Thomas et al. [155] investigated the internal structure of galaxy clusters formed in high resolution N-body simulations of four different cosmological models, including standard, open, and flat but low density Universes. They find that the structure of relaxed clusters is similar in the critical and low density Universes, although the critical density models contain relatively more disordered clusters due to the freeze-out of fluctuations in open Universes at late times. The profiles of relaxed clusters are very similar in the different simulations since most clusters are in a quasi-equilibrium state inside the virial radius and generally follow the universal density profile of Navarro et al. [125] . There does not appear to be a strong cosmological dependence in the profiles as suggested by previous studies of clusters formed from pure power law initial density fluctuations [65] . However, because more young and dynamically evolving clusters are found in critical density Universes, Thomas et al. suggest that it may be possible to discriminate among the density parameters by looking for multiple cores in the substructure of the dynamic cluster population. They note that a statistical population of 20 clusters could distinguish between open and critically closed Universes.
The evolution of the number density of rich
clusters of galaxies can be used to compute
and
(the power spectrum normalization on scales of
) when numerical simulation results are combined with the
constraint
, derived from observed present-day abundances of rich clusters.
Bahcall et al.
[24]
computed the evolution of the cluster mass function in five
different cosmological model simulations and find that the number
of high mass (Coma-like) clusters in flat, low
models (i.e., the standard CDM model with
) decreases dramatically by a factor of approximately
from
to
. For low
, high
models, the data result in a much slower decrease in the number
density of clusters over the same redshift interval. Comparing
these results to observations of rich clusters in the real
Universe, which indicate only a slight evolution of cluster
abundances to redshifts
0.5-1, they conclude that critically closed standard CDM and
Mixed Dark Matter (MDM) models are not consistent with the
observed data. The models which best fit the data are the open
models with low bias (
and
), and flat low density models with a cosmological constant (
and
).
The evolution of the X-ray luminosity function, as well as the number, size and temperature distribution of galaxy clusters are all potentially important discriminants of cosmological models and the underlying initial density power spectrum that gives rise to these structures. Because the X-ray luminosity (principally due to thermal bremsstrahlung emission from electron/ion interactions in the hot fully ionized cluster medium) is proportional to the square of the gas density, the contrast between cluster and background intensities is large enough to provide a window of observations that is especially sensitive to cluster structure. Comparisons of simulated and observed X-ray functions may be used to deduce the amplitude and shape of the fluctuation spectrum, the mean density of the Universe, the mass fraction of baryons, the structure formation model, and the background cosmological model.
Several groups
[49, 56]
have examined the properties of X-ray clusters in high
resolution numerical simulations of a standard CDM model
normalized to COBE. Although the results are very sensitive to
grid resolution (see
[17
]
for a discussion of the effects from resolution constraints on
the properties of rich clusters), their primary conclusion, that
the standard CDM model predicts too many bright X-ray emitting
clusters and too much integrated X-ray intensity, is robust since
an increase in resolution will only exaggerate these problems. On
the other hand, similar calculations with different cosmological
models
[56, 52]
suggest reasonable agreement of observed data with Cold Dark
Matter + cosmological constant (
CDM), Cold + Hot Dark Matter (CHDM), and Open or low density CDM
(OCDM) evolutions due to different universal expansions and
density power spectra.
The Sunyaev-Zel’dovich (SZ) effect is the
change in energy that CMB photons undergo when they scatter in
hot gas typically found in cores of galaxy clusters. There are
two main effects: thermal and kinetic. Thermal SZ is the dominant
mechanism which arises from thermal motion of gas in the
temperature range
, and is described by the Compton
parameter
Springel et al.
[150]
used a Tree/SPH code to study the SZ effects in a CDM cosmology
with a cosmological constant. They find a mean amplitude for
thermal SZ () just below current observed upper limits, and a kinetic SZ
about 30 times smaller in power. Da Silva et al.
[66]
compared thermal SZ maps in three different cosmologies (low
density +
, critical density, and low density open model). Their results
are also below current limits:
for low density models with contributions from over a broad
redshift range
, and
for the critical density model with contributions mostly from
. However, further simulations are needed to explore the
dependence of the SZ effect on microphysics, i.e., cooling, star
formation, supernovae feedback.
![]() |
http://www.livingreviews.org/lrr-2001-2 | © Max Planck Society and
the author(s)
Problems/comments to |