Abrahams, A., Anderson, A., Choquet-Bruhat,
Y., and York Jr, J. W., ``Einstein and Yang-Mills
theories in hyperbolic form without gauge fixing'',
Phys. Rev. Lett.,
75, 3377-3381, (1996). For a related online version see:
A. Abrahams, et al., ``Einstein and Yang-Mills
theories in hyperbolic form without gauge fixing'', (June,
1995), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9506072
.
Andersson, L., and Chrusciel, P. T.,
``On `hyperboloidal' Cauchy data for vacuum Einstein
equations and obstructions to smoothness of
`null-infinity''',
Phys. Rev. Lett.,
70
(19), 2829-2832, (1993). For a related online version see:
L. Andersson, et al., ``On `hyperboloidal' Cauchy data
for vacuum Einstein equations and obstructions to
smoothness of `null-infinity''', (April, 1993), [Online Los
Alamos Archive Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9304019
.
Andersson, L., and Chrusciel, P. T.,
``On hyperboloidal Cauchy data for vacuum Einstein
equations and obstructions to smoothness of scri'',
Commun. Math. Phys.,
161
(3), 533-568, (1994).
Andersson, L., Chrusciel, P. T., and
Friedrich, H., ``On the regularity of solutions to the
Yamabe equation and the existence of smooth hyperboloidal
initial data for Einstein's field equations'',
Commun. Math. Phys.,
149, 587-612, (1992).
Arnowitt, R., Deser, S., and Misner,
C. W., ``The dynamics of general relativity'', in
Witten, Louis, ed.,
Gravitation: An Introduction to Current Research, 227-265, (Wiley, New York, 1962).
Ashtekar, A., ``Asymptotic structure of the
gravitational field at spatial infinity'', in Held, A.,
ed.,
General Relativity and Gravitation, chapter 2, 37-70, (Plenum Press, New York,
1980).
Ashtekar, A., ``Asymptotic properties of
isolated systems: recent developments'', in Bertotti, B.,
de Felice, F., and Pascolini, A., eds.,
General Relativity and Gravitation, 37-68, (D. Reidel Publishing Company, Dordrecht,
1984).
Ashtekar, A., Bombelli, L., and Reula, O.,
``The covariant phase space of asymptotically flat
gravitational fields'', in Francaviglia, M., ed.,
Mechanics, analysis and geometry: 200 years after
Lagrange, 417-450, (North-Holland Publishing Co., Amsterdam,
1991).
Ashtekar, A., and Hansen, R. O., ``A
unified treatment of null and spatial infinity. I.
Universal structure, asymptotic symmetries and conserved
quantities at spatial infinity'',
J. Math. Phys.,
19, 1542-1566, (1978).
Ashtekar, A., and Streubel, M.,
``Symplectic geometry of radiative modes and conserved
quantities at null infinity'',
Proc. R. Soc. London, Ser. A,
376, 585-607, (1981).
Ashtekar, A., and Xanthopoulos, B.,
``Isometries compatible with the asymptotic flatness at
null infinity: A complete description'',
J. Math. Phys.,
19, 2216-2222, (1978).
Bartnik, R., ``The spherically symmetric
Einstein-Yang-Mills equations'', in Perjes, Z., ed.,
Physics Today: Proceedings of the 1988 Hungarian
Relativity Workshop, Tihany, 221-240, (Nova Science Publishers, New York,
1992).
Baumgarte, T. W., and Shapiro,
S. L., ``On the numerical integration of Einstein's
field equations'',
Phys. Rev. D,
59, 024007, (1999). For a related online version see:
T. W. Baumgarte, et al., ``On the Numerical
Integration of Einstein's Field Equations'', (October,
1998), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9810065
.
Bishop, N. T., ``Some aspects of the
characteristic initial value problem'', in d' Inverno,
R. A., ed.,
Approaches to Numerical Relativity, 20-33, (Cambridge University Press, Cambridge,
1993).
Bishop, N. T., Gómez, R., Isaacson,
R. A., Lehner, L., Szilagy, B., and Winicour, J.,
``Cauchy Characteristic Matching'', in Iyer, B., ed.,
On the black hole trail, 383-408, (Kluwer, Dodrecht, 1998).
Bonazzola, S., Gourgoulhon, E., and Marck,
J.-A., ``Spectral methods in general relativistic
astrophysics'',
J. Comput. Appl. Math.,
109, 433-473, (1999).
Bondi, H., Pirani, F. A. E., and
Robinson, I., ``Gravitational waves in general relativity
III. Exact plane waves'',
Proc. R. Soc. London, Ser. A,
251, 519-533, (1959).
Bondi, H., van der Burg,
M. G. J., and Metzner, A. W. K.,
``Gravitational waves in general relativity VII. Waves from
axi-symmetric isolated systems'',
Proc. R. Soc. London, Ser. A,
269, 21-52, (1962).
Choquet-Bruhat, Y., and York, J. W.,
``The Cauchy Problem'', in Held, A., ed.,
General Relativity and Gravitation, volume 1, chapter 4, 99-172, (Plenum Press, New
York, 1980).
Christodoulou, D., ``The formation of black
holes and singularities in spherically symmetric
gravitational collapse'',
Commun. Pure Appl. Math.,
44, 339-373, (1991).
Chrusciel, P. T., MacCallum,
M. A., and Singleton, D., ``Gravitational waves in
general relativity. XIV. Bondi expansions and the
`polyhomogeneity' of
'',
Philos. Trans. R. Soc. London, Ser. A,
350
(1692), 113-141, (1995). For a related online version see:
P. T. Chrusciel, et al., ``Gravitational waves in
general relativity. XIV. Bondi expansions and the
``polyhomogeneity'' of
'', (May, 1993), [Online Los Alamos Archive Preprint]:
cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9305021
.
Ehlers, J., and Sachs, R. K.,
``Erhaltungssätze für die Wirkung in elektromagnetischen
und gravischen Strahlungsfeldern'',
Z. Phys.,
155, 498-506, (1959).
Frauendiener, J., ``Numerical treatment of
the hyperboloidal initial value problem for the vacuum
Einstein equations. II. The evolution equations'',
Phys. Rev. D,
58, 064003, (1998). For a related online version see:
J. Frauendiener, ``Numerical treatment of the
hyperboloidal initial value problem for the vacuum Einstein
equations. II. The evolution equations'', (December, 1997),
[Online Los Alamos Archive Preprint]: cited on December 19,
1999,
http://xxx.lanl.gov/abs/gr-qc/9712052
.
Frauendiener, J., ``Numerical treatment of
the hyperboloidal initial value problem for the vacuum
Einstein equations. I. The conformal field equations'',
Phys. Rev. D,
58, 064002, (1998). For a related online version see:
J. Frauendiener, ``Numerical treatment of the
hyperboloidal initial value problem for the vacuum Einstein
equations. I. The conformal field equations'', (December,
1997), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9712050
.
Frauendiener, J., ``Calculating initial
data for the conformal field equations by pseudo-spectral
methods'',
J. Comput. Appl. Math.,
109
(1-2), 475-491, (1999). For a related online version see:
J. Frauendiener, ``Calculating initial data for the
conformal field equations by pseudo-spectral methods'',
(June, 1998), [Online Los Alamos Archive Preprint]: cited
on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9806103
.
Frauendiener, J., ``Numerical treatment of
the hyperboloidal initial value problem for the vacuum
Einstein equations. III. On the determination of
radiation'',
Class. Quantum Grav.,
17
(2), 373-387, (2000). For a related online version see:
J. Frauendiener, ``Numerical treatment of the
hyperboloidal initial value problem for the vacuum Einstein
equations. III. On the determination of radiation'',
(August, 1998), [Online Los Alamos Archive Preprint]: cited
on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9808072
.
Friedrich, H., ``On the regular and the
asymptotic characteristic initial value problem for
Einstein's vacuum field equations'', in Walker, M., ed.,
Proceedings of the third Gregynog relativity workshop,
Gravitational Radiation Theory, number MPI-PAE / Astro 204 in Max-Planck Green Report,
(Max-Planck-Institut f. Physik und Astrophysik, München,
1979).
Friedrich, H., ``The asymptotic
characteristic initial value problem for Einstein's vacuum
field equations as an initial value problem for a
first-order quasilinear symmetric hyperbolic system'',
Proc. R. Soc. London, Ser. A,
378, 401-421, (1981).
Friedrich, H., ``On the regular and the
asymptotic characteristic initial value problem for
Einstein's vacuum field equations'',
Proc. R. Soc. London, Ser. A,
375, 169-184, (1981).
Friedrich, H., ``On the existence of
analytic null asymptotically flat solutions of Einstein's
field equations'',
Proc. R. Soc. London, Ser. A,
381, 361-371, (1982).
Friedrich, H., ``On the existence of
n-geodesically complete or future complete solutions of
Einstein's field equations with smooth asymptotic
structure'',
Commun. Math. Phys.,
107, 587-609, (1986).
Friedrich, H., ``On the global existence
and the asymptotic behavior of solutions to the
Einstein-Maxwell-Yang-Mills equations'',
J. Differ. Geom.,
34, 275-345, (1991).
Friedrich, H., ``Asymptotic structure of
space-time'', in Janis, A. I., and Porter, J. R.,
eds.,
Recent Advances in General Relativity: Essays in Honour
of E. T. Newman, 146-181, (Birkhäuser Inc., Boston, 1992).
Friedrich, H., ``Einstein's equation and
conformal structure'', in Huggett, S. A., Mason,
L. J., Tod, K. P., Tsou, S. S., and
Woodhouse, N. M. J., eds.,
The Geometric Universe: Science, Geometry and the Work
of Roger Penrose, 81-98, (Oxford University Press, Oxford, 1998).
Friedrich, H., and Kánnár, J., ``Bondi-type
systems near space-like infinity and the calculation of the
NP-constants'',
J. Math. Phys.,
41
(4), 2195-2232, (2000). For a related online version see:
H. Friedrich, et al., ``Bondi-type systems near
space-like infinity and the calculation of the
NP-constants'', (November, 1999), [Online Los Alamos
Archive Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9910077
.
Geroch, R., ``Space-time structure from a
global point of view'', in Sachs, R. K., ed.,
General Relativity and Cosmology, 71-103, (Academic Press, New York, 1971).
Geroch, R., ``Asymptotic Structure of
Space-time'', in Esposito, F. P., and Witten, L.,
eds.,
Asymptotic Structure of Space-Time, 1-105, (Plenum Press, New York, 1977).
Goldberg, J. N., ``Invariant
transformations, conservation laws and energy-momentum'',
in Held, A., ed.,
General Relativity and Gravitation, volume 1, chapter 15, 469-489, (Plenum Press,
New York, 1980).
Hübner, P., ``Method for calculating the
global structure of (singular) spacetimes'',
Phys. Rev. D,
53
(2), 701-721, (1994). For a related online version see:
P. Hübner, ``Method for calculating the global
structure of (singular) spacetimes'', (September, 1994),
[Online Los Alamos Archive Preprint]: cited on December 19,
1999,
http://xxx.lanl.gov/abs/gr-qc/9409029
.
Hübner, P., ``General relativistic
scalar-field models and asymptotic flatness'',
Class. Quantum Grav.,
12
(3), 791-808, (1995). For a related online version see:
P. Hübner, ``General relativistic scalar-field models
and asymptotic flatness'', (August, 1994), [Online Los
Alamos Archive Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9408012
.
Hübner, P., ``How to avoid artificial
boundaries in the numerical calculation of black hole
space-times'',
Class. Quantum Grav.,
16
(7), 2145-2164, (1999). For a related online version see:
P. Hübner, ``How to avoid artificial boundaries in the
numerical calculation of black hole space-times'', (April,
1999), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9804065
.
Hübner, P., ``A scheme to numerically
evolve data for the conformal Einstein equation'',
Class. Quantum Grav.,
16
(9), 2823-2843, (1999). For a related online version see:
P. Hübner, ``A scheme to numerically evolve data for
the conformal Einstein equation'', (March, 1999), [Online
Los Alamos Archive Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9903088
.
Huggett, S. A., Mason, L. J.,
Tod, K. P., Tsou, S. S., and Woodhouse,
N. M. J., eds.,
The Geometric Universe: Science, Geometry and the Work
of Roger Penrose, (Oxford University Press, Oxford, 1998).
Hungerbühler, R.,
Lösung kugelsymmetrischer Systeme in der Allgemeinen
Relativitätstheorie mit Pseudospektralmethoden, Diplomarbeit, (Universität Tübingen, Tübingen,
1997).
Isenberg, J., and Park, J.,
``Asymptotically hyberbolic nonconstant mean curvature
solutions of the Einstein constraint equations'',
Class. Quantum Grav.,
14, A189-A201, (1997).
Jordan, P., Ehlers, J., and Sachs,
R. K., ``Beiträge zur Theorie der reinen
Gravitationsstrahlung'',
Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl.,
1, 1-85, (1961).
Kánnár, J., ``Hyperboloidal initial data
for the vacuum Einstein equations with cosmological
constant'',
Class. Quantum Grav.,
13
(11), 3075-3084, (1996).
Kánnár, J., ``On the existence of
solutions to the asymptotic characteristic initial value
problem in general elativity'',
Proc. R. Soc. London, Ser. A,
452, 945-952, (1996).
Kozameh, C. N., ``Dynamics of null
surfaces in general relativity'', in Dadhich, N., and
Narlikar, J., eds.,
Gravitation and Relativity: At the turn of the
Millennium. Proceedings of the GR-15 Conference, 139-152, (IUCAA, Pune, India, 1998).
McCarthy, P. J., ``Representations of
the Bondi-Metzner-Sachs group I. Determination of the
representations'',
Proc. R. Soc. London, Ser. A,
330, 517-535, (1972).
McCarthy, P. J., ``Representations of
the Bondi-Metzner-Sachs group II. Properties and
classification of the representations'',
Proc. R. Soc. London, Ser. A,
333, 317-336, (1973).
McLennan, J. A., ``Conformal
invariance and conservation laws for relativistic wave
equations for zero rest mass'',
Nuovo Cimento,
3, 1360-1379, (1956).
Newman, E. T., and Penrose, R., ``An
approach to gravitational radiation by a method of spin
coefficients'',
J. Math. Phys.,
3, 896-902, (1962). Errata
4
(1963), 998.
Newman, E. T., and Penrose, R., ``New
conservation laws for zero rest-mass fields in
asymptotically flat space-time'',
Proc. R. Soc. London, Ser. A,
305, 175-204, (1968).
Newman, E. T., and Tod, K. P.,
``Asymptotically flat space-times'', in Held, A., ed.,
General Relativity and Gravitation, volume 2, chapter 1, 1-36, (Plenum Press, New
York, 1980).
Penrose, R., ``Structure of space-time'',
in DeWitt, C. M., and Wheeler, J. A., eds.,
Battelle Rencontres, 121-235, (W. A. Benjamin, Inc., New York,
1968).
Penrose, R., ``Relativistic symmetry
groups'', in Barut, A. O., ed.,
Group Theory in non-linear Problems, chapter 1, 1-58, (D. Reidel Publishing Company,
Dordrecht, 1974).
Penrose, R., ``Null hypersurface initial
data for classical fields of arbitrary spin and for general
relativity'',
Gen. Relativ. Gravit.,
12, 225-264, (1980). originally published in
Aerospace Research Laboratories Report
63-56 (P. G. Bergmann).
Penrose, R., ``Some remarks on twistor
theory'', in Harvey, A., ed.,
On Einstein's Path: Essays in Honor of Engelbert
Schücking, chapter 25, 353-366, (Springer, New York,
1999).
Pirani, F. A. E., ``Gravitational
waves in general relativity IV. The gravitational field of
a fast-moving particle'',
Proc. R. Soc. London, Ser. A,
252, 96-101, (1959).
Rendall, A. D., ``Local and global
existence theorems for the Einstein equations'', (January,
1998), [Article in Online Journal Living Reviews in
Relativity]: cited on December 19, 1999,
http://www.livingreviews.org/Articles/Volume1/1998-4rendall
.
Sachs, R. K., ``Gravitational waves in
general relativity VIII. Waves in asymptotically flat
space-time'',
Proc. R. Soc. London, Ser. A,
270, 103-127, (1962).
Sachs, R. K., ``Characteristic initial
value problem for gravitational theory'', in Infeld, L.,
ed.,
Relativistic Theories of Gravitation, 93-105, (Pergamon Press, Oxford, 1964).
Sachs, R. K., ``Gravitational
radiation'', in DeWitt, C. M., and DeWitt, B., eds.,
Relativity, Groups and Topology, 523-562, (Gordon and Breach, New York, 1964).
Schmidt, B. G., ``Conformal bundle
boundaries'', in Esposito, F. P., and Witten, L.,
eds.,
Asymptotic structure of space-time, 429-440, (Plenum Press, New York, 1977).
Schmidt, B. G., ``Asymptotic structure
of isolated systems'', in Ehlers, J., ed.,
Isolated Gravitating Systems in General Relativity, 11-49, (Academic Press, New York - London, 1978).
Trefethen, L. N., ``Finite Difference
and Spectral Methods for Ordinary and Partial Differential
Equations'', graduate textbook, privately published,
(1996).
Valiente Kroon, J. A.,
``Conserved quantities for polyhomogeneous space-times'',
Class. Quantum Grav.,
15, 2479-2491, (1998). For a related online version see:
J. A. Valiente Kroon, ``Conserved Quantities for
Polyhomogeneous Space-Times'', (May, 1998), [Online Los
Alamos Archive Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9805094
.
Valiente Kroon, J. A.,
``Logarithmic Newman-Penrose constants for arbitrary
polyhomogeneous spacetimes'',
Class. Quantum Grav.,
16, 1653-1665, (1999). For a related online version see:
J. A. Valiente Kroon, ``Logarithmic
Newman-Penrose constants for arbitrary polyhomogeneous
spacetimes'', (December, 1998), [Online Los Alamos Archive
Preprint]: cited on December 19, 1999,
http://xxx.lanl.gov/abs/gr-qc/9812004
.
Winicour, J., ``Angular momentum in general
relativity'', in Held, A., ed.,
General Relativity and Gravitation, volume 1, chapter 3, 71-96, (Plenum Press, New
York, 1980).