6.1 Integrability Properties of Killing Stationary Black Holes: Uniqueness and 5.3 The Israel-Wilson Class

6 Stationary and Axisymmetric Space-Times 

The presence of two Killing symmetries yields a considerable simplification of the field equations. In fact, for certain matter models the latter become completely integrable [127], provided that the Killing fields satisfy the Frobenius conditions. Space-times admitting two Killing fields provide the framework for both the theory of colliding gravitational waves and the theory of rotating black holes [36Jump To The Next Citation Point In The Article]. Although dealing with different physical subjects, the theories are mathematically closely related. As a consequence of this, various stationary and axisymmetric solutions which have no physical relevance give rise to interesting counterparts in the theory of colliding waves. Popup Footnote

This section reviews the structure of the stationary and axisymmetric field equations. We start by recalling the circularity problem (see also Sect. 2.1 and Sect. 3.5). It is argued that circularity is not a generic property of asymptotically flat, stationary and axisymmetric space-times. If, however, the symmetry conditions for the matter fields do imply circularity, then the reduction with respect to the second Killing field simplifies the field equations drastically. The systematic derivation of the Kerr-Newman metric and the proof of its uniqueness provide impressive illustrations of this fact.





6.1 Integrability Properties of Killing Stationary Black Holes: Uniqueness and 5.3 The Israel-Wilson Class

image Stationary Black Holes: Uniqueness and Beyond
Markus Heusler
http://www.livingreviews.org/lrr-1998-6
© Max-Planck-Gesellschaft. ISSN 1433-8351
Problems/Comments to livrev@aei-potsdam.mpg.de