N for n > 1.

If we built a complex of free finitely generated abelian groups whose homology
groups are isomorphic to Hn(N), then Open Problem 1 would be solved.

We saw above that H0(N) = Z. The group H1(N) may be calculated by means
of reduction of the matrices of d0 and d1 to the Smith normal form. An algorithm
for calculating H2(N) when the CE net N does not contain triples of mutually
independent events is proposed. The following question is related to this result:

Open problem 2. Let n > 0 be the maximal number of mutually independent events
of an asynchronous transition system T . Prove the equality Hk(K∗(T ), F ) = 0 for
every diagram F : K∗(T ) → Ab and k > n.

We have proved this for n = 1 and n = 2. According to Theorem 5.3 this problem
may be reduced to estimating the homological dimension of partially commutative
monoids.

Many questions appear in the study of constructions of categories of models
for concurrency. We hope that they may be solved by means of classical spectral
sequences related to the homology of small categories.
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