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ON THE CLASSIFICATION OF MOORE ALGEBRAS AND
THEIR DEFORMATIONS
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(communicated by James Stasheff)

Abstract
In this paper we will study deformations of A∞-algebras.

We will also answer questions relating to Moore algebras which
are one of the simplest nontrivial examples of an A∞-algebra.
We will compute the truncated Hochschild cohomology of odd
Moore algebras and classify them up to a unital weak equiva-
lence. We will construct miniversal deformations of particular
Moore algebras and relate them to the universal odd and even
Moore algebras. Finally we will conclude with an investigation
of formal one-parameter deformations of an A∞-algebra.

1. Introduction

The notion of an A∞-algebra, first introduced in [12] by Stasheff, is much the
same as that of an ordinary DGA (differential graded algebra), except that it pos-
sesses extra structure in the form of higher multiplications. It is this extra structure
however that proves to be useful when it comes to making explicit computations. In
section 2 I shall briefly introduce the notion of an A∞-algebra and define its trun-
cated Hochschild cohomology which is formed as the cohomology of a truncated
Hochschild complex. Further details on A∞-algebras and Hochschild cohomology
can be found in [8] and [6].

The first examples of Moore algebras were seen in Kontsevich’s paper [7] where
they were related to Morita-Miller-Mumford classes in the cohomology of moduli
spaces of algebraic curves. Moore algebras were introduced in their full generality
in [8] by Lazarev, where some results for even Moore algebras were presented. In
this paper I shall present some results for odd Moore algebras and deformations of
Moore algebras in general. Moore algebras will be introduced in section 2 but the
reader should refer to [8] for a more detailed description.

Throughout the rest of this paper we will be working over an evenly graded and
commutative ring R. A Moore algebra of degree d is a (unital) A∞-structure on the
R-module,

A := Σd+1R⊕R
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which consists of a generator 1 in degree 0 and a generator y in degree d + 1. This
has an underlying two cell complex of the form ΣdR → R. A Moore algebra is then
even (odd) if d is even (odd). An A∞-structure on A is determined by a coderivation
m on the tensor coalgebra TΣA such that m2 = 0 (cf. [8], [6]). Remarkably, in the
case of Moore algebras, the condition m2 = 0 places no restrictions on our choice
of coderivation (cf. [8]).

In section 3 I shall present the classification result for odd Moore algebras. The
result is similar to that obtained in the even case in [8], although there is no initially
apparent reason as to why this should be so. In section 4 I shall calculate the
truncated Hochschild cohomology of odd Moore algebras, the even case having been
treated already in [8]. The problem of calculating the Hochschild cohomology of
odd Moore algebras was posed in [8] by Lazarev. The classification result in section
3 allows us to transform the odd Moore algebra to one in which the truncated
Hochschild cohomology is easier to compute.

Deformation theory for associative algebras was first developed in [3] by Ger-
stenhaber and the deformation theory for A∞-algebras can be seen as a direct
generalisation of this. In section 5 I shall describe the deformation theory for A∞-
algebras analogous to that of [1], [2] and [9]. Essentially this involves deforming the
A∞-structure (a derivation on the cobar construction) according to the methods
of [5]. In [9] the link between truncated Hochschild cohomology and deformation
theory was made and this link will provide the motivation for section 6.

In section 6 I shall describe the “miniversal” deformations of the “trivial” Moore
algebra R[X]/X2 which is the Moore algebra that corresponds to the coderivation
which sends [y]⊗i to 0. According to [11], universal deformations correspond to the
pro-representability of a certain functor whilst miniversal deformations correspond
to the hull of that functor, however, the approach taken in this paper will be slightly
different.

In section 7 we will look at formal one-parameter deformations of A∞-algebras
and discuss some of the theory involved. The theory of formal one-parameter defor-
mations of an A∞-algebra is closely related to its truncated Hochschild cohomology.
This theory was first presented in the context of ordinary DGA’s by Gerstenhaber
and Wilkerson in [5]. The corresponding theory for A∞-algebras was developed by
Penkava and Weldon in [10] and Penkava and Fialowski in [2] (although Penkava
and Fialowski did not explicitly consider one-parameter deformations). Whilst this
section contains some results not seen in [10] and [2] which are analogues of re-
sults contained in [5], it is hoped that by simply translating the material into the
language of the cobar construction, the ideas involved will stand out more clearly.

Acknowledgement: The author would like to thank Andrey Lazarev for his advice
and assistance which was instrumental to the completion of this work. The author
would also like to thank Murray Gerstenhaber for a helpful consultation.

2. A∞-Algebras and Truncated Hochschild Cohomology

In this section I shall briefly introduce the notion of an A∞-algebra and a Moore
algebra and define its truncated Hochschild cohomology.
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Definition 2.1. A unital A∞-algebra is a free graded module A defined over an
evenly graded and commutative ring R which has an R-basis {1, yi i ∈ I}. An A∞-
structure on A is then a continuous derivation of degree −1 on the R-algebra of
formal power series R〈〈τ, t1, t2, . . .〉〉 whose square is zero. The generators {τ, t} =
τ, t1, t2, . . . have degrees |τ | = −1, |ti| = −|yi|−1. Define the map adτ by adτ(x) :=
[τ, x], then a unital A∞-structure is a derivation of the form,

m = A(t)∂τ +
∑

i∈I

Bi(t)∂ti + adτ − τ2∂τ (2.1)

such that m2 = 0 and the power series A(t), Bi(t), i ∈ I have vanishing constant
terms. In this paper we will only be considering unital A∞-algebras.

Definition 2.2. Suppose we have two A∞-algebras A and A′ with A∞-structures
m and m′ respectively. An A∞-morphism of A into A′ is a continuous morphism
of R-algebras f : R〈〈τ ′, t′〉〉 → R〈〈τ, t〉〉 of degree 0 such that mf = fm′. Such a
morphism is determined by its action on the generators and is therefore given by a
collection of power series (G(τ, t), F1(τ, t), F2(τ, t), . . .):

τ ′ 7→ G(τ, t)
t′1 7→ F1(τ, t)
... 7→ ...

A unital A∞-isomorphism f is specified by a collection of power series with vanishing
constant terms (τ +G(t), F1(t), F2(t), . . .) such that mf = fm′. In addition the col-
lection F (t) = (F1(t), F2(t), . . .) determines a map F : R〈〈t〉〉 → R〈〈t〉〉 which must
be invertible. In this paper we will only be considering unital A∞-isomorphisms.

Remark 2.3. There is an alternative definition of an A∞-algebra in terms of a
collection of higher multiplications mi : A⊗i → A, i > 1. The condition m2 = 0
above translates to imposing certain restrictions on the mi’s, one of which is that the
map m1 is a graded derivation with respect to the multiplication m2 and that m1

gives A the structure of a differential graded module. An A∞-morphism is similarly
given by a collection of maps fi : A⊗i → A′, i > 1 satisfying certain conditions, one
of which is that f1 : A → A′ is a map of differential graded modules with respect to
the differential m1. This morphism of A∞-algebras is an isomorphism if and only
if f1 is an isomorphism. A morphism of A∞-algebras is called a weak equivalence
if f1 induces an isomorphism in the homology of the differential graded modules A
and A′.

This alternative definition derives from the fact that R〈〈τ, t〉〉 is the R-linear dual
to the tensor coalgebra TΣA. Continuous derivations of R〈〈τ, t〉〉 are in one to one
correspondence with coderivations of TΣA which in turn are specified by the maps
mi : A⊗i → A (cf. [8]).

Definition 2.4. A Moore algebra is an A∞-algebra with an underlying module
structure A := Σd+1R ⊕ R. The algebra is even (odd) if d is even (odd). This
algebra has a basis 1, y where |y| = d + 1 and |1| = 0. An A∞-structure is then a
continuous derivation m of R〈〈τ, t〉〉, where |τ | = −1 and |t| = −(d+2). Remarkably
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the condition m2 = 0 places no restrictions on the choice of derivation. This means
that even Moore algebras are characterised by formal power series u(t) ∈ R[[t]] of
degree −2;

m =
∞∑

i=1

uit
i∂τ + adτ − τ2∂τ (2.2)

whilst odd Moore algebras are characterised by pairs of formal power series v(t), w(t) ∈
R[[t]] of degree −(d + 3) and −2 respectively;

m =
∞∑

i=1

vit
2i∂t +

∞∑

i=1

wit
2i∂τ + adτ − τ2∂τ (2.3)

Remark 2.5. A trivial but important observation is that the parameter t is even
(odd) for even (odd) Moore algebras. If the parameter t is odd then a formal power
series is even (odd) if and only if it consists entirely of even (odd) powers of t.

We will also need a way to calculate the truncated Hochschild cohomology of
an A∞-algebra. Truncated Hochschild cohomology is closely related to deformation
theory for A∞-algebras and an account of this is given in [9]. For this reason we
will be chiefly concerned with the truncated Hochschild cohomology of an A∞-
algebra with coefficients in itself. Further details on the Hochschild cohomology of
A∞-algebras can be found in [8].

Definition 2.6. The truncated Hochschild cohomology of an A∞-algebra A with
coefficients in A is defined via the complex C∗+(A,A) of normalised derivations of
the algebra R〈〈τ, t〉〉. A normalised derivation is one of the form,

ξ = A(t)∂τ +
∑

i∈I

Bi(t)∂ti

where A(t), Bi(t), i ∈ I have vanishing constant terms. The A∞-structure m gives
rise to a differential on this complex which is given by d(ξ) := [ξ, m]. The truncated
Hochschild cohomology of A with coefficients in A is then the cohomology of the
complex C∗+(A, A) and is denoted by HH∗

+(A).

Remark 2.7. Consider the complex of derivations ξ : R〈〈τ, t〉〉 → R〈〈τ, t〉〉 as above
in which we allow A(t), Bi(t), i ∈ I to have nonvanishing constant terms. This is
the usual Hochschild complex C∗(A,A) whose differential is d : ξ 7→ [ξ, m] and its
cohomology is defined as the Hochschild cohomology of A with coefficients in A. The
truncated Hochschild complex C∗+(A,A) is then a differential graded Lie subalgebra
of C∗(A, A). This gives rise to a short exact sequence of complexes and this short
exact sequence gives us a long exact sequence in cohomology which relates the two
cohomology theories.

Remark 2.8. The complex C∗+(A,A) is graded according to the degrees of the maps
ξ : R〈〈τ, t〉〉 → R〈〈τ, t〉〉. I will refer to this as the standard grading and it is
this grading that must be used for the purpose of calculations. It will be assumed
throughout the rest of the paper that we are using the standard grading unless an
explicit reference is made to the contrary.
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There is however an alternative grading that is more customarily used when
discussing deformation theory. Continuous derivations of the algebra R〈〈τ, t〉〉 are
in one to one correspondence with coderivations of the tensor coalgebra TΣA. These
coderivations have a bi-grading,

Ci
j = {f ∈ HomR(A⊗i, A) : |f | = j}

The associated total grading Tk :=
∏

i−j=k Ci
j forms an alternative grading for

C∗+(A, A) which I shall refer to as the classical grading. If a map ξ has degree d in
the standard grading then its corresponding degree in the classical grading is 1− d.
One of the consequences of this is that infinitesimals live in even components of the
classical grading, so that the deformation theory of A∞-algebras is consistent with
classical deformation theory.

3. Classification of Odd Moore Algebras

As mentioned earlier an odd Moore algebra is characterised by a pair of power
series v(t), w(t) ∈ R[[t]] and has the A∞-structure given by (2.3). We would like to
classify these structures up to a weak equivalence. Since the Moore algebra is odd,
the multiplication map m1 = 0 and so weak equivalences are isomorphisms of A∞-
algebras. Such A∞-isomorphisms are continuous automorphisms of the R-algebra
R〈〈τ, t〉〉 and are specified by a pair of odd power series with vanishing constant
terms G(t), F (t) ∈ R[[t]] (cf. definition 2.2) where the coefficient of t in F (t) is invert-
ible. The degrees of G(t) and F (t) are −1 and −(d+2) respectively. Suppose we are
given two pairs of power series (G(t), F (t)) and (G′(t), F ′(t)) corresponding to con-
tinuous automorphisms of the algebra R〈〈τ, t〉〉. The pair (G(t)+G′(F (t)), F ′(F (t)))
corresponds to the composition (G,F ) ◦ (G′, F ′). Since the identity automorphism
corresponds to the pair (0, t), we conclude that given a pair of power series with
vanishing constant terms (G(t), F (t)) corresponding to a continuous automorphism
of the algebra R〈〈τ, t〉〉, the inverse of this automorphism corresponds to the pair of
power series (−G(F−1(t)), F−1(t)), where F−1 is the inverse of the map t 7→ F (t).
These continuous automorphisms of the algebra R〈〈τ, t〉〉 act on the set of unital
A∞-structures by conjugation so that equivalence classes of unital A∞-algebras
correspond to orbits of this action.

Let me now describe a group H ⊂ R[[t]] which consists of power series F (t)
which have degree |t| = −(d + 2) and a vanishing constant term. Furthermore the
coefficient of t in F (t) must be an invertible element of R. The multiplication in H
is given by (F (t), G(t)) 7→ F (G(t)). H then acts on the right of the set consisting
of formal power series in R[[t]] which have degree -2 and a vanishing constant term
by the formula (u(t), f(t)) 7→ u(f(t)).

We shall now describe the unital weak equivalence classes of an odd Moore algebra
in terms of this group action, however we will have to assume that the element 2 ∈ R
is invertible.

Theorem 3.1. The set consisting of unital weak equivalence classes of odd Moore
algebras of degree d defined over the ring R ( 1

2 ∈ R) is in one to one correspondence
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with the set of orbits of the group H acting on the set consisting of formal power
series of degree −2 with a vanishing constant term, as described above.

Proof. Let us determine how the continuous automorphisms of the R-algebra R〈〈τ, t〉〉
as described above act on the elements t2i∂τ , t2i∂t and m0 := adτ − τ2∂τ .

(G,F ) ◦ (t2i∂τ ) ◦ (G,F )−1(t) = 0;
(G,F ) ◦ (t2i∂τ ) ◦ (G,F )−1(τ) = (G,F ) ◦ (t2i∂τ )(τ −G(F−1(t)))

= (G,F )(t2i) = [F (t)]2i;

therefore, (G,F ) ◦ (t2i∂τ ) ◦ (G,F )−1 = [F (t)]2i∂τ .

(3.1)

(G,F ) ◦ (t2i∂t) ◦ (G,F )−1(t) = (G,F ) ◦ (t2i∂t)[F−1(t)]
= (G,F )(t2i−1F−1(t)) as F (t) is odd
= t[F (t)]2i−1;

(G,F ) ◦ (t2i∂t) ◦ (G,F )−1(τ) = (G,F ) ◦ (t2i∂t)[τ −G(F−1(t))]
= −(G,F )(t2i−1G(F−1(t))) as G(t) is odd
= −G(t)[F (t)]2i−1;

therefore, (G,F ) ◦ (t2i∂t) ◦ (G,F )−1 = [F (t)]2i−1(t∂t −G(t)∂τ ).
(3.2)

(G,F ) ◦m0 ◦ (G,F )−1(t) = (G,F ) ◦m0[F−1(t)]
= (G,F )([τ, F−1(t)])
= [τ, t] + 2tG(t);

(G,F ) ◦m0 ◦ (G,F )−1(τ) = (G,F ) ◦m0[τ −G(F−1(t))]
= (G,F )(τ2 − [τ, G(F−1(t))])
= (τ + G(t))2 − [τ + G(t), G(t)]
= τ2 −G(t)2;

therefore, (G,F ) ◦m0 ◦ (G,F )−1 = ([τ, t] + 2tG(t))∂t + (τ2 −G(t)2)∂τ

= m0 + 2tG(t)∂t −G(t)2∂τ .

(3.3)

¿From the above equations we conclude that for evenly graded power series
v(t), w(t) ∈ R[[t]],

(G,F ) ◦ (w(t)∂τ ) ◦ (G,F )−1 = w(F (t))∂τ

(G,F ) ◦ (v(t)∂t) ◦ (G,F )−1 =
v(F (t))
F (t)

(t∂t −G(t)∂τ )

and obtain a formula for the action on (2.3):

(G,F ) ◦ (m0 + v(t)∂t + w(t)∂τ ) ◦ (G, F )−1 =m0 +
{

2tG(t) +
tv(F (t))

F (t)

}
∂t

+
{
−G(t)v(F (t))

F (t)
+ w(F (t))−G(t)2

}
∂τ

(3.4)
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Now if we choose F (t) = t and G(t) = −v(t)
2t then (2.3) is sent to m0 + {( v(t)

2t )2 +
w(t)}∂τ . We see that by using G(t), every odd Moore algebra can be transformed
to one of the form m0 + u(t)∂τ . F (t) then acts very simply on these forms sending
m0 + u(t)∂τ to m0 + u(F (t))∂τ . Equation (3.4) shows that two Moore algebras of
the form m0 +u(t)∂τ can only be equivalent if G(t) = 0, therefore weak equivalence
classes correspond to orbits of the group H acting on power series of degree −2 with
a vanishing constant term.

Remark 3.2. Using the change of variable t 7→ t2 we can see that this orbit space is
the same as the orbit space of H acting on power series with a vanishing constant
term whose coefficient at ti has degree 2i(d + 2)− 2. These power series consist of
odd powers of t as well as even.

Remark 3.3. The orbit space of H has already been described for fields and discrete
valuation rings. The reader should refer to [8, §6] for further details.

4. The Hochschild Cohomology of Odd Moore Algebras

We shall now turn our attention to a problem posed in [8], that of calculating
the Hochschild cohomology of an odd Moore algebra. As mentioned in section 2
the truncated Hochschild cohomology of an odd Moore algebra is defined via the
complex of normalised derivations of R〈〈τ, t〉〉, the differential being given by d(ξ) :=
[ξ, m] where m is the A∞-structure. These normalised derivations are of the form
ξ = A(t)∂τ + B(t)∂t where A(t) and B(t) have vanishing constant terms. We will
refer to the odd and even parts of A(t) as A1(t) and A2(t) respectively. The A∞-
structure m is specified by characteristic power series v(t), w(t) ∈ R[[t]] as in (2.3).

Remark 4.1. Concerning notation, whenever I write a′(t) for a derivative, I am
referring to the following:

a′(t) :=
∞∑

i=1

iait
i−1

Lemma 4.2. Suppose we have a normalised derivation ξ = A(t)∂τ + B(t)∂t, then
we have the following formula for the differential d:

[ξ,m] ={B1(t)w′(t)−A1(t)
v(t)

t }∂τ

+ B1(t){v′(t)− v(t)
t }∂t

+ 2tA1(t)∂t

Proof. The contribution from w(t)∂τ is given by,

[ξ, w(t)∂τ ](t) = 0;

ξ w(t)∂τ (τ) = ξ(w(t)) = B(t)∂t(w(t)) = B1(t)w′(t)
w(t)∂τ ξ(τ) = 0;

therefore, [ξ, w(t)∂τ ] = B1(t)w′(t)∂τ .

(4.1)
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The contribution from v(t)∂t is given by,

ξ v(t)∂t(t) = ξ(v(t)) = B1(t)v′(t)
(−1)|ξ|v(t)∂t ξ(t) = v(t)∂t(B1(t))− v(t)∂t(B2(t))

= B1(t)
v(t)

t ;

ξ v(t)∂t(τ) = 0
(−1)|ξ|v(t)∂t ξ(τ) = v(t)∂t(A1(t))− v(t)∂t(A2(t))

= A1(t)
v(t)

t ;

therefore, [ξ, v(t)∂t] = {B1(t)v′(t)−B1(t)
v(t)

t }∂t

−A1(t)
v(t)

t ∂τ .

(4.2)

The contribution from m0 := adτ − τ2∂τ is given by,

ξm0(t) = ξ(τt + tτ)
= A(t)t + τ(B1(t)−B2(t)) + B(t)τ + t(A1(t)−A2(t))
= 2tA1(t) + [τ,B1(t)−B2(t)]

(−1)|ξ|m0ξ(t) = m0(B1(t)−B2(t)) = [τ, B1(t)−B2(t)];

ξm0(τ) = ξ(τ2) = A(t)τ + τ(A1(t)−A2(t))
= [τ,A1(t)−A2(t)]

(−1)|ξ|m0ξ(τ) = m0(A1(t)−A2(t)) = [τ, A1(t)−A2(t)];

therefore, [ξ, m0] = 2tA1(t)∂t.

(4.3)

Adding the above equations together gives us the stated formula for [ξ, m].

If we assume that the element 2 is invertible in the ground ring R then by
Theorem 3.1, every odd Moore algebra is equivalent to one of the form m0 +w(t)∂τ .
This means that we need only calculate the truncated Hochschild cohomology for
odd Moore algebras of this form. Let us define w̃(t) := w(

√
t).

Proposition 4.3. Suppose we have an odd Moore algebra A of the form m0+w(t)∂τ

where the element 2 ∈ R is invertible. If the first nonzero term of w(t), which
we denote by wk, is not a zero divisor and R has no k-torsion, then there is an
isomorphism of R-modules HH∗

+(A) ∼= I/w̃′(t)I where I is the ideal tR[[t]] ⊂ R[[t]].

Proof. Lemma 4.2 gives us the formula,

[ξ,m] = B1(t)w′(t)∂τ + 2tA1(t)∂t (4.4)

As wk is not a divisor of zero and R has no k-torsion, w′(t) = 2kwkt2k−1 + . . . is
not a divisor of zero. The truncated Hochschild cocycles are then all the elements of
the form B(t)∂τ +A(t)∂t where A(t) and B(t) are even power series with vanishing
constant terms. The truncated Hochschild coboundaries are all the elements of the
form B(t)w′(t)

t ∂τ +A(t)∂t where A(t) and B(t) are even power series with vanishing
constant terms.
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If R2[[t]] is the ring (without identity) of even power series with a vanishing
constant term then the truncated Hochschild cohomology is,

HH∗
+(A) = R2[[t]]/

w′(t)
t

R2[[t]]

however, by the change of variable t 7→ t2 and the identity w′(t) = 2tw̃′(t2) we can
obtain the isomorphism of R-modules HH∗

+(A) ∼= I/w̃′(t)I.

Remark 4.4. In the case of an odd Moore algebra the differential d : ξ 7→ [ξ, m]
is zero on constant vector fields. This means that the short exact sequence of
complexes relating C∗+(A,A) and C∗(A,A) referred to in 2.7 splits and the trun-
cated Hochschild cohomology of an odd Moore algebra is a direct summand of its
Hochschild cohomology. In fact HH∗(A) ∼= HH∗

+(A)⊕A.
Remark 4.5. Since all the truncated Hochschild cocycles are cohomologous to ones
of the form B(t)∂τ , the Lie bracket on HH∗

+(A) is zero.
Now I would like to turn my attention to the truncated Hochschild cohomol-

ogy of the trivial odd Moore algebra R[X]/X2 which corresponds to choosing
the characteristic power series v(t) and w(t) to be 0. The A∞-structure is then
m0 := adτ − τ2∂τ . The following is a slightly different presentation of a standard
result in homological algebra (cf. [13, §9]).

Proposition 4.6. Assuming 2 ∈ R is invertible, the truncated Hochschild coho-
mology of the trivial odd Moore algebra R[X]/X2 is the semi-direct sum of the Lie
algebra {B(t)∂t, B(t) odd} and the abelian Lie algebra {A(t)∂τ , A(t) even} such
that,

[B(t)∂t, A(t)∂τ ] = B(t)A′(t)∂τ

where A(t) and B(t) have vanishing constant terms.

Proof. Recalling equation (4.3) in Lemma 4.2 we have,

[ξ, m0] = 2tA1(t)∂t

This means that the truncated Hochschild cocycles are all the elements of the form
A(t)∂τ +B(t)∂t where A(t) is even and both A(t) and B(t) have vanishing constant
terms. The truncated Hochschild coboundaries are then all the elements of the
form B(t)∂t where B(t) is even and has a vanishing constant term. The truncated
Hochschild cohomology is then given by,

HH∗
+(R[X]/X2) = {A(t)∂τ + B(t)∂t}

where A(t) is even, B(t) is odd and both have vanishing constant terms.
Now to finish the proof we need only calculate [B(t)∂t, A(t)∂τ ].

B(t)∂t A(t)∂τ (τ) = B(t)A′(t)
A(t)∂τ B(t)∂t(τ) = 0;

[B(t)∂t, A(t)∂τ ](t) = 0;

therefore, [B(t)∂t, A(t)∂τ ] = B(t)A′(t)∂τ .

(4.5)



Homology, Homotopy and Applications, vol. 6(1), 2004 96

Remark 4.7. According to the theory developed in [9], the even dimensional compo-
nents (in the classical grading) of the truncated Hochschild cohomology correspond
to infinitesimal deformations of the A∞-algebra by an even parameter. In the case
of the trivial odd Moore algebra these are of the form A(t)∂τ where A(t) is even.
Motivated by the work done in [1] and [2] it is reasonable to expect that these
should provide a way to construct a “miniversal” deformation of the trivial Moore
algebra and that, crudely speaking, the “universal” Moore algebra with v(t) = 0
should be this miniversal deformation. This will be done in section 6.

5. Deformation of A∞-Algebras

The purpose of this section is to set up the deformation theory for A∞-algebras
in a fairly general setting. We will assume that all A∞-algebras are of the type
described in definition 2.1, that is to say that they are unital A∞-algebras defined
over an evenly graded ring R, in which the element 1 ∈ A can be completed to an
R-basis. The A∞-structure is then of the form (2.1).

The main differences between [9], [2] and the description that we will give here
is that we will be using the cobar construction as opposed to the bar construction
(TΣA) in order to describe the deformation theory. In addition we will be consid-
ering the slightly more general situation of deforming an A∞-algebra defined over
a ring rather than just a field.

Definition 5.1. Suppose we have an A∞-algebra A with A∞-structure m. Let Λ be
an (evenly graded) unital commutative R-algebra with an augmentation ε : Λ → R.
This ε has a natural extension to a map of Λ-algebras ε : Λ〈〈τ, t〉〉 → R〈〈τ, t〉〉.
A deformation of A with base (Λ, ε) is a unital, Λ-linear A∞-structure m̄ on the
Λ-module Λ⊗R A which renders the following diagram commutative:

Λ〈〈τ, t〉〉 m̄ //

ε

²²

Λ〈〈τ, t〉〉
ε

²²
R〈〈τ, t〉〉 m // R〈〈τ, t〉〉

Definition 5.2. Suppose we have two deformations m̄1,m̄2 of an A∞-algebra A
over the same base (Λ, ε). An equivalence of deformations between m̄1 and m̄2 is a
continuous automorphism φ of the Λ-algebra Λ〈〈τ, t〉〉 which renders the following
diagrams commutative:

Λ〈〈τ, t〉〉 φ //

m̄1

²²

Λ〈〈τ, t〉〉
m̄2

²²
Λ〈〈τ, t〉〉 φ // Λ〈〈τ, t〉〉

Λ〈〈τ, t〉〉 ε //

φ %%LLLLLLLLLL
R〈〈τ, t〉〉

Λ〈〈τ, t〉〉
ε

99rrrrrrrrrr

Remark 5.3. I shall refer to the automorphisms φ of the Λ-algebra Λ〈〈τ, t〉〉 which
satisfy εφ = ε as pointed automorphisms. These pointed automorphisms form a
group under composition and act by conjugation on the left of the set consisting
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of deformations of A over the base (Λ, ε). Orbits of this action are in one to one
correspondence with equivalence classes of deformations.

I shall now define the deformation functor for an A∞-algebra. Given two aug-
mented R-algebras (Λ, ε) and (Λ′, ε′), a homomorphism of augmented R-algebras
f : Λ → Λ′ is a (unital) homomorphism of R-algebras such that ε′f = ε.

Definition 5.4. Suppose we have an A∞-algebra A defined over an evenly graded
and commutative ring R. The deformation functor is defined on the category of
unital augmented R-algebras by sending the algebra (Λ, ε) to the set of equivalence
classes of all possible deformations of A with base (Λ, ε).

To define it on morphisms suppose we have a homomorphism of augmented R-
algebras f : Λ → Λ′ and a deformation of A with base (Λ, ε), that is an A∞-structure
m̄Λ as described in definition 5.1. f naturally extends to a homomorphism of Λ-
algebras f : Λ〈〈τ, t〉〉 → Λ′〈〈τ, t〉〉. We must define a deformation m̄Λ′ of A with
base (Λ′, ε′) which we will refer to as the push-out of m̄Λ by f :

m̄Λ′ := (fm̄Λ(τ))∂τ +
∑

i∈I

(fm̄Λ(ti))∂ti

Clearly the push-out operation respects equivalences of deformations and hence
gives rise to a map between equivalence classes of deformations.

Remark 5.5. The deformation theory of A∞-algebras is a generalisation of the the-
ories developed in [3] and [5]. In [3] Gerstenhaber considered deformations of as-
sociative algebras and related infinitesimals to Hochschild cohomology classes. In
describing this generalisation we will need to make use of the alternative definition
of A∞-algebras involving higher multiplication maps as described in [6] and [8].
An associative graded algebra m2 : A ⊗ A → A can be viewed as an A∞-algebra
by specifying all the other multiplications mi : A⊗i → A (i 6= 2) to be zero. An
isomorphism f1 : A1 → A2 of associative graded algebras can be viewed as an
isomorphism of A∞-algebras by specifying the maps fi : A⊗i

1 → A2 (i > 2) to be
zero. Let F be the deformation functor for A∞-algebras defined above and let G
be the deformation functor for associative graded algebras which sends augmented
R-algebras Λ to equivalence classes of deformations of the associative graded al-
gebra A with base Λ. The above observations then give us an injective morphism
of functors G → F which describes the way in which the deformation theory for
A∞-algebras encompasses the deformation theory for associative algebras.

In a similar manner a DGA m1 : A → A, m2 : A ⊗ A → A can be regarded as
an A∞-algebra by specifying all higher multiplications mi : A⊗i → A (i > 3) to be
zero. An isomorphism f : A1 → A2 of DGA’s can be viewed as an isomorphism of
A∞-algebras by specifying the maps fi : A⊗i

1 → A2 (i > 2) to be zero. Now if G
is the deformation functor for DGA’s defined by sending the augmented R-algebra
Λ to equivalence classes of deformations of the DGA A with base Λ and F is the
deformation functor for A∞-algebras as above, then the preceding observations give
us a morphism of functors G → F .

Now we must define the appropriate notions of versality, universality and miniver-
sality for deformations. In deformation theory in general it is not always possible to
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find a universal deformation of a given object. It is, however, much more likely that
a “miniversal” deformation exists. Indeed in [1] it was shown that for Lie algebras
there is, under certain restrictions, an explicit construction for this miniversal defor-
mation in terms of the Lie algebra’s cohomology. A similar method was used in [2] to
show that under certain restrictions, miniversal deformations exist for A∞-algebras.

Definition 5.6. Suppose we have an A∞-algebra A and a deformation m̄Λ of A with
base (Λ, ε). m̄Λ is a versal deformation of A if given any other deformation m̄Λ′ of
A with base1 (Λ′, ε′) there is a homomorphism f : Λ → Λ′ such that m̄Λ′ = f∗(mΛ).
That is to say that, up to an equivalence of deformations, m̄Λ′ is the push-out of
m̄Λ by f .

If in addition the homomorphism f is unique for any deformation of A, the
deformation m̄Λ is called universal. The deformation m̄Λ′ is called infinitesimal if
ker(ε′)2 = 0. If the homomorphism f is unique for any infinitesimal deformation of
A, the deformation m̄Λ is called miniversal (cf. [1], [2]).

6. The Miniversal Deformations of R[X]/X2

In this section we will calculate the miniversal deformations of the trivial Moore
algebra R[X]/X2 and show that there is no universal deformation of this algebra.
In [8, §5] the universal even and odd Moore algebras were constructed. The uni-
versal even Moore algebra of degree d is the Moore algebra defined over the ring
Z[u1, u2, . . .] where |ui| = i(d + 2)− 2 which is given by the A∞-structure,

m :=
∞∑

i=1

uit
i∂τ + adτ − τ2∂τ (6.1)

Let us define the R-universal even Moore algebra of degree d to be the even Moore
algebra defined over the ring R[u1, u2, . . .] with the same A∞-structure as (6.1).
This is the universal object in the sense of [8, §5] only for even Moore algebras
defined over a commutative R-algebra.

The odd universal Moore algebra of degree d is the Moore algebra defined over the
ring Z[v1, v2, . . .]⊗Z[w1, w2, . . .] where |vi| = 2i(d+2)−d−3 and |wi| = 2i(d+2)−2
which is given by the A∞-structure (2.3). Let us define the R-universal odd Moore
algebra of degree d with v(t) = 0 to be the odd Moore algebra defined over the ring
R[w1, w2, . . .] with A∞-structure,

m :=
∞∑

i=1

wit
2i∂τ + adτ − τ2∂τ (6.2)

Theorem 6.1. The R-universal even Moore algebra is a miniversal deformation of
the trivial even Moore algebra A := R[X]/X2.

Proof. Clearly the R-universal even Moore algebra is a deformation of A with base
R[u1, u2, . . .]. Suppose we have an arbitrary deformation m̄ of A with base (Λ, ε).

1In [1] the restriction was made that these bases be local, however, as we are working over rings
and not just fields, this restriction is unsuitable.
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The A∞-structure m̄ must have the form,

m̄ =
∞∑

i=1

λit
i∂τ + mA

where λi ∈ Λ, |λi| = i(d + 2) − 2 and mA := adτ − τ2∂τ is the (extension of
the) A∞-structure on A. The R-algebra Λ has a decomposition Λ = R ⊕ ker ε and
the restrictions of definition 5.1 mean that λi ∈ ker ε. Choose a homomorphism
f : R[u1, u2, . . .] → Λ by sending ui 7→ λi. The push-out of (6.1) by f is m̄ so the
R-universal even Moore algebra is a versal deformation of A.

Let us show that this is actually a miniversal deformation of A. For this purpose
let us assume that ker(ε)2 = 0. An equivalence of deformations for deformations
over the base (Λ, ε) is given by a pointed automorphism of the Λ-algebra Λ〈〈τ, t〉〉
corresponding to power series G(t), F (t) ∈ Λ[[t]] with vanishing constant terms
where G(t) = 0 and F (t) = f1t

1 + f2t
2 + . . . (f1 invertible). Since this automor-

phism is pointed we must have ε(f1) = 1 and ε(fi) = 0 for i > 2. These pointed
automorphisms act on m̄ by λ(t) 7→ λ(F (t)) (cf. [8, §6]), however since λi ∈ ker ε,
ε(f1) = 1, fi ∈ ker ε for i > 2 and ker(ε)2 = 0, this is a trivial action. It therefore
follows that the map f must be unique.

Theorem 6.2. Assuming the element 2 ∈ R is invertible, the R-universal odd
Moore algebra with v(t) = 0 is a miniversal deformation of the trivial odd Moore
algebra A := R[X]/X2.

Proof. Clearly the R-universal odd Moore algebra with v(t) = 0 is a deformation of
A with base R[w1, w2, . . .]. Suppose we have an arbitrary deformation m̄ of A with
base (Λ, ε). The A∞-structure must have the form,

m̄ =
∞∑

i=1

vit
2i∂t +

∞∑

i=1

uit
2i∂τ + mA

In addition we must have vi, ui ∈ ker ε. This means we can choose a pointed
automorphism φ := (−v(t)

2t , t) which gives us by (3.4) an equivalent deformation
of the form

∑∞
i=1 λit

2i∂τ + mA where λi ∈ ker ε. Choose a homomorphism f :
R[w1, w2, . . .] → Λ by sending wi 7→ λi. The push-out of (6.2) by f is equivalent to
m̄ so the R-universal odd Moore algebra with v(t) = 0 is a versal deformation of A.

To prove that this is a miniversal deformation, suppose that m̄ is an infinitesimal
deformation of A. We need to show that if two deformations,

∞∑

i=1

λit
2i∂τ + mA ,

∞∑

i=1

λ′it
2i∂τ + mA

are equivalent (λi, λ
′
i ∈ ker ε) then they are equal.

Suppose they are equivalent by an equivalence of deformations φ = (G(t), F (t)),
then (3.4) implies that G(t) = 0. F (t) then acts according to (3.4) by sending
λ(t) 7→ λ(F (t)), however, we have already shown in Theorem 6.1 that this is a
trivial action and therefore the two deformations are equal.
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Finally we would like to know whether or not it is possible to construct universal
deformations of the trivial Moore algebra R[X]/X2. This turns out to be impossible.

Proposition 6.3. There do not exist universal deformations of either the odd or
the even trivial Moore algebra A := R[X]/X2.

Proof. We shall treat only the even case, the odd case being virtually identical.
First of all let us consider a deformation m̄ of A with base R[x, y] (|x| := d and
|y| := 0) given by m̄ := xt∂τ +mA. Using the pointed automorphism φ := (0, t+yt)
we see that this deformation is equivalent to (x + xy)t∂τ + mA. These clearly come
from two different push-outs f1 and f2 of the miniversal deformation of A.

Now we must use the functoriality of the push-out operation and the fact that it
respects equivalences of deformations. If a universal deformation mU =

∑∞
i=1 λit

i∂τ+
mA of A over a base Λ exists, then there is a homomorphism g : Λ → R[u1, u2, . . .]
such that (6.1) is (up to equivalence) the push-out of mU by g. Universality of mU

then implies that f1g = f2g.
Consider the infinitesimal deformation of A over the base R[u1, u2, . . .]/(uiuj)

which is given by the derivation
∑∞

i=1 uit
i∂τ +mA. This is the push-out of (6.1) by

the natural quotient map σ : R[u1, u2, . . .] → R[u1, u2, . . .]/(uiuj) and is therefore
equivalent to the push-out of mU by σg, however, in Theorem 6.1 it was shown that
pointed automorphisms act trivially on infinitesimal deformations, therefore

g(λk) = uk mod (uiuj), k > 1

It is clear from the construction of f1 and f2 and the equation f1g(λ1) = f2g(λ1)
that we have a contradiction.

7. Formal One-Parameter Deformations of A∞-Algebras

This subject has already been touched upon by Penkava and Weldon in [10].
Formal one-parameter deformations of DGA’s were considered in [5], however there
are certain advantages to working with A∞-algebras as opposed to ordinary DGA’s.
In particular it was only possible in [5] to show the link between infinitesimals of
deformations of a DGA and the corresponding cohomology theory for DGA’s whose
ground ring contained Q. With A∞-algebras however, there are no such problems.

The following work draws a parallel between the deformation theories described
in [10] and [5]. The theory of formal one-parameter deformations of an A∞-algebra
A expounded here is parallel to the theory of formal one-parameter deformations of
the DGA R〈〈τ, t〉〉 which describes the A∞-structure on A. We will therefore need
to make use of the work done by Gerstenhaber and Wilkerson on the subject in [5].

The ring of formal power series R[[s]], where s has even degree, has a fundamental
system of neighbourhoods which are powers of the augmentation ideal R[[s]]/R. This
fundamental system gives a topology on the R[[s]]-module A[[s]]. A formal one-
parameter deformation ms of A is given by a continuous, R[[s]]-linear A∞-structure
on the R[[s]]-module As := A[[s]].

Definition 7.1. Suppose we have an A∞-algebra A defined over an evenly graded
and commutative ring R with A∞-structure m. A formal one-parameter deformation
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ms of A is given by a continuous (both in the sense of definition 2.1 and in the sense
of the topology inherited from R[[s]]) R[[s]]-linear derivation on the R[[s]]-algebra
R[[s]]〈〈τ, t〉〉. Such a derivation ms is any derivation of the form,

ms = m + sm1 + s2m2 + . . . + snmn + . . .

where mi is (the extension of) a normalised derivation from R〈〈τ, t〉〉 to R〈〈τ, t〉〉
which has degree i|s|+2 (in the classical grading). By convention we define m0 := m.
Furthermore we require this map to give an A∞-structure on A[[s]], that is to say
that m2

s = 0 or equivalently,
∑

i+j=k
i,j>0

mimj = −[mk, m], for all k > 1 (7.1)

Definition 7.2. A formal one-parameter automorphism φs (the analogue of a
pointed automorphism) is given by a continuous, R[[s]]-linear endomorphism of
R[[s]]〈〈τ, t〉〉. Such an endomorphism φs is any endomorphism of the form,

φs = 1 + sφ1 + s2φ2 + . . . + snφn + . . .

where φi is (the extension of) a continuous R-linear map from R〈〈τ, t〉〉 to R〈〈t〉〉/R.
Furthermore we require that φs(1) = 1 or equivalently that φi(1) = 0 for all i > 1.
We also make the restriction that φs be multiplicative, a condition that can be
expressed as,

∑

i+j=k
i,j>0

φi(a)φj(b) = φk(ab), for all a, b ∈ R〈〈τ, t〉〉 (7.2)

Definition 7.3. Let ms and m′
s be two formal one-parameter deformations of

an A∞-algebra A. We say that ms is equivalent to m′
s if there exists a formal

automorphism φs such that m′
s = φsmsφ

−1
s .

Remark 7.4. The formal one-parameter automorphisms form a group under com-
position and act by conjugation on the left of the set of formal one-parameter
deformations of A. Orbits of this action are in one to one correspondence with
equivalence classes of formal one-parameter deformations of A.

Remark 7.5. There is a similar definition of a formal one-parameter deformation of
an A∞-algebra A in terms of higher multiplication maps. The restrictions on the
maps mi : A[[s]]⊗i → A[[s]] are the same as those alluded to in remark 2.3 except
that the mi’s must be continuous. This definition is entirely consistent with the
definition given above however.

Suppose we have a deformation ms = m + skmk + sk+1mk+1 + . . . , then (7.1)
shows that [mk,m] = 0, that is to say that mk is a truncated Hochschild cocycle.
Similarly, given a formal automorphism φs = 1 + skφk + sk+1φk+1 + . . . , (7.2)
determines that φk must be a (normalised) derivation of R〈〈τ, t〉〉 (note that since
φk is even, a derivation is the same thing as a graded derivation).

We say that φs = 1 + sφ1 + . . . + snφn is a formal automorphism of order n if
(7.2) holds for all 1 6 k 6 n. Similarly ms = m+sm1 + . . .+snmn is a deformation



Homology, Homotopy and Applications, vol. 6(1), 2004 102

of order n if (7.1) holds for all 1 6 k 6 n. In order to show the link between
truncated Hochschild cohomology and infinitesimals of deformations we will need
the following relatively trivial lemma:

Lemma 7.6. Suppose we are given a formal automorphism of order n,

ψs = 1 + sφ1 + . . . + snφn

then we can extend ψs to a formal automorphism,

φs = 1 + sφ1 + . . . + snφn + sn+1φn+1 + sn+2φn+2 + . . .

by specifying the action of φn+1, φn+2, . . . on the generators τ, t1, t2, . . . . Further-
more such a choice uniquely determines φs.

Proof. Suppose that we are given a choice φi(τ), φi(t1), φi(t2), . . . for the action of
φn+1, φn+2, . . . on the generators (note that if the collection t = t1, t2, . . . is infinite
then this will impose some restrictions on the collection φi(τ), φi(t1), φi(t2), . . . ).
We can extend φn+1, φn+2, . . . to continuous R-linear maps from R〈〈τ, t〉〉 to R〈〈t〉〉
in the following way,

φk(x1 . . . xm) =
∑

i1+...+im=k

φi1(x1) . . . φim(xm)

where x1, . . . , xm ∈ {τ, t1, t2, . . .}. It is then straightforward to check that the φk’s
so defined satisfy (7.2). Clearly the map φs is uniquely determined by its action on
the generators which is in turn determined by the action of φn+1, φn+2, . . . on the
generators.

One of the problems with the deformation theory for an ordinary DGA is that
this extension may not always be possible. If it is however, then Gerstenhaber and
Wilkerson showed in [5] that infinitesimals of deformations correspond to odd co-
homology classes (the cohomology theory used by Gerstenhaber and Wilkerson was
not truncated Hochschild cohomology, our infinitesimals will live in even compo-
nents of the classically graded truncated Hochschild cohomology).

Definition 7.7. Suppose we have an A∞-algebra A with A∞-structure m. An
infinitesimal automorphism of A is a formal automorphism φs := 1 + skφk of order
k where φk is a truncated Hochschild cocycle of degree k|s| + 1 (in the classical
grading). We say that φs is integrable if it can be extended to a formal automorphism
ψs = 1 + skφk + sk+1φk+1 + . . . such that [ψs,m] = 0, that is to say that ψs is a
continuous automorphism of the A∞-algebra A[[s]] whose A∞-structure is given by
the deformation ms := m.

Remark 7.8. Note that if Q ⊂ R then every infinitesimal automorphism is inte-
grable. Since we can exponentiate we can choose the extension of φs to be ψs :=
exp(skφk). The problem of integrating an infinitesimal automorphism of an associa-
tive algebra when working over a field of characteristic p was known to Gerstenhaber
and was discussed in [3]. There are known to be examples of infinitesimal automor-
phisms of an associative algebra which cannot be integrated when working over a
field of nonzero characteristic.
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The method of proof of the following theorem borrows from the work done by
Gerstenhaber and Wilkerson in [5]. Let us call a deformation trivial if it is equivalent
to the deformation ms := m.

Theorem 7.9.

(i) Suppose we have an A∞-algebra A with A∞-structure m. Every formal one-
parameter deformation of A is either trivial or equivalent to a deformation of
the form,

ms = m + skmk + sk+1mk+1 + . . .

where mk is a truncated Hochschild cocycle of degree k|s| + 2 (in the classi-
cal grading) which is not cohomologous to zero. We will refer to mk as the
infinitesimal of the deformation.

(ii) Suppose that every infinitesimal automorphism of A is integrable and that we
have two equivalent deformations,

ms = m + skmk + . . . , m′
s = m + snm′

n + . . . (n > k)

where mk is not cohomologous to zero, then n = k and mk is cohomologous
to m′

n.

Remark 7.10. One should not confuse the notion of an infinitesimal of a deformation
with that of infinitesimal deformations. Remember an infinitesimal deformation is
a deformation over a base whose augmentation ideal has square equal to zero.

Proof.

(i) First of all let us show that if we have a deformation ms = m + skmk + . . .
then we can transform mk to any cohomologous cocycle using a formal auto-
morphism. Suppose we are given a normalised derivation ξ (of classical degree
k|s|+1), then by Lemma 7.6 we can extend 1+skξ to a formal automorphism,

φs = 1 + skξ + sk+1φk+1 + . . .

As φ−1
s = 1− skξ + . . . we have φsmsφ

−1
s = m + sk(mk + [ξ,m]) + . . . .

Now suppose we have a deformation ms = m + sm1 + s2m2 + . . . such that
all equivalent deformations begin with a cocycle cohomologous to zero. Using
the above procedure we can find a map φ1 : R[[s]]〈〈τ, t〉〉 → R〈〈s, t〉〉 such
that (1+ sφ1)ms(1+ sφ1)−1 is a deformation m′

s of the form m+ s2m′
2 + . . . .

Similarly we can find a map φ2 such that (1 + s2φ2)m′
s(1 + s2φ2)−1 has the

form m+ s3m3 + . . . and construct a sequence of maps φ1, φ2, φ3 . . . such that

m = . . . (1 + s2φ2)(1 + sφ1)ms(1 + sφ1)−1(1 + s2φ2)−1 . . .

This means that the deformation ms must be trivial.

(ii) Suppose that every infinitesimal automorphism of A is integrable and that we
have two equivalent deformations,

ms = m + skmk + . . . , m′
s = m + snm′

n + . . . (n > k)
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where mk is not cohomologous to zero. There is a formal automorphism φs

such that φsm
′
sφ
−1
s = ms. We will show that we can write φs in the form,

φs = (1 + skφk + . . .)ψs[k − 1] . . . ψs[1] (7.3)

where ψs[i] = 1 + siψi + . . . is a formal automorphism which commutes with
m. First of all if k = 1 then (7.3) is vacuous so we can assume k > 1. Writing
φs as a series φs = 1 + sφ1 + . . . we see that since φsm

′
sφ
−1
s = ms, we have

[φ1,m] = 0. Next integrate the infinitesimal automorphism 1+sφ1 to a formal
automorphism ψs[1] commuting with m and express φs as φs = (1 + s2φ2 +
. . .)ψs[1]. If k > 2 then [φ2,m] = 0 and we can proceed to construct ψs[i]
inductively. Now that we have φs in the form of (7.3) and since φsm

′
sφ
−1
s = ms

we can conclude that mk = m′
k+[φk,m], hence k = n and mk is cohomologous

to m′
n.

Remark 7.11. Part (i) of Theorem 7.9 is the analogue of well known results in
algebraic deformation theory (cf. [3], [5]), however, part (ii) contains a result on the
deformation theory of associative algebras which may be new.

There are known to be examples of associative algebras in which there exist in-
finitesimal automorphisms which cannot be integrated and for which part (ii) of
Theorem 7.9 does not hold (cf. [4, §6]). That is to say that there are trivial defor-
mations which begin with a Hochschild cocycle noncohomologous to zero. Perhaps
the simplest example is provided by the associative algebra A := (Z/2Z)[X]/(X2).
Choose a formal automorphism φs by sending X to X + s · 1 , then φs acts on the
deformation m′

s := m to give the following deformation:

ms(X, X) = s2 · 1
Since we are working in characteristic 2, the differential δ is zero on normalised
Hochschild cochains, therefore although ms is trivial, it begins with a (truncated)
Hochschild cocycle noncohomologous to zero.

We say that an A∞-algebra A with A∞-structure m is rigid if every formal one-
parameter deformation of it is trivial. In view of part (i) of Theorem 7.9 we have
the following corollary:

Corollary 7.12. Suppose we have an A∞-algebra A with HH2∗
+ (A) = 0 (here we

use the classical grading), then A is rigid.

Remark 7.13. One advantage of working with A∞-algebras is that although Ger-
stenhaber and Wilkerson were able to prove the analogue of Corollary 7.12 for
DGA’s whose ground ring contained Q (cf. [5]), this restriction is not necessary
when deforming A∞-algebras.

Finally we would like to know how to extend a deformation ms = m + sm1 +
. . . + snmn of order n to a deformation of order n + 1. The obstruction to this
extension Obs(ms) :=

∑
i+j=n+1 mimj (i, j > 0) turns out to be an odd truncated

Hochschild cohomology class (in the classical grading). The method of proof of the
following theorem was used by Gerstenhaber and Wilkerson in [5] in which they
investigated formal one-parameter deformations of differential graded modules.
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Theorem 7.14. Suppose we have a deformation ms = m + sm1 + . . . + snmn of
order n of an A∞-algebra A, then Obs(ms) is an odd truncated Hochschild cocycle
(in the classical grading). The deformation ms is extendible to a deformation of
order n + 1 if and only if Obs(ms) is cohomologous to zero.

Proof. First of all let us show that Obs(ms) is a normalised derivation. We have,

mimj(ab) = mimj(a)b + (−1)|a|(mi(a)mj(b)−mj(a)mi(b)) + amimj(b)

however the middle term sums to zero in
∑

i+j=n+1 and hence Obs(ms) is a graded
derivation (in the standard grading).

Next let us show that Obs(ms) is a truncated Hochschild cocycle. Since (7.1)
holds for all k 6 n we have,

[mk,m] = −
∑

i+j=k

mimj (i, j > 0)

As the map ad m : ξ 7→ [m, ξ] is a graded derivation (in the standard grading) on
the algebra of R-linear maps EndR(R〈〈τ, t〉〉) we have,

[m, Obs(ms)] =
∑

i+j=n+1[m,mi]mj −
∑

i+j=n+1 mi[m,mj ]
= −∑

i+j+k=n+1 mimjmk +
∑

i+j+k=n+1 mimjmk = 0

where i, j, k > 0. We can find a normalised derivation mn+1 such that (7.1) holds
for k = n + 1 precisely when Obs(ms) is a truncated Hochschild coboundary.

In view of the following proposition it would seem more appropriate to interpret
the obstruction as a cohomology class.

Proposition 7.15. If two deformations ms and m′
s of order n are equivalent, then

they have cohomologous obstructions.

Proof. First of all notice that deformations and formal automorphisms of order
n are really deformations and pointed automorphisms over the base R[s]/(sn+1).
Suppose we have a formal automorphism ψs of order n such that m′

s = ψsmsψ
−1
s

and extend it to a formal automorphism φs using Lemma 7.6.
Considering ms as an R[[s]]-linear derivation on R[[s]]〈〈τ, t〉〉 we have,

m2
s = sn+1 Obs(ms) + O(sn+2)

Since φs ≡ ψs mod (sn+1) we have m′
s = φsmsφ

−1
s + sn+1ξ + O(sn+2), where ξ is

a normalised derivation of even degree (in the classical grading). This means that,

m′
s
2 = φsm

2
sφ
−1
s + sn+1[ξ, m] + O(sn+2)

= sn+1(Obs(ms) + [ξ,m]) + O(sn+2)

and therefore Obs(m′
s) = Obs(ms) + [ξ,m].
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Remark 7.16. Notice that in order to prove this result it was necessary to use Lemma
7.6. This suggests that whilst true for A∞-algebras, this result might not hold for
DGA’s in general. Indeed in [5] Gerstenhaber and Wilkerson state this result for
differential graded modules, but make no mention as to its truth for DGA’s.
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