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LIE ALGEBRA COHOMOLOGY AND GENERATING
FUNCTIONS

ALEXEI TOLPYGO

(communicated by Hvedri Inassaridze)

Abstract
Let g be a simple Lie algebra, V an irreducible g-module,

W the Weyl group and b the Borel subalgebra of g, n = [b, b],
h the Cartan subalgebra of g. The Borel-Weil-Bott theorem
states that the dimension of Hi(n; V ) is equal to the cardinality
of the set of elements of length i from W . Here a more detailed
description of Hi(n; V ) as an h-module is given in terms of
generating functions.

Results of Leger and Luks and Williams who described
Hi(n; n) for i 6 2 are generalized: dim H∗(n; Λ∗(n)) and
dim Hi(n; n) for i 6 3 are calculated and dim Hi(n; n) as func-
tion of i and rank g is described for the calssical series.

Introduction

The main field is C and all the algebras and modules considered are finite di-
mensional over C. It is well known, that the standard cochain complex C∗(n; V ) =
⊕Ck(n;V ) is isomorphic to the space of linear maps from Λ∗n into V ; so

C∗(n; V ) ∼= (Λ∗n)′ ⊗ V, (0.4)

where prime denotes the dualization and the sign ∗ is reserved to denote the direct
sum: for example, H∗ denotes ⊕

k
Hk, E∗,∗

1 = ⊕i,jE
ij
1 , Ei,∗

1 = ⊕Ei,j
1 , etc.

Let diag(a1, . . . , an) denote the matrix with the numbers ai on its main diagonal,
the other elements being 0.

Let g be a (semi)simple Lie algebra, V an irreducible g-module, W the Weyl
group of g and b its Borel subalgebra; n = [b, b]. According to the Borel-Weil-Bott
(BWB) theorem [5] (whose different proofs are presented, with increasing clarity,
e.g., in [11], [1], [4]), we have

dim Hi(n; V ) = |Wi|, (0.1)
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where |S| denotes the cardinality of S and Wi is the set of elements from W of
length i, see [6]. We hope there will be no confusion of the cardinality of a set with
the modulus of a polynomial introduced below.

In addition to g-modules, n has a lot of natural modules which are not g-modules
but which admit a b-module structure; and in this paper we will study such modules.
The most interesting is the adjoint module n, and our main aim is to calculate
cohomology with values in it. In particular, we will show (Theorem 7.6), that if
g = Ar, i.e., g = sl(r + 1), then

dim H∗(n; n) = (r + 1)!
r2 + 9r + 2

12
.

Our methods can be generalized to embrace other b-modules.
Let V be an arbitrary b-module; we will analyze the action of the Cartan sub-

algebra h on the cochain complex C∗(n; V ). This complex is a direct sum of its
weight subspaces C∗ν where ν ∈ h′. In §2 we will derive a formula for the generating
function:

F (t, x) =
∑

k,ν

dim Ck
ν · tk · xν . (2.4)

The guiding idea in what follows is that, first, the coboundary operator d preserves
each subcomplex C∗ν = ⊕kCk

ν and, second,
∑

k

(−1)k dim Hk
ν =

∑

k

(−1)k dim Ck
ν . (0.2)

Therefore,

dim H∗ >
∑

ν

∣∣∣∣∣
∑

k

(−1)k dim Ck
ν

∣∣∣∣∣ . (0.3)

Inequality (0.3) coincides with the inequality (2.5) and we will investigate for which
modules this inequality becomes an equality. The modules for which the equality is
attained are called blue ones.1

In §4 we will show that any irreducible g-module V is blue, and in §6 we prove
the same for V = n, if g is of type Ar.

If V is a blue module, one can calculate its cohomology simply by counting the
coefficients of the function G(x) = F (−1, x). In §7 we will calculate in this way
dim H∗(n; n) and dimHk(n; n) for k 6 3. In §8 we will establish some properties of
dim Hk(n; n) regarded as a function of k and rk g.

In §9 we will discuss the results and problems for g 6= Ar.
I do not know any other investigations concerning dimH∗(n; V ), where V is not

a g-module, except calculations of Leger and Luks [12] and Williams [21], where
H2(n; n) and H1(n;V ) for V equal to either n, or its dual, n′, or g/n are calculated.

1As opposed to yellow modules, the colors chosen to match the two colors of the banner of the
independent Ukraine.
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Some results of this paper were announced in [15], see also [16]–[19]. They were
delivered at the seminars of A. L. Onishchik-É. B. Vinberg and D. A. Leites in
1978/79.

§1. Generating Functions

1.1
Let x = (x1, . . . , xr) be an r-tuple. For ν = (ν1, . . . , νr) ∈ Rr, we set xν =

xν1
1 . . . xνr

r . In this paper, except for §§8–9, a polynomial is an expression P (x) =∑
ν

aν ·xν with real or complex coefficients, where ν runs over some finite set of real

vectors.
For a polynomial P , we define its support as NP = {ν ∈ Rr | aν 6= 0} and

its modulus as |P (x)| =
∑

ν∈Np

|aν |. We call P a convex polynomial if NP is a set of

vertices of a convex polyhedral.
If P (t, x) is a polynomial in two groups of indeterminates and t0 = (t01, . . . , t

0
s)

a vector with numerical coordinates, we denote by |P (t0, x)| the modulus of the
polynomial obtained from P (t, x) by replacing t with t0.

1.2. Proposition. If P =
∑

aνxν and Q =
∑

bνxν are polynomials, then
(i) |P ·Q| 6 |P | · |Q|;
(ii) For any monomial Q = xν , we have |P ·Q| = |P |.
(iii) If P is convex and bν are integers, then |P ·Q| > |P |.
Proof. Statements (i) and (ii) are obvious. Now let P be convex and µ ∈ NP .

Then there exists a linear form ϕ ∈ (Rr)′ such that ϕ(µ) > ϕ(ν) for all ν ∈ NP ,
ν 6= µ. We can find λ ∈ NQ such that ϕ(λ) > ϕ(ν′) for any ν′ ∈ NQ; then
ϕ(λ + µ) > ϕ(ν + ν′) and, therefore, λ + µ 6= ν + ν′ for any ν ∈ NP , ν′ ∈ MQ. So if
P ·Q =

∑
cνxν , then |cλ+µ| = |aµ · bλ| > |aµ|.

Thus, for any µ ∈ NP we have found a vector λ + µ ∈ NP ·Q such that |cλ+µ| >
|aµ|. Clearly, if µ 6= µ1 then µ + λ 6= µ1 + λ1. Hence,

|P ·Q| =
∑

ν∈NP ·Q

|cν | >
∑

µ∈NP

|cλ+µ| >
∑

µ∈NP

|aµ| = |P |.

1.3
If a polynomial Q is obtained from P by an affine change of indeterminates, we

will write P ∼ Q.

Proposition. If P ∼ Q, then |P | = |Q|.
Proof. The translation of the origin to the point ν corresponds to the multipli-

cation of P by xν , so we may use Proposition 1.2(ii). Now, given a homogeneous
change of indeteminates, let π = (π1, . . . , πr), where πi =

∑
j

aijνj . Then we may

denote:
yi =

∏

j

x
bij

j , where (bij) = (aij)−1.
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Clearly, yπ = xν . This means that the change of indeteminates transforms a mono-
mial aνxν into some other monomial with the same coefficient aν . Now our state-
ment is obvious.

It is easy to see that the correspondence between the monomial xν and the δ-
function δν establishes an isomorphism of the polynomial ring and the group ring
of Rr. It will be more convenient for us to operate with the polynomial ring: to
substitute numerical values of variables is more natural for polynomials.

1.4
Now let h be an r-dimensional commutative Lie algebra and V an h-module. Let

V be semisimple, i.e., let V have a basis v1, . . . , vm such that h · vi = µi(h) · vi for
any h ∈ h and some µ = (µ1, . . . , µm) ∈ (h′)m.

We will also assume that h has a basis h1, . . . , hr such that all the numbers µi(hj)
are real. Then we may consider the generating function of the h-module V :

AV (x) =
m∑

i=1

xµi (1.1)

This generating function coincides with the character of module V in the terminol-
ogy of [7]: if V = ⊕Vν is the decomposition of V into its weight subspaces, then,

obviously,

AV (x) =
∑

ν

dim Vν · xν = ch V. (1.2)

If V = ⊕
k∈Z

V k is a Z-graded module, we will consider the generating function

AV (t, x) =
∑

k,ν

dim V k
ν · tk · xν (1.3)

where t is one more (one-dimensional) indeterminate.

1.5. Proposition. Let U and V be two semisimple h-modules, AU (x) and AV (x)
their generating functions (1.1). Then the h-modules U ⊕V , U ⊗V , V ′ and Λ∗V =
⊕ΛkV are also semisimple and their generating functions are given by the formulas

AU⊕V = AU + AV , (1.4)

AU⊗V = AU ·AV , (1.5)

AV ′(x) = AV (x−1) =
∑

i

x−µi , (1.6)

AΛ∗V (t, x) =
∏

i

(1 + t · xµi). (1.7)

Proof is obvious.
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§2. b-n-modules

2.1
Now let n be an arbitrary Lie algebra and V any n-module. A pair (D,A) is a

derivation of V compatible with D if D is a derivation of n and A : V −→ V is a
linear transformation such that

A(n · v) = n ·Av + Dn · v for any n ∈ n, v ∈ V . (2.1)

Obviously such derivations form a Lie algebra, which we denote by der(V ). There
is a projection: (D,A) 7→ D from der(V ) on der(n); its kernel consists of all pairs
(0, A), where A : V −→ V commutes with the n-action on V . This projection gives
us the action of der(V ) on n, and, therefore, we can define the action of der(V ) on
the cochain complex C∗(n;V ) by the standard formula

((D, A)f)(n1, . . . , nk) = Af((n1, . . . , nk)−
∑

f((n1, . . . , Dni, . . . , nk). (2.2)

The standard calculation shows that the coboundary operator d : Ck −→ Ck+1

commutes with this action of der(V ) on C∗(n; V ). So this action induces an action
of der(V ) on H∗(n; V ).

2.2
Now, let b be Lie algebra, n - ideal in b, and let V be a b-module (so V is an

n-module as well). For any b ∈ b let Db be the restriction of ad b onto n and Ab the
action of b on V . Then

b 7→ (Db, Ab) (2.3)

is a homomorphism b −→ der(V ). So b naturally acts on C∗(n; V ) and on H∗(n; V ).
It is well known that every Lie algebra trivially acts on its (co)homology, so n
trivially acts on H∗(n;V ), and we may regard the above b-action as the action of
b/n = h on H∗(n;V ).

2.3
Henceforth we will assume that b is a semidirect sum of its ideal n and a com-

mutative subalgebra h. Then any b-module is at the same time an h-module and an
n-module. We will call V a b-n-module if

(i) V is a b-module and
(ii) V has a basis of h-eigenvectors v1, .., vm with real weights in some fixed basis

of h.
The weight of vi will be denoted by µi ∈ h′. We will assume that all the mod-

ules to be studied are b-n-modules; in particular, we will assume that the adjoint
representation of h on n is semisimple; let λ1, . . . , λn ∈ h′ be the weights of this
representation.

2.4
Let C∗ = ⊕

ν
C∗ν = ⊕

k,ν
Ck

ν be the decomposition of the graded h-module C∗ =

C∗(n; V ). Set akν = dim Ck
ν .
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Theorem. Let FV (t, x) =
∑
k,ν

akν · tk · xν be the generating function of C∗(n; V ).

Then

FV (t, x) =
∏

i

(1 + t · x−λi) ·AV (x). (2.4)

Proof. Since C∗(n; V ) is isomorphic to (Λ∗n)′⊗V as a graded h-module (formula
(0.3)), our theorem follows from Proposition1.5.

2.5
Set bν =

∑
06k6n

(−1)kakν and ckν = akν − ak+1ν − ak−1ν ; let GV (x) =
∑

bν · xν .

Obviously, GV (x) = FV (−1, x).

Theorem. In the above notations

dim H∗(n;V ) > |GV |; (2.5)

dim Hk
ν > ckν ; (2.6)

dim Hk >
∑

ν

max(0, ckν). (2.7)

Proof. Denote by Hk
ν is the cohomology of the complex

. . . −→ Ck−1
ν −→ Ck

ν −→ Ck+1
ν −→ . . .

Clearly,

dim Hk
ν > dim Ck

ν − dim Ck−1
ν − dim Ck+1

ν = ckν ,

and we obtain (2.6). It immediately implies (2.7).
To prove formula (2.5), let us apply (0.2) to the complex C∗ν . We get

|bν | = |
∑

k

(−1)k dim Ck
ν | = |

∑

k

(−1)k dim Hk
ν | 6

∑

k

dim Hk
ν = dim H∗

ν . (2.8)

Hence, dim H∗ =
∑
ν

dim H∗
ν >

∑ |bν | = |G|.

2.6. Corollary. If λ1 6= 0, . . . , λn 6= 0 and V is a b-n-module, then H∗(n;V ) 6= 0.

Proof. If H∗(n;V ) = 0, then |G| = 0 and so G(x) ≡ 0. Since G(x) = F (−1, x),
we see from (2.4) that some of the vectors λ1, . . . , λn vanish.

The assumption on V to be a b-n-module is essential. If b is a two-dimensional
non-commutative Lie algebra, n = [b, b] is the one-dimensional Lie algebra and V
is one-dimensional non-trivial n-module, then H∗(n;V ) = 0 even if λ 6= 0.

2.7. Corollary. Let z0 = (z0
1 , . . . , z0

s) be a set of complex numbers, |z0
i | 6 1 for all

i, and y = (y1, . . . , yr−s) some variables. Then dim H∗(n; V ) > |G(z0, y)|.
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§3. The spectral sequence. The term Eij
1

3.1
If V = C is the trivial b-module, then AV (x) = 1. So FC(t, x) =

∏
i

(1 + t · xλi),

and we can write

FV (t, x) = FC(t, x)AV (x). (3.1)

Our purpose in this section is to set an analogous formula (3.5) for the generating
functions of cohomology.

3.2
Let V be a b-n-module. Assume that V admits a filtration

V = Vm ⊃ Vm−1 ⊃ . . . ⊃ V1 ⊃ V0 = {0} such that dim Vi = i and
bVi ⊂ Vi; nVi ⊂ Vi−1.

(3.2)

If (3.2) is fulfilled, V is said to be a nilmodule. One can easily see that if there exists
an h ∈ h such that λi(h) > 0 for all i, then any such b-n-module V is a nilmodule.

Denote: C(i) = {ϕ ∈ C∗ | Imϕ ⊂ Vi}. Then the sets C(i) forms a filtration of C∗,
and this filtration generates a spectral sequence [9]. Let us calculate its first term
Eij

1 .

3.3. Theorem. Eij
1
∼= Hi(n) as linear spaces for all j such that 0 6 j 6 dim V −1.

Proof. The main rule for calculating E1 is to replace the filtered complex with
the graded one. In our case this means to substitute the graded module Vgr in place
of the filtered module V . So Eij

1
∼= Hi(n; Vj+1/Vj) ∼= Hi(n).

Usually, the differentials dk in the spectral sequence map Eij
k to Ei+1−k,j+k

k ,
and ⊕

j
Ei−j,j
∞ is the graded module associated with the filtered module Hi. But our

method of filtration does not coincide with the standard one: here dk maps Eij
k to

Ei+1,j+k
k , and the graded module associated with Hi(n; V ) is

m−1⊕
j=0

Eij
∞ = Ei∗

∞.

3.4. The action of b on the spectral sequence
Theorem. The action of b on C∗ induces an action of b on Eij

k for all i, j, k. This
action commutes with dk and its restriction on n is trivial.

Proof. Substitution of Vgr for V means that we regard the elements of Vi−1 as
“infinitesimals” as compared with the elements of Vi. (One can use the language
of contracted representations [13], [2] to give the formal proof.) We know that
d commutes with the action of b. So it commutes “even more so” if we neglect
infinitesimals, and E∗

1 admits a b-module structure. The second of the formulas
(3.2) shows that n acts trivially on Vgr and, therefore, n acts trivially on E∗

1 (hence,
n acts trivially on E∗

k). Thus we have proved the theorem for k = 1. It remains
to regard the infinitesimals up to the k-th order as negligible ones which gives the
proof for any k.
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3.5. Main result of this section
Let hkν = dim Hk

ν (n) and let

P (t, x) =
∑

k,ν

hkν · tk · xν (3.3)

be the generating function for the graded h-module H∗(n).

Theorem. Let V be a b-n-nilmodule and Vi the terms of the corresponding filtration.
Then the generating function D(t, s, x) of the graded b-module E∗

1 = ⊕Eij
1ν is given

by the formula

DV (t, s, x) = P (t, x) ·
∑

j

sj · xµj , (3.4)

where µj is the weight of Vj+1/Vj.

Proof. Obviously, D(t, s, x) =
∑
j

sj ·Dj(t, x), where Dj is the generating function

for E∗j
1 . Now let u1 be the weight vector from E∗j

1 and u0 its representative in
E∗j

0 = (Λ∗n)′ ⊗ (Vj+1/Vj).
We see that the weights of u1 and u0 coincide, and are equal to λ = µj , where λ

is the weight of some cohomology class from H∗(n). So, by multiplying P (t, x) by
xµj , we obtain Dj(t, x). This implies (3.4).

3.6. Corollary. E∗
1 is isomorphic to H∗(n)⊗ V as h-modules.

Proof follows from the fact that the generating functions of these two h-modules
coincide.

3.7
The function D(t, s, x) is not invariant since one can consider filtration of V with

respect to different s’s. So hereafter we will suppress the parameter s and use the
function Q(t, x) = D(t, 1, x). Obviously,

QV (t, x) = P (t, x) ·AV (x). (3.5)

So Q only depends on the algebra b and module V over it.

3.8. Proposition. QV (−1, x) = GV (x).

Proof. Applying formula (2.8) to the complex C∗(n) we see that P (−1, x) =
FC(−1, x). Now it remains to use the definition of G(x) and formulas (3.1), (3.5).

Therefore, hereafter we will use the function QV instead of FV .

3.9
We will also consider the function R(x) = Q(1, x). Clearly, |R(x)| = |Q(t, x)| =

dim E∗
1 . So we see that

|GV (x)| 6 dim H∗(n; V ) 6 |RV (x)|. (3.6)

Let rν = dim E∗
1ν . Then R(x) =

∑
rν ·xν . We will call rν = rν(V ) the ν-multiplicity

of the module V , and r(V ) = max
ν

rν(V ) the multiplicity of V .
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3.10
Recall [4] that for the nilradical n of b, there exists a free resolution of the

trivial b-module such that QV (t, x) is the generating function for the corresponding
cochain complex for any V . We will only use a much simpler, trivial fact that
dim Hk

ν 6 dim Ek∗
1ν ; in particular, if Ek∗

1ν = 0, then Hk
ν = 0.

§4. The Blue Modules and the Borel-Weil-Bott Theorem

4.1
Now we will study the following question: when the inequality (2.5) becomes

equality? Let us give an appropriate definition.
A b-n-module V is a ν-blue module if

dimH∗
ν = |bν | (4.1)

and V is a blue module if it is ν-blue for all the ν.
So V is a blue module if and only if dimH∗(n;V ) = |GV |.

4.2. Proposition. Let V be a b-n-module and ν ∈ h′ a weight of V . The module
V is ν-blue if and only if Hk

ν = 0 for all even k or for all odd k.

Proof. Since bν =
∑
k

(−1)k dim Hk
ν , then V is ν-blue if and only if

∑

k

dim Hk
ν = |

∑

k

(−1)k dim Hk
ν |.

So all the nonzero terms in the right-hand side must have the same sign.

4.3. Proposition. In the above notations any of the following conditions is suffi-
cient for V to be ν-blue:

(i) Ck
ν 6= 0 for no more than one k.

(ii) Hk
ν 6= 0 for no more than one k.

(iii) dim C∗ν 6 1.
(iv) rν 6 1.
(v) dim H∗

ν 6 1.

Proof. This is an easy corollary of Proposition 4.2 since any of the conditions
(i)-(v) is stronger than the condition of Proposition 4.2.

4.4
Hereafter we will consider the situation discussed in Introduction: b is the Borel

subalgebra of some semisimple Lie algebra g, h and n are the Cartan subalgebra
and the nilradical of b, respectively. Let R+ = {αi}i∈I be the set of positive roots
of g, R− = −R+, ρ = 1

2

∑
i∈I

αi and W the Weyl group of g.

Clearly, if U is a g-module, then U is a b-n-nilmodule. So we can apply all the
previous results to U . The weights of U will be denoted by βj for j = 1, . . . ,m.

Theorem. If U is an irreducible g-module, then U is a blue b-n-module.

Proof will be given in sec. 4.5–4.8. (One can prove that any finite dimensional
g-module is blue.)
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4.5
We see that

GV (x) =
∏

i∈I

(1− x−αi) ·
m∑

j=1

xβj . (4.2)

Let us change the variables by setting π = 2ν − ρ. Then GV (x) transforms into an
equivalent function G̃V , and, clearly,

G̃V (x) =
∏

i∈I

(xαi − x−αi) ·
m∑

j=1

x2βj . (4.3)

In what follows we will operate in these new variables.

4.6. Lemma. If U = C is the trivial g-module, then

GC(x) =
∑

w∈W

(−1)l(w) · xwρ, (4.4)

where l(w) is the length of w ∈ W , see [6]. Moreover, |GC| = |W |.

Proof. One sees that the Weyl formula [7]
∏

i∈I

(xαi − x−αi) =
∑

w∈W

(−1)l(w) · xwρ (4.5)

coincides with (4.4). To prove the second statement, we must show that w1ρ 6= w2ρ
if w1 6= w2, because in this case there are |W | different monomials in the right hand
side of (4.4). But this follows from the well known fact that ρ lies strictly inside a
Weyl chamber.

4.7. Lemma. GV > |W | for any b-n-module.

Proof. Clearly, |wρ| = |ρ| for any w. So, by Lemma 4.6 the set NGC lies on the
sphere of radius |ρ| and, therefore, GC is a convex polynomial. It remains to apply
Proposition 1.2 (iii).

4.8
Now, by the BWB theorem, if U is an irreducible g-module, then dim H∗(n; U) =

|W |. With Lemma 4.7, we have:

|W | 6 GU 6 dim H∗(n; U) = |W | (4.6)

which implies that all the inequalities are equalities. So U is blue, and the proof of
Theorem 4.4 is completed.

4.9. Corollary. dim H∗(n; V ) > |W | for any b-n-module V .

Proof follows from Lemma 4.7.
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4.10
Now we can give a convenient formula for the introduced in sec. 3.5 function

P (t, x). It follows from formula (4.4) and the fact that C is a blue module that for
a function m(w) we have

P (t, x) =
∑

w∈W

xwρ · tm(w). (4.7)

Proposition. m(w) in formula (4.7) coincides with l(w).

Proof. It is well known [6] that the length of w coincides with card (wR+∩R−).
So let l = l(w) and let w{α1, . . . , αn} = {−α1,−α2, . . . ,−αl, αl+1, . . . , αn}. Then

wρ =
1
2
(−α1 − . . .− αl + αl+1 + . . . + αn).

Let us open the brackets in the left hand side of (4.5). We can get the monomial
xwρ only if we take each second summand from the first l factors, and each first
summand from all the other factors since the degree of any other monomial is less
than that corresponding to wρ with respect to the Weyl chamber containing w(ρ).
Now, consider the corresponding to G function F̃C(t, x) =

∏
(xαi +tx−αi); similarly,

if we want to get the term xwρtm, we must take each second summand from the
first l factors. Thus, we get the term xwρtl.

Finally, we obtain:

P (t, x) =
∑
w

tl(w)xwρ. (4.8)

4.11. Theorem. Let U be an irreducible g-module, ν an arbitrary weight. Then
(i) dim H∗

ν (n; U) 6 1.
(ii) H∗

ν (n;U) 6= 0 ⇐⇒ dim C∗ν (n; U) = 1. So dim C∗ν (n; U) is either even or is
equal to 1 for any ν.

(iii) Inequality (2.7) is an equality.
(iv) Let λ+ be the highest weight of U , and σ = ρ + λ+. Then the generating

function PU (t, x) :=
∑
k,ν

dim Hk
ν (n; U) · tk · xν is given by the formula

PU (t, x) =
∑

w∈W

xwσ · tl(w). (4.9)

Proof is an easy consequence of the proof of Theorem 4.4 and Proposition 4.10.

4.12
It might be useful sometimes to have an explicit formula for P (t, x) when g is

any classical simple Lie algebra. Taking W and ρ from [6] we obtain Table 1.
If g = Ar, we see that l(w) is equal to the number of inversions in the lower row

of the permutation w =
(

0 1 . . . r
i0 i1 . . . ir

)
.
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4.13
Now we can find a convenient formula for the ν-multiplicity on any b-n-module

V . Let
Mν = {(w, j) | w ∈ W, j = 1, . . . , m, wρ + βj = ν}.

Let L be the projection of Mν on {1, . . . ,m}.
Proposition. rν = card Mν = card Lν .

Proof. The first equality immediately follows from formulas (3.5) and (4.3) be-
cause R(x) = Q(1, x). Now if w1ρ + βj1 = w2ρ + βj2 and w1 6= w2, then, as we have
seen, w1ρ 6= w2ρ and so j1 6= j2. This gives the second equality.

Equivalently, we may describe rν as

rν = card {µ ∈ NAV | ν − µ = wρ for some w}.

§5. Subquotients

5.1
We will say that a module V is a subquotient of U if V is isomorphic to a quotient

module of a submodule of U (in particular, if V is a submodule or quotient module
of U). We clearly see that if V is any b-module in a b-subquotient of some g-module,
then V is a b-n-nilmodule.

Hereafter we will assume that all the modules are b-subquotients of a (usually
irreducible) g-module. Let U be a g-module, V its subquotient; then we may regard
C∗(g; U) as a g-module, and C∗(n; Ũ), E∗

1 (n; Ũ), H∗(n; Ũ), where Ũ = U or V , are
its subquotients.

5.2
In what follows the letter U will always denote some g-module and V its b-

subquotient. Let V0 ⊃ V1 be b-submodules of U such that V = V0/V1. In U , we
may find h-submodules V2 and V3, complementary to V1 in V0 and to V0 in U ,
respectively. Evidently, AV (x) = AV2(x) and V ∼= V2, as h-modules; we will identify
these modules, if necessary. We see also that the Vi are b-subquotients of U and
U ∼= V1 + V2 + V3 as h-modules; so

AU (x) = AV1(x) + AV2(x) + AV3(x). (5.1)

The number crν(V, U) = rν(U) − rν(V ) is called the ν-comultiplicity of V with
respect to U . Formula (5.1) implies that

E∗
1ν(n;U) ∼= E∗

1ν(n; V1) + E∗
1ν(n;V2) + E∗

1ν(n;V3),

so
crν(V, U) = rν(V1) + rν(V3). (5.2)

5.3. Proposition. Let U be an irreducible g-module, V its b-subquotient and ν
some weight such that rν(U) 6= 1. Then

(i) dim H∗
ν (n; V ) 6 rν(V );

(ii) dim H∗
ν (n; V ) 6 crν(V,U).
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Proof. (i) is clear, because

dim H∗
ν (n; V ) 6 dim E∗

1ν(n; V ) = rν(V ).

In particular, this means that dim H∗
ν (n; Vi) 6 rν(Vi). Now, consider the exact

sequence 0 −→ V1 −→ V0 −→ V −→ 0. The corresponding exact cohomology
sequence shows that

dim H∗
ν (n;V ) 6 dim H∗

ν (n;V1) + dim H∗
ν (n; V0). (5.3)

But the exact sequence 0 −→ V0 −→ U −→ V3 −→ 0 shows that H∗
ν (n; V0) ∼=

H∗
ν (n;V3), since H∗

ν (n;U) = 0 by Theorem 4.11 (ii). So dimH∗
ν (n;V0) 6 rν(V3) and

dim H∗
ν (n;V1) 6 rν(V1). Now it only remains to apply formulas (5.3) and (5.2).

If rν(U) = 1, then (ii) fails but we clearly see that in this case dim H∗
ν (n;V ) =

rν(V ) for any V .

5.4. Proposition. Let U , V , and ν be as in Proposition 5.3.
(i) If rν(V ) · cr(V, U) = 0, then dim H∗

ν (n; V ) = 0.
(ii) If rν(V ) or cr(V, U) is equal to 1, then dim H∗

ν (n; V ) = 1.
(iii) V is ν-blue in all the cases mentioned in (i), (ii).

Proof. Since rν(U) is even, rν(V ) and cr(V,U) are either simultaneously even
or simultaneously odd and the same is true for rν(V ) and dimH∗

ν (n; V ).
So Proposition 5.3 implies (i) and (ii). Now (iii) is a consequence of Proposition

4.3 (v).

5.5. Proposition. If U is an irreducible g-module and rν(U) 6 2, then any b-
submodule of U is ν-blue. In particular, if r(U) 6 2, then any b-submodule of U is
blue.

Proof. If rν(U) = 1, we have to apply Proposition 4.3 (iv), otherwise we can
apply Proposition 5.4 (iii), because rν(V ) 6 1 or crν(V, U) 6 1.

We see that the proposition is true if rν(U) 6 3, but such generalization is
inessential, because we know that dim E∗

1ν(n;U) is either even or is equal to 1.

5.6. Proposition. Let U be an irreducible g-module, V its b-submodule and Ṽ =
U/V . Then V is ν-blue ⇐⇒ Ṽ is ν-blue for any ν.

Proof. Let GU (x) =
∑

bνxν , GV (x) =
∑

b′νxν and GṼ =
∑

b′′νxν be the gen-
erating functions of the corresponding modules. As AU (x) = AV (x) + AṼ (x), we
easily see that G(x) = GV (x) + GṼ (x). So bν = b′ν + b′′ν . Now we have to study two
cases:

(1) If bν 6= 0, then dim C∗ν (n;U) = 1 (Theorem 4.11 (ii)), and both V and Ṽ are
ν-blue by Proposition 4.3 (ii).

(2) If bν = 0, then b′ν = |b′′ν |. But in this case H∗
ν (n, U) = 0, and the exact sequence

0 −→ V −→ U −→ Ṽ −→ 0 shows that H∗
ν (n;V ) ∼= H∗

ν (n; Ṽ ). So b′ν = dim H∗
ν (n;V )

if and only if b′′ν = dim H∗
ν (n, Ṽ ).

5.7. Proposition. Let U be an irreducible g-module, ν one of its weights, V
and Vi, i = 1, 2, 3, as in sec. 5.2. Suppose that V is ν-blue and dim H∗

ν (n; V ) >
dim H∗

ν (n;V1) + dim H∗
ν (n; V3). Then both V1 and V3 are ν-blue.
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Proof. Let GU , GV1 , GV , and GV3 be the generating functions for U , V1, V ∼= V2

and V3 respectively. Then, as earlier, bν = b′ν + b′′ν + b′′′ν = b′ν + b′′′ν ± dimH∗
ν (n; V ).

As the case bν 6= 0 is trivial, we may suppose bν = 0, so

dim H∗
ν (n; V ) = |b′ν + b′′′ν | 6 |b′ν |+ |b′′′ν | 6 dim H∗

ν (n; V1) + dim H∗
ν (n;V3).

Hence, all the inequalities are equalities and (4.1) holds for V1, V3.

5.8. Proposition. A b-n-module V is blue if and only if so is V ′. Moreover, r(V ) =
r(V ′).

Proof. By formula (1.6) the generating functions corresponding to V and V ′ are

GV (x) = P (−1, x) ·AV (x) and GV ′(x) = P (−1, x) ·AV (x−1).

So we can change variables x 7→ x−1 and write:

|GV ′(x)| = |P (−1, x) ·AV (x−1)| = |P (−1, x−1) ·AV (x)|.
But P (−1, x) = GC(x) =

∏
(xαi − x−αi), so we easily see that P (−1, x−1) =

±P (−1, x). Therefore GV ′(x−1) = ±GV (x) and so |GV ′ | = |GV |. On the other hand,
it is well known that (H∗(n; V ))′ ∼= H∗(n;V ′) so dim H∗(n; V ) = dim H∗(n; V ′). The
rest is clear.

Problem. Is it true that if V is ν-blue, then V ′ is ν-blue?

In the rest of the paper we will use the methods developed above to calculate
certain cohomology.

§6. The adjoint representation of n is blue for g = Ar

This section is devoted to the proof of the following theorem:

6.1. Theorem. Let g = Ar and n the nilradical of its Borel subalgebra b. Then n,
the adjoint n-module, is blue.

Proof will be given in sec. 6.2–6.9.

6.2
Recall that for Ar = sl(r+1) we have: b is the algebra of upper triangular matri-

ces, h the algebra of diagonal matrices and n the algebra of strictly upper triangular
matrices. We use the natural coordinates: if h ∈ h, then h = diag(h0, . . . , hr) with∑

hi = 0; let ν = (ν0, . . . , νr) be the dual coordinates on h′. So ν has r + 1 coordi-
nates instead of r but such coordinates are more convenient.

We begin with a technical lemma. Let Ur+1 be the standard representation of g
in the (r + 1)-dimensional space.

Lemma. r(Ur+1) = 2.

Proof. Obviously, the weights of Ur+1 are βj = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in
the jth slot. Set xβj = xj . Using Table 1, we obtain:

RUr+1(x) =
∑

x0
i0 . . . xr

ir
(x0 + x1 + . . . + xr). (6.1)
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Simplifying, we get

RUr+1(x) =
∑

x0
i0 . . . xr−1

ir−1
xr+1

ir
+2

∑

06k6r−1; ik<ik+1

x0
i0 . . . xk−1

ik−1
xk+1

ik
xk+1

ik+1
xk+2

ik+2
·. . .·xr

ir
.

So max
ν

rν(Ur+1) = 2.

6.3
According to Propositions 5.5 and 5.4, we have:

Corollary. Any b-subquotient Ur+1 is a blue module. Moreover, if V is a subquo-
tient of Ur+1 and rν(V ) = 2, then H∗

ν (V ) = 0.

6.4
Now, let us return to the module n. We will have to consider also the modules

g and b, and the modules b− = g/n, n− = g/b and h = b/n. Obviously, g is an
irreducible g-module and all the other modules are its subquotients. We have also
the isomorphisms of h-modules:

g ∼= n− ⊕ h⊕ n, b = h⊕ n, b− ∼= n− ⊕ h.

We see from formula (1.4) that it suffices to find the generating functions for n−, h,
and n.

The only weight of h is zero, so xν = 1.
Now, if ν is a weight of n or n−, then xν = xix

−1
j for i 6= j, and ν is the weight

of n if and only if i > j, see [7]. Hence,

An(x) =
∑

i>j

xix
−1
j ; (6.2)

Ah(x) = r; (6.3)

An−(x) =
∑

i>j

x−1
i xj = An(x−1). (6.4)

Now, consider the functions RV (x) for V ∈ {g, n, h, n−}. Recall that Lν = {j | ν =
wρ + βj} for any ν (Proposition 4.13), or, equivalently, xwρxβj = xν . We know
(Table 1) that xwρ = x0

i0
. . . xr

ir
and either xβj = xkx−1

1 or xβj = 1. Multiplying
these, we obtain the following monomials:

1) x0
i0

x1
i1

. . . xr
ir

.
2) x−1

i0
x1

i1
. . . xr−1

ir−1
xr+1

ir
.

3) x0
i0

. . . xk−1
ik−1

xk
ik

xk
ik+1

xk+2
ik+2

. . . xr−1
ir−1

xr+1
ir

for 0 6 k 6 r − 2.
In what follows, for brevity, we will not write explicitly the “normal” factors, i.e.,

factors xk
ij

with k = j.
4) x−1

i0
. . . xk+1

ik
xk+1

ik+1
. . . for 1 6 k 6 r − 1.

5) . . . xk
ik−1

xk
ik

xk
ik+1

. . . for 1 6 k 6 r − 1.
6) . . . xk

ik−1
xk

ik
. . . xl

il
xl

il+1
. . . for 1 6 k 6 r and 0 6 l 6 r − 1 such that {k −

1, k} ∩ {l, l + 1} = ∅.
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It is important to note that in cases 3, 4 we can assume that ik < ik+1; similarly,
in case 5 we will assume ik−1 < ik < ik+1 and in case 6 that ik−1 < ik and ll < il+1.
We do not assume that k < l.

6.5
Let us study the ν-multiplicity of the above mentioned modules for any ν of

types 1− 6.
1) One can obtain the monomial x0

i0
. . . xr

ir
by multiplying the same monomial

by 1 for V = h or by multiplying . . . xk
ik+1

xk+1
ik

. . . by xik+1x
−1
ik

(here 0 6 k 6 r − 1
and V is isomorphic to n if ik+1 > ik or n− otherwise). It follows that rν(h) = r
and rν(n−) + rν(n) = r. Since dim H∗

ν (n) = 1 and h ' C⊕ · · · ⊕ C, as b-module, it
follows that dim H∗

ν (n; h) = r dim H∗
ν (n) = r. Now Proposition 5.7 shows that both

n and n− are ν-blue.
Clearly, if ν is of types 2− 6, then rν(h) = 0.
Now, let Xν = {xβ |∈ β ∈ Lν}. Hence, we have a one-to-one correspondence

between Lν and Xν (this does not hold for h, because the multiplicity of the weight
zero is greater than 1), so rν(V ) = card Xν , where ν is of types 2-6 and V ∈
{n, n−, g}.

2)x−1
i0

. . . xr+1
ir

= x0
i0

. . . xr
ir

(x−1
i0

xir ). Obviously, this is the only way to get this
monomial; so Xν = {x−1

i0
xir}, and rν(g) = 1.

3) Clearly, . . . xk
ik

xk
ik+1

. . . xr+1
ir

can be obtained by multiplying xwρ by x−1
ik

xir or
by x−1

ik+1
xir . So rν(g) = card {x−1

ik
xir , x−1

ik+1
xir} = 2.

4) is similar to 3). So Xν = {x−1
i0

xik
, x−1

i0
xik+1}, and rν(g) = 2.

5) Here Xν = {x−1
j1

xj1}, where j1, j2 ∈ {ik−1, ik, ik+1}. So rν(g) = card Xν = 6.
6)Xν = {x−1

j1
xj1}, where j2 ∈ {ik−1, ik} and j1 ∈ {il, il+1}. So rν(g) = 4.

6.6. Lemma. n is ν-blue if ν is of types 1− 4.

Proof. Lemma was already proved for ν of type 1. For the types 2 − 4 it is a
corollary of Proposition 5.5.

6.7
We have not yet proved the theorem for the types 5 and 6. Here we will deal

with type 5.
Let xν = . . . xk

ik−1
xk

ik
xk

ik+1
. . ., where ik < ik < ik+1. If xν = xwρxβ , then there

are three weights β which belong to n:
1) xβ = x−1

ik−1
xik

;
2) xβ = x−1

ik
xik+1 ;

3) xβ = x−1
ik−1

xik+1 .
Thus, xwρ is, respectively,

. . . xk−1
ik

xk
ik+1

xk+1
ik−1

. . . (6.5)

. . . xk−1
ik+1

xk
ik−1

xk+1
ik

. . . (6.6)

. . . xk−1
ik+1

xk
ik

xk+1
ik−1

. . . (6.7)
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Let s be the number of inversions in the transposition (i0 . . . ir). Then
(i0 . . . ikik+1ik−1 . . . ir) has s + 2 inversions. So if xwρ is given by (6.5), then l(w) =
s + 2. Similarly, l(w) = s + 2 for (6.6) and l(w) = s + 3 for (6.7). This means that
dim Es+2,∗

1ν (n; n) = 2 and dim Es+3,∗
1ν (n; n) = 1. So there are two possibilities:

either dim Hs+2
ν (n; n) = 2 and dim Hs+3

ν (n; n) = 1;
or dim Hs+2

ν (n; n) = 1 and dim Hs+3
ν (n; n) = 0.

But similar considerations show that dim E1,∗
1ν (n; n−) =





2 if l = s + 1,

1 if l = s,

0 if l 6= s, s + 1.

In particular, Es+2,∗
1ν (n; n−) = 0 and so Hs+2

ν (n; n−) = 0. Since E∗
1ν(n; h) = 0, we

have Hs+2
ν (n; b−) = Hs+2

ν (n; n−) = 0.
Now it remains to use the exact sequence

0 −→ n −→ g −→ b− −→ 0.

We see that H∗
ν (n; g) = 0 because rν(g) = 6 6= 1, and the corresponding cohomology

sequence

. . . −→ Hs+2(n; b−) −→ Hs+3
ν (n; n) −→ Hs+3

ν (n; g) −→ . . .

shows that Hs+3
ν (n; n) = 0. Thus, the case 2) takes place and

dim H∗
ν (n; n) = dim Hs+2

ν (n; n) = 1. (6.8)

Hence, n is ν-blue by Proposition 4.3 (v).

6.8
Finally, let ν be of type 6, x = . . . xk

ik−1
xk

ik
. . . xl

il
xl

il+1
. . .. We have to study 6

subcases:

(a) ik−1 < ik < il < il+1 (d) il < ik−1 < ik < il+1

(b) ik−1 < il < ik < il+1 (e) il < ik−1 < il+1 < ik
(c) ik−1 < il < il+1 < ik (f) il < il+1 < ik−1 < ik

Recall that we have assumed that il < il+1, ik−1 < ik. The elements of

Xν = {xik−1x
−1
il

, xik
x−1

il
, xik−1x

−1
il+1

, xik
x−1

il+1
}

belong partly to Xν(n) and partly to Xν(n−), namely:
(a) all the weights belong to n−, so rν(n) = 0, and rν(n−) = 4.
(b) ν belongs to n if and only if x = xik

x−1
il

; the remaining three weights belong
to n− and so rν(n) = 1, while rν(n−) = 3.

(c) Xν(n−) = {xik
x−1

il
, and xik

x−1
il+1

}; hence, rν(n) = 2, and rν(n−) = 2.
(d) Xν(n−) = {xik

x−1
il

, and xik−1x
−1
il+1

}, hence, rν(n) = rν(n−) = 2.
The cases (e) and (f) are opposite to (b) and (a), respectively, so we have:

(e) rν(n) = 3 and rν(n−) = 1 (f) rν(n) = 4 and rν(n−) = 0.

Clearly, rν(n−) = crν(n; g). So, by Proposition 5.4, n is ν-blue in cases (a), (b),
(e) and (f).
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6.9
It remains to study cases 6(c), 6(d). Let ν be of type 6(c). The corresponding to

Xν(n) eigenvectors in n are the elementary matrices Eikil
and Eikil+1 .

Now let Vj be the b-submodule of n which consists of matrices with first j rows
zero and Ṽj = Vj−1/Vj . We may identify this subquotient with the linear space of
matrices with all the rows zero, except the jth row. So this n-module is isomorphic
to U ′

r+1, cf. sec. 6.2. To demonstrate the b-isomorphism of these modules, one has
to add the constant weight λ such that xλ = xj .

We see that rν(n) = rν(Ṽik
) = 2. Obviously, Lemma 6.2 holds for the dual

module U ′
r+1, so H∗

ν (n; Ṽik
) = 0. Since dimE∗

1ν(n; n) = dim E∗
1ν(n; Ṽik

), they are
isomorphic. So H∗

ν (n; n) = H∗
ν (n; Ṽik

) = 0, and n is ν-blue.
Similar arguments (take columns instead of rows) show that n is ν-blue if ν is of

type 6(d).
Thus, we proved Theorem 6.1 for all the ν.

6.10. Corollary. b-n-modules b, n−, and b− are blue.

Proof. As follows from (6.4), n− is isomorphic to n′, b− is isomorphic to g/n,
and n− ∼= g/b. Now apply Propositions 5.6, 5.8.

§7. Dimensions of the cohomology with the coefficients in the
adjoint module

7.1
In §§7 and 8 we still assume that g = Ar and preserve the notations of the

previous sections. We will also need many new notations: for any w =
(

0 . . . r
i0 . . . ir

)

set
h1(w) = |{j | ij < ij+1}|;
h2(w) =

{
1 if i0 < ir,

0 if i0 > ir;
h3(w) = |{j | ij < ir < ij+1}|;
h4(w) = |{j | ij < i0 < ij+1}|;
h5(w) = |{j | ij−1 < ij < ij+1}|;
h6(w) = |{(k, l) | ik−1 < il < ik < il+1}| = |{(k, l) | il < ik−1 < il+1 < ik}|.

(7.1)
Further, for any N ∈ {1, . . . ,6} set hN =

∑
w∈W

hN(w).

Finally, let Wl = {w ∈ W | l(w) = l}, and denote: hN(l) =
∑

N∈Wl

hN(w). For

l < 0 set hN(l) = 0.

7.2. Theorem. dim H∗(n; n) = h1 + h2 + h3 + h4 + h5 + 2h6.

7.3. Theorem.
dim Hk(n; n) = h1(k − 1) + h2(k) + h3(k − 1)+
h4(k − 1) + h5(k − 2) + h6(k − 2) + h6(k − 1).
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7.4. Proof of Theorems 7.2, 7.3
Consider, for example, type 1. If

xν = x0
i0 . . . xr

ir
= xj · x−1

k · xwρ, where xβj = xj · x−1
k ∈ n,

then, as we have seen, j = is+1, k = is and j > k. So w ∈ Wl+1 for all j, k, and
the number of admissible pairs (j, k) is equal to the number of indices s such that
is+1 > is, i.e., to h1(w). So we see that

∑
ν

dim H∗
ν , where ν runs over type 1 vectors,

is equal to h1. If we want to find
∑
ν

dim Hk
ν , we must take l + 1 = k, so w ∈ Wk−1.

Similar considerations for other types lead us to Table 2. Theorems 7.2, 7.3 are
its direct consequences.

7.5
We have subdivided the set of weights into several subsets according to their

types. Set H∗
N = ⊕

ν∈N
H∗

ν for any type N from Table 2. Let us find dim H∗
N.

1) for w =
(

0 . . . r
i0 . . . ir

)
, set w̄ =

(
0 1 . . . r
ir ir−1 . . . i0

)
. Then, clearly, h1(w̄) =

r − h1(w). Since the map w 7→ w̄ is a one-to-one,

h1 =
∑

w∈W

h1(w) =
∑

w∈W

h1(w̄) =
∑

w∈W

(r − h1(w)) = r · |W | − h1;

hence,

dim H∗
1(n; n) = h1 =

1
2
r · (r + 1)! (7.2)

2) Clearly, i0 < ir in the half of the cases, hence,

dim H∗
2(n; n) = h2 =

1
2
|W | = (r + 1)!

2
(7.3)

3) Let us fix j. Then |{w | ij < ir < ij+1}| = 1
6 |W |. So dim H∗

3 = h3 is equal to
the sum of such numbers for all j such that 1 6 j 6 r − 1. Hence,

dim H∗
3(n; n) = h3 =

∑

16j6r−1

|W |
6

=
(r − 1)

6
· (r + 1)! (7.4)

4),5) Obviously h3 = h4 (moreover, h3(k) = h4(k) for any k), hence,

dim H∗
4(n; n) = h4 =

(r − 1)
6

· (r + 1)! (7.5)

The same formula is true for H5:

dim H∗
5(n; n) = h5 =

(r − 1)
6

· (r + 1)! (7.6)

because in all the cases 3− 5 we have to order 3 indices in the transposition.
6) Similarly, fix k and l. Then there are 1

24 |W | transpositions which satisfy the
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condition ik−1 < il < ik < il+1. So

dim H∗
6(b) =

∑

(k,l)

|W |
24

= dim H∗
6(e).

There are (r − 1) · (r − 2) pairs (k, l) such that {k − 1, k} ∩ {l, l − 1} = ∅. So

dim H∗
6(n; n) = 2h6 =

(r − 1)(r − 2)
12

(r + 1)! (7.7)

7.6. Theorem. dim H∗(n; n) = 1
12 (r2 + 9r + 2)(r + 1)!.

Proof: formulas (7.2)–(7.7).

7.7
From Theorem 7.3 one can deduce dim Hk(n; n) for small k:

Theorem.

dim Hk(n; n) =





1 if k = 0 and r > 0
2r if k = 1 and r > 1
(3r2 + 3r − 4)/2 if k = 2 and r > 2
2
3r3 + 2r2 − 11

3 r − 1 if k = 3 and r > 3

If r = 2, then dim H2 = 5, dim H3 = 2. If r = 3, then dim H3 = 21.

Proof of this theorem also consists in studying different types of transpositions
with 1, 2 or 3 inversions. It is trivial, but cumbersome, so we omit it.

§8. The behavior of h(r, k) = dim Hk(n; n) as a function of k and
r = rkg

8.1. Theorem. If k is fixed and r is sufficiently great, then for some rational in k
functions cl(k) we have

h(r, k) =
∑

06l6k

cl(k) · rk−1. (8.1)

Proof will be given in sec. 8.2–8.8. In sec. 8.2–8.6 we fix a permutation w =(
0 . . . r
i0 . . . ir

)
. Let l = l(w) and X = {0, 1, . . . , r}.

8.2

Let σi =
(

0 . . . i− 1 i . . . r
0 . . . i i− 1 . . . r

)
, where i = 1, . . . , r, be the standard

generators of W . By definition of length, w is a product of l generators: w =
σi1σi2 . . . σil

. Let K = {i1, . . . , il}. Let us subdivide K into subsets K1, . . . , Km so
that

(i) if |ia − ib| 6 1 (in particular, if ia = ib), then ia, ib belong to the same Kj ;
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(ii) if on the contrary, there is an integer i such that ia < i < ib and none of ij
is equal to i, then ia and ib belong to distinct sets Kj .

Clearly, (i) and (ii) define the subsets Kt uniquely, up to permutation. It is well
known that if i and j belong to distinct sets Kt, then σiσj = σjσi. Thus we can
write

w = w1w2 . . . wm, (8.2)

where wj is the product of the generators which belong to Kj . Such a representation
of w is a canonical one, and wiwj = wjwi for all i, j.

8.3
Let us fix j and consider Kj and the corresponding permutation wj . If follows

from the definition of Kj that there exist integers k < l such that Kj contains σi

(perhaps, more than once) if and only if k < i 6 l and the segments [k, l] have no
common elements for distinct sets Kj . We will call Bj = {k, k + 1, . . . , l} the block
corresponding to Kj . One easily sees that Bj is w-invariant and that

wj(i) =

{
w(i) if i ∈ Bj

i if i 6∈ Bj

. (8.3)

So w and wj give the same permutation of {k, . . . , l}. Let us denote by wB the
corresponding permutation of {0, . . . , l − k}; so

wB =
(

0 . . . l − k
ik − k . . . il − k

)
. (8.4)

8.4. Lemma. Let B1, . . . , Bm be the blocks of w, then
i) l(wBj ) > 1

2cardBj for any j.
ii) l(w) =

∑
16j6m

l(wBj ).

Proof. Since w = σi1 . . . σil
is a minimal representation of w as the product of

generators, we easily deduce that i ∈ X belongs to some block if and only if i forms
an inversion with some i1 from the same block. This gives us (i).

Now, the elements of distinct blocks do not form inversions, and the number of
inversions in the restriction of w onto B and in wB coincide. This implies (ii).

8.5. Lemma. Let B1, . . . , Bm be the blocks of w, and rj = cardBj. Then

h1(w) = r + m−
∑

16j6m

rj +
∑

16j6m

h1(wBj ). (8.5)

Proof. Let Z = {j | ij < ij+1}, so h1(w) = |Z|. Let Z1 = X\ ∪ Bj and let Z2

be the set of last elements of blocks: i ∈ Z2 if and only if there exists a Bj equal to
{k, . . . , i}. Then, clearly

|Z1| = r + 1−
∑

16j6m

rj , |Z2| = m, Z1 ∩ (Z ∪ Z2) = (Z1 ∪ Z2)\{r} (8.6)
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and it is always true that r ∈ Z1 ∪ Z2. Finally, let i ∈ Z, i 6∈ Z1 ∪ Z2. Then i and
i + 1 belong to some block B = {k, . . . , l}. So

|Z1\(Z ∪ Z2)| =
∑

B

h1(wB). (8.7)

Now (8.5) is a direct consequence of (8.6) and (8.7).

8.6
We can get similar formulas for functions h2(w), . . . , h6(w); for example, we

see that if r > 2l, then h2(w) = 1. We won’t need the exact formulas, so we shall
formulate the corresponding result as follows.

Call B a block of type 1 if B 3 0, of type 2 if B 3 r or of type 3 if 0, r 6∈ B,
respectively. (Lemma 8.4 (i) implies that if r > 2l, then B cannot simultaneously
contain 0 and r.) Let Ω be the set of all the wB for given types of blocks. We will
say that Ω is a structure on the Weyl group W , and that w is a permutation of the
structure Ω.

Lemma. In what follows the ci depend only on Ω and do not depend on w or r:

h2(w) = c2 = 1, h3(w) = c3, h4(w) = c4, h5(w) = r + c5, h6(w) = c6.
(8.8)

Proof is similar to that of Lemma 8.5, and we omit it.

Note, however, the difference between h1, h5 and the other four functions. This
difference is due to the fact that if i 6∈ ∪Bj , then the inequalities ii < ii+1 and
ii−1 < ii < ii+1 hold, and other inequalities in formulas (7.1) do not hold.

8.7
Let Ω be a structure on W , and W (r,Ω) the set of all permutations of {0, . . . , r}

with the given structure Ω. We will consider f(r,Ω) = |W (r,Ω)| as a function of
r,Ω for a fixed Ω.

Lemma. f(r,Ω) =
∑

16k6N

αkrk, where αN 6= 0 and N is equal to the number of

blocks of type 3 in Ω.

Proof. First, suppose, that Ω = {w1, . . . , wm}, all the wi are of type 3, and no
two pairs of them coincide. Then there is a one-to-one correspondence between the
permutations of the structure Ω and the arrangements of the sets B1, . . . , Bm of
given lengths a1, . . . , am from {1, . . . , r − 1}. It is well-known that the number of
such arrangements is equal to

(r − 1 + m−∑
j

aj)!

(r − 1−∑
j

aj)!
. (8.9)

So it is a polynomial in r of degree m.
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If we have blocks of type 1 or 2, then their places are fixed, and we have to place
the remaining blocks. So f(r,Ω) is still a polynomial in r whose degree is equal to
the number of blocks of type 3.

Finally, if w1 = w2 = . . . = wb1 , wb1+1 = . . . = wb1+b2 , and so on, we have to
divide (8.9) by

∏
i

(bi)!.

8.8
Now we are ready to finish the proof of the theorem. Let Ψl be the set of all

structures with l inversions. Lemma 8.4 shows that Ψl is finite and does not depend
on r if r is sufficiently large. We know (Lemmas 8.5, 8.6) that the functions hi(w)
depend only on Ω, i.e., hi(w) = hi(Ω).

So we may rewrite Theorem 7.3 so that every summand in it takes the form

hi(l) =
∑

Ω∈Ψl

hi(Ω)f(t, Ω). (8.10)

Every summand is a polynomial and their number does not depend on r. Applying
Theorem 7.3 we complete the proof.

8.9. Theorem. Let cl(k) be the coefficients in (8.1). Then (k − l)! · cl(k) is a
polynomial in k.

Proof. It is clear from formulas (8.10), (8.9), that k! · cl(k) is a polynomial. But
if l > k then the term of degree k − l vanishes, so cl(k) = 0.

8.10
Let us find c0(k). Clearly, we must consider only two terms in Theorem 7.3:

dim Hk(n; n) =
∑

Ω∈Ψl

f(r,Ω) · h2(Ω) +
∑

Ω∈Ψl

f(r,Ω) · h1(Ω) + . . . (8.11)

because the degrees of the terms denoted by dots are < k. We know, that h2(Ω) = 1
and h1(Ω) = r+C. Hence, the terms in (8.11) have degree k if and only if Ω consists
of the maximal number of blocks (k for the first term and k− 1 for the second one,
respectively).

But then every block has only one inversion, so Ω =
((

0 1
1 0

)
, . . . ,

(
0 1
1 0

))

and |Ω| is equal to k or k − 1. Then

f(r,Ω) =
(

r − |Ω|+ 1
|Ω|

)
=

r|Ω|

|Ω|! + . . . . (8.12)

So

c0(k) =
1
k!

+
1

(k − 1)!
=

1
k!
· (k + 1). (8.13)

8.11
Using the same method, one can prove that

c1(k) =
1

(k − 1)!
· k2 − 1

2
; c2(k) =

1
(k − 2)!

· 3k3 − k2 − 92k + 116
24

. (8.14)
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For example,

dim H3(n; n) =
4
3!

r3 +
4
2!

r2 − 88
24

r + . . .

which coincides with Theorem 7.7;

dim H4(n; n) =
5
24

r4 +
5
4
r3 − 19

6
r2 + . . .

§9. Some other results and problems

9.1
The most natural generalization of the problems solved in this paper is to study

g 6= Ar. I also studied the other classical algebras and G2. Their study is much more
complicated then that of Ar because one has to consider more cases. The values of
|Gn| are given in Table 3.

Moreover, I know, that dim H∗(n; n) = |Gn| in all these cases except g = Dr.
The main difficulty is that a straightforward analogue of Lemma 6.2 fails for Dr

(see below).

Problem. Calculate dim H∗(n; n) for g = Dr as well as for the exceptional alge-
bras.

9.2
Now let us discuss other modules. The classical Lie algebras Ar, Br, Cr, Dr have

standard (identity) representations, whose dimensions are r + 1, 2r + 1, 2r and 2r,
respectively. Their multiplicities (see 3.9) are equal to 2 for the types A, B, C and
4 for the type D. We will analyze these representations elsewhere; here I only give
the main result. For simplicity we assume g = Ar, the same results hold for the
types B and C.

Let v0, . . . , vr be the standard basis of Ur+1. Then all the b-submodules are
generated by Vi = Span(vi, vi+1, . . . , vr) for 0 6 i 6 r. Let Vij = Vi/Vj+1; clearly,
dim Vij = j + 1− i. Set l = dim Vij . Then

dim H∗(n;Vij) = |W | · l(r + 2− l)
r + 1

(9.1)

and dim Hk(n; Vij) for a fixed k does not depend on i, j, l if i > k, l > k, r− j > k.
This dimension is a polynomial in r and its degree is equal to k.

It is worth to note that dim H∗ grows as |W | ·dim V as r −→∞ and the growth
of dim Hk is a polynomial one. Moreover, dim H∗ has a single formula for all r,
great and small, whereas dim Hk has such formula only for sufficiently large r.

9.3
Finally, Table 4 gives dim H(n; Λ∗n) for different types of g.

Problem. Study the growth of dim H(n; Λ∗n) as r −→ ∞ for various series of
matrix algebras g; first, for g = Ar.
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Table 1

g ρ P (t, x)

Ar (1 2 . . . r)
∑

x0
i0

x1
i1

. . . xr
ir

tl(w)

Br ( 1
2

3
2

5
2 . . . 2r−1

2 )
∑

x
±1/2
i1

. . . x
±(2r−1)/2
ir

tl(w)

Cr (1 2 3 . . . r)
∑

x±1
i1

. . . x±r
ir

tl(w)

Dr (0 1 2 . . . (r − 1))
∑

x0
i1

x±1
i2

. . . x
±(r−1)
ir

tl(w)

Table 2

ν DimEk∗
1ν for different k H∗

k = l k = l + 1 k = l + 2 k = l + 3

I 0 hI(w) 0 0 dim H l+1 = hI(w)

II (a) i0 < ir 1 0 0 0 dim H l = 1

(b) i0 > ir 0 0 0 0 H∗ = 0

III (a) ij < ij+1 < ir 1 1 0 0 H∗ = 0

(b) ij < ir < ij+1 0 1 0 0 dim H l+1 = 1

(c) ir < ij < ij+1 0 0 0 0 H∗ = 0

IV (a) i0 < ij < ij+1 1 1 0 0 H∗ = 0

(b) i0 < ij < ij+1 0 1 0 0 dim H l+1 = 1

(c) i0 < ij < ij+1 0 0 0 0 H∗ = 0

V 0 0 2 1 dim H l+2 = 1

VI (a) 0 0 0 0 H∗ = 0

(b) 0 0 1 0 dim H l+2 = 1

(c) 0 1 1 0 H∗ = 0

(d) 0 1 1 0 H∗ = 0

(e) 0 2 1 0 dim H l+1 = 1

(f) 1 2 1 0 H∗ = 0
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Table 3

g Ar Br Cr Dr G2

1
|W | |Gn| r2 + 9r + 2

12
2r2 + 10r − 1

12
2r2 + 8r + 3

12
2r2 + 7r + 3

12
34

Table 4

g A1 A2 A3 B2 G2

dim H∗(n; Λ∗n) 4 36 600 68 220

References
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