Jump To The First Citation Point In The Article1
Choquet-Bruhat, Y., ``Theoreme d' existence pour certain systemes d'equations aux deriveés partielles nonlinaires'', Acta Math., 88, 141-225, (1952).
Jump To The First Citation Point In The Article2
Hughes, T., Kato, T., and Marsden, J., ``Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity'', Arch. Rat. Mech. Anal., 63, 273-294, (1976).
Jump To The First Citation Point In The Article3
Choquet-Bruhat, Y., Christodoulou, D., and Francaviglia, M., ``Cauchy data on a manifold'', Ann. Inst. Poincaré A, 29 (3), 241, (1978).
Jump To The First Citation Point In The Article4
Choquet-Bruhat, Y., ``Espaces temps eineiniens généraux, chocs gravitationnels'', Ann. Inst. Poincaré, 8 (4), 327-338, (1968).
Jump To The First Citation Point In The Article5
Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time'', (Cambridge University Press, Cambridge, United Kingdom, 1973).
Jump To The First Citation Point In The Article6
Fischer, A., and Marsden, J., ``The Einstein Evolution Equations as a First-Order Symmetric Hyperbolic Quasilinear System'', Commun. Math. Phys., 28, 1-38, (1972).
Jump To The First Citation Point In The Article7
Fischer, A. and Marsden, J., ``General relativity, partial differential equations, and dynamical systems'', AMS Proc. Symp. Pure Math., 23, 309-327, (1973).
8
Lanczos, C., ``Ein vereinfachendes Koordinatensystem für die Einstienschen Gravitationsgleichungen'', Phys. Z., 23, 537-539, (1922).
Jump To The First Citation Point In The Article9
Choquet-Bruhat, Y., and Christodoulou, D., ``Elliptic systems in tex2html_wrap_inline1988 spaces on manifolds which are Euclidean at infinity'', Acta Math., 145, 129-150, (1981).
Jump To The First Citation Point In The Article10
Christodoulou, D., and O'Murchadha, N., ``The Boost Problem in General Relativity'', Commun. Math. Phys., 80, 271-300, (1981).
Jump To The First Citation Point In The Article11
Geroch, R., ``The Local Nonsingularity Theorem'', J. Math. Phys., 24, 1851, (1983).
Jump To The First Citation Point In The Article12
Geroch, R., and Xanthopolous, B.C., ``Asymptotic Simplicity Is Stable'', J. Math. Phys., 19, 714-719, (1978).
Jump To The First Citation Point In The Article13
Friedrich, H., ``On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations'', Proc. Roy. Soc. A, 375, 169-184, (1981).
Jump To The First Citation Point In The Article14
Friedrich, H., ``The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system'', Proc. Roy. Soc. A, 378, 401-421, (1981).
Jump To The First Citation Point In The Article15
Cutler, C., and Wald, R., ``Existence of radiating Eintein-Maxwell solutions which are tex2html_wrap_inline1362 on all of tex2html_wrap_inline1992 and  tex2html_wrap_inline1994 '', Class. Quantum Grav., 6, 453-466, (1989).
Jump To The First Citation Point In The Article16
Christodoulou, D., and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, (Princeton University Press, Princeton, USA, 1993).
Jump To The First Citation Point In The Article17
Klainerman, S., ``The null condition and global existence to nonlinear wave equations'', Lect. Appl. Math., 23, 293-326, (1986).
Jump To The First Citation Point In The Article18
Klainerman, S., ``Remarks on the global Sobolev inequalities in Minkowski Space'', Comm. Pure Appl. Math., 40, 111-117, (1987).
Jump To The First Citation Point In The Article19
Klainerman, S., ``Uniform decay estimates and the Lorentz invariance of the classical wave equation'', Comm. Pure Appl. Math., 38, 321-332, (1985).
Jump To The First Citation Point In The Article20
Geroch, R., ``Partial Differential Equations of Physics'', Scottish Summer School in Theoretical Physics, (1996). For a related online version see: Geroch, R., ``Partial Differential Equations of Physics'', (1996), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9602055 .
Jump To The First Citation Point In The Article21
Kreiss, H. and Lorentz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, (Acad. Press, San Diego, USA, 1989).
Jump To The First Citation Point In The Article22
Gustaffson, B., Kreiss, H.-O., Oliger, J., Time-Dependent Problems and Difference Methods, (Wiley, New York, USA, 1995).
Jump To The First Citation Point In The Article23
Taylor, M., Pseudodifferential operators and nonlinear PDE'', Progress in Mathematics 100, (Birkhuser, Boston, USA, 1991).
Jump To The First Citation Point In The Article24
Hadamard, J., Lectures on Cauchy's problem in linear partial differential equations, (Yale University Press, New Haven, Connecticut, 1921).
25
Kreiss, H. O., ``Über sachgemäße Cauchyprobleme'', Math. Scand., 7, 71-80, (1959).
Jump To The First Citation Point In The Article26
Leray, J., Hyperbolic Differential Equations, (Institute for Advanced Studies, Princeton, New Jersey, 1953).
Jump To The First Citation Point In The Article27
Leray, J., and Ohya, Y., Math. Ann., 170, 167, (1967).
Jump To The First Citation Point In The Article28
John, F., ``Formation of Singularities in Elastic Waves.'' Lecture Notes in Phys. (1984), 190-214, (Springer-Verlag).
Jump To The First Citation Point In The Article29
Sideris, T., ``Formation of Singularities in 3-d Compressible Fluids'', Comm. Math. Phys., 101, 475-485, (1985).
30
Kreiss, H.-O., Nagy, G., Ortiz, O., and Reula, O., ``Global Existence and Exponential Decay for Hyperbolic Dissipative Relativistic Fluid Theories'', J. Math. Phys., 38, 5272-5279, (1997). For a related online version see: Kreiss, et al., ``Global Existence and Exponential Decay for Hyperbolic Dissipative Relativistic Fluid Theories'', (February, 1997), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9702008 .
Jump To The First Citation Point In The Article31
Wald, R., General Relativity . (The University of Chicago Press, Chicago, USA, 1984).
Jump To The First Citation Point In The Article32
Bruhat, Y., ``Un theoreme d'inestabilite pour certain equations hyperboliques nonlinaires'', C.R. Acad. Sci. Paris, 276A, 281, (1973).
Jump To The First Citation Point In The Article33
Alcubierre, M., ``Appearance of coordinate shocks in hyperbolic formalisms of general relativity'', Phys. Rev. D, 55, 5981-5991, (1997).
Jump To The First Citation Point In The Article34
Friedrich, H., ``On the hyperbolicity of Einstein's and other gauge field equations'', Commun. Math. Phys., 100, 525-543, (1985).
Jump To The First Citation Point In The Article35
Friedrich, H., ``Hyperbolic reductions for Einstein's equations'', Class. Quantum Grav., 13, 1451-1469, (1996).
36
Choquet-Bruhat, Y., ``The Cauchy Problem'', Gravitation: an introduction to current research, in L. Witten, ed.,, 68-103, (Wiley, New York, USA, 1962).
Jump To The First Citation Point In The Article37
DeTurk, D., ``The Cauchy problem for Lorentz metrics with prescribed Ricci curvature'', Comp. Math., 48, 327-349, (1983).
38
Choquet-Bruhat, Y., and York Jr., J.W., ``The Cauchy Problem'', in A. Held, ed., General Relativity and Gravitation 1, (Plenum, New York, USA, 1980).
Jump To The First Citation Point In The Article39
Choquet-Bruhat, Y., and Ruggeri, T. ``Hyperbolicity of the 3+1 System of Einstein Equations'', Comm. Math. Phys., 89, 269-275, (1983).
Jump To The First Citation Point In The Article40
Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr., J.W., ``Einstein and Yang-Mills theories in hyperbolic form without gauge fixing'', Phys. Rev. Lett., 75, 3377, (1995). For a related online version see: Abrahams, et al., ``Einstein and Yang-Mills theories in hyperbolic form without gauge fixing'', (June, 1995), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9506072 .
41
Choquet-Bruhat, Y., and York Jr., J.W. ``Well posed reduced systems for the Einstein equations'', Comptes Ren. Acad. Paris, t.231 (serie I), 1089-1095, (1995). For a related online version see: Choquet-Bruhut, et al., ``Well posed reduced systems for the Einstein equations'', (June, 1996), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9606001 .
Jump To The First Citation Point In The Article42
Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr., J.W., ``Geometrical hyperbolic systems for general relativity and gauge theories'', Class. Quantum. Grav., 14, A9-A22, (1997). For a related online version see: Abrahams, et al., ``Geometrical hyperbolic systems for general relativity and gauge theories'', (March, 1996), [Online Los Alamos Archive Preprint]: cited on 16 April 1997, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9605014 .
Jump To The First Citation Point In The Article43
Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr., J.W., ``Hyperbolic formulation of general relativity'', IFP-UNC-520 December 1996. For a related online version see: Abrahams, et al., ``Hyperbolic formulation of general relativity'', (May, 1997), [Online Los Alamos Archive Preprint]: cited on 18 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9703010 .
Jump To The First Citation Point In The Article44
Bona, C., and Massó, J., Phys. Rev. Lett., 68, 1097, (1992).
Jump To The First Citation Point In The Article45
Bona, C., Massó, J., Seidel, E., and Stela, J., ``New Formalism for Numerical Relativity'', Phys. Rev. Lett., 75 (4), 600-603, (1995). For a related online version see: Bona, et al., ``New formalism for numerical relativity'', (December, 1994), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9412071 .
Jump To The First Citation Point In The Article46
Bona, C., Massó, J., and Stela, J., ``Numerical black holes: a moving grid approach'', Phys. Rev. D, 51, 1639-1645, (1995). For a related online version see: Bona, et al., ``Numerical black holes: a moving grid approach'', (December, 1994), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9412070 .
Jump To The First Citation Point In The Article47
Bona, C., Massó, J., Seidel, E., and Stela, J., ``First order hyperbolic formalism for Numerical Relativity'', (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9709016 .
Jump To The First Citation Point In The Article48
Frittelli, S., and Reula, O., ``On the newtonian limit of general relativity'', Comm. Math. Phys., 166, 2, (1994). For a related online version see Frittelli, et al. ``On the Newtoninan limit of general relativity'', (June, 1995), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9506077 .
Jump To The First Citation Point In The Article49
Frittelli, S., and Reula, O., ``First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge'', Phys. Rev. Lett., 76, 4667-4670, (1996). For a related online version see: Frittelli, et al., ``First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge'', (May, 1996), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9605005 .
Jump To The First Citation Point In The Article50
van Putten, M.H.P.M., and Eardley, D.M., ``Nonlinear wave equations for relativity'', Phys. Rev. D, 53, 3056-3063, (1996). For a related online version see: van Putten, et al., ``Nonlinear wave equations for relativity'', (May, 1995), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9505023 .
Jump To The First Citation Point In The Article51
Ashtekar, A., ``New Hamiltonian formulation of general relativity'', Phys. Rev. D, 36 (6), 1587, (1987).
Jump To The First Citation Point In The Article52
Ashtekar, A., New Perspectives in Canonical Gravity (Bibliopolis, 1988).
Jump To The First Citation Point In The Article53
Iriondo, M., Leguizamón, E., and Reula, O., ``Einstein's equations in Ashtekar variables constitute a symmetric hyperbolic system'', Phys. Rev. Lett., 4732-4735, (1997). For a related online version see: Iriondo, et al., ``Einstein's equations in Ashtekar variables constitute a symmetric hyperbolic system'', (October, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc//9710004 .
Jump To The First Citation Point In The Article54
Alcubierre, M., and Masso, J., ``Pathologies of hyperbolic gauges in general relativity and other field theories'', (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9709024 .
Jump To The First Citation Point In The Article55
Choquet-Bruhat, Y., and York Jr., J.W., ``Mixed elliptic and hyperbolic system for the Einstein equations'', in G. Ferrarese, ed.,, 55-75, (Editions Pitagora, 1996). For a related online version see: Choquet-Bruhat, et al., ``Mixed elliptic and hyperbolic system for the Einstein equations, (January, 1996), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9601030 .
Jump To The First Citation Point In The Article56
Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr., J.W., ``A nonstrictly hyperbolic system for the Einstein equations with arbitrary lapse and shift'', Comptes Ren. Acad. Paris, bf t.323(serie IIb), 835-841, (1996). For a related online version see: Abrahams, et al., ``A nonstrictly hyperbolic system for the Einstein equations with arbitrary lapse and shift'', (July, 1996), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9607006 .
Jump To The First Citation Point In The Article57
Rendall, A., ``The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system'', Commun. Math. Phys., 163, 89-112, (1994). For a related online version see: Rendall, A., ``The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system'', (March, 1993), [Online Los Alamos Archive Preprint]: cited on 7 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9303027 .
Jump To The First Citation Point In The Article58
Frittelli, S., ``Note on the propagation of the constraints in standard 3+1 general relativity'', Phys. Rev. D, 55, 5992-5996, (1997).
Jump To The First Citation Point In The Article59
Iriondo, M., Leguizamón, E., and Reula, O., ``Fast and Slow Solutions in General Relativity: The Initialization Procedure'', (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9709078 . To appear in J. Math. Phys. .
Jump To The First Citation Point In The Article60
Iriondo, M., Leguizamón, E., and Reula, O., ``The Newtonian Limit on Asymptotically Null Foliations'', (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, External Linkhttp://xxx.lanl.gov/gr-qc/970907 .
image Hyperbolic methods for Einstein's Equations
Oscar A. Reula
http://www.livingreviews.org/lrr-1998-3
© Max-Planck-Gesellschaft. ISSN 1433-8351
Problems/Comments to livrev@aei-potsdam.mpg.de