Abrahams, A. M., and Evans,
C. R., ``Gauge invariant treatment of gravitational
radiation near the source: Analysis and numerical
spacetimes'',
Phys. Rev. D,
42
(8), 2585-2594, (1990).
Abrahams, A. M., and Price,
R. H., ``Applying black hole perturbation theory to
numerically generated spacetimes'',
Phys. Rev. D,
53
(4), 1963-1971, (1996).
Abrahams, A. M., Shapiro, S. L.,
and Teukolsky, S. A., ``Calculation of gravitational
waveforms from black hole collisions: Applying perturbation
theory to numerical spacetimes'',
Phys. Rev. D,
51
(8), 4295-4301, (1995).
Anderson, J. L., and Hobill, D.,
``Matched analytic-numerical solutions of wave equations'',
in Centrella, J., ed.,
Dynamical Spacetimes and Numerical Relativity, 389-410, (Cambridge University Press, Cambridge,
1986).
Anderson, J. L., and Hobill,
D. W., ``Mixed analytic-numerical solutions for a
simple radiating system'',
Gen. Relativ. Gravit.,
19
(6), 563-580, (1987).
Anderson, J. L., and Hobill,
D. W., ``A Study of nonlinear radiation damping by
matching analytic and numerical solutions'',
J. Comput. Phys.,
75
(2), 283-299, (1988).
Anderson, J. L., Kates, R. E.,
Kegles, L. S., and Madonna, R., ``Divergent integrals
of post-Newtonian gravity: Nonanalytic terms in the
near-zone expansion of a gravitationally radiating system
found by matching'',
J. Math. Phys.,
25
(8), 2038-2048, (1982).
Arnowitt, R., Deser, S., and Misner,
C. W., ``The dynamics of general relativity'', in
Witten, L., ed.,
Gravitation - an introduction to current research, 227, (Wiley, New York, 1962).
Barreto, W., and Da Silva, A.,
``Gravitational collapse of a charged and radiating fluid
ball in the diffusion limit'',
Gen. Relativ. Gravit.,
28
(6), 735-747, (1996).
Bartnik, R., ``Interaction of gravitational
waves with a black hole'', in Bracken, T., and De-Wit, D.,
eds.,
XIIth Int'l Congress Math. Phys., 3, (International Press, Hong Kong, 1999).
Bartnik, R., ``Assessing accuracy in a
numerical Einstein solver'', in Weinstein, G., and Weikard,
R., eds.,
Differential equations and mathematical physics, 11, (International Press, Cambridge, 2000).
Bartnik, R., and Norton, A. H.,
``Numerical solution of the Einstein equations'', in Noye,
B. J., Teubner, M. D., and Gill, A. W.,
eds.,
Computational Techniques and Applications: CTAC97, 91, (World Scientific, Singapore, 1998).
Bartnik, R., and Norton, A. H.,
``Geometric implementation of spherical harmonics'', in
Computational Techniques and Applications: CTAC99, J. Austral. Math. Soc., Series B, (2000). To
appear.
Bartnik, R., and Norton, A. H.,
``Numerical methods for the Einstein equations in null
quasi-spherical coordinates'',
SIAM J. Sci. Comput.,
22
(3), 917-950, (2000).
Bishop, N. T., ``Some aspects of the
characteristic initial value problem in numerical
relativity'', in d'Inverno, R., ed.,
Approaches to Numerical Relativity, 20-33, (Cambridge University Press, Cambridge,,
1992).
Bishop, N. T., Gómez, R., Holvorcem,
P. R., Matzner, R. A., Papadopoulos, P, and
Winicour, J., ``Cauchy-characteristic matching: A new
approach to radiation boundary conditions'',
Phys. Rev. Lett.,
76
(23), 4303-4306, (1996).
Bishop, N. T., Gómez, R., Holvorcem,
P. R., Matzner, R. A., Papadopoulos, P, and
Winicour, J., ``Cauchy-characteristic evolution and
waveforms'',
J. Comput. Phys.,
136
(1), 140-167, (1997).
Bishop, N. T., Gómez, R., Isaacson,
R. A., Lehner, L., Szilagyi, B., and Winicour, J,
``Cauchy Characteristic Matching'', in Bhawal, B., and
Iyer, B. R., eds.,
On the Black Hole Trail, chapter 24, 383, (Kluwer, Dordrecht, 1998).
Bishop, N. T., Gómez, R., Lehner, L.,, Maharaj, M., and Winicour, J., ``The incorporation of
matter into characteristic numerical relativity'',
Phys. Rev. D,
60
(2), 24005, (1999).
Bondi, H., van der Burg,
M. J. G., and Metzner, A. W. K.,
``Gravitational waves in general relativity VII. Waves from
axi-symmetric isolated systems'',
Proc. R. Soc. London, Ser. A,
269, 21-52, (1962).
Burke, W. L., ``Gravitational
radiation damping of slowly moving systems calculated using
matched asymptotic expansions'',
J. Math. Phys.,
12
(3), 401-418, (1971).
Butler, D. S., ``The numerical
solution of hyperbolic systems of partial differential
equations in three independent variables'',
Proc. R. Soc. London, Ser. A,
255, 232-252, (1960).
Choptuik, M. W., ``Critical behavior
in massless scalar field collapse'', in d'Inverno, R., ed.,
Approaches to Numerical Relativity, 202, (Cambridge University Press, Cambridge,
1992).
Christodoulou, D., ``Global existence of
generalized solutions of the spherically symmetric
Einstein-scalar equations in the large'',
Commun. Math. Phys.,
106
(4), 587-621, (1986).
Christodoulou, D., ``The structure and
uniqueness of generalized solutions of the spherically
symmetric Einstein-scalar equations'',
Commun. Math. Phys.,
109
(4), 591-611, (1987).
Clarke, C., d'Inverno, R., and Vickers, J.,
``Combining Cauchy and characteristic codes. I. The
vacuum cylindrically symmetric problem'',
Phys. Rev. D,
52
(12), 6863-6867, (1995).
Corkill, R. W., and Stewart,
J. M., ``Numerical relativity II. Numerical methods
for the characteristic initial value problem and the
evolution of the vacuum field equations for space-times
with two Killing vectors'',
Proc. R. Soc. London, Ser. A,
386, 373-391, (1983).
de Moerloose, J., and de Zutter,
D., ``Surface integral representation boundary condition
for the FDTD method'',
IEEE Trans. Ant. Prop.,
41
(7), 890-896, (1993).
d'Inverno, R. A., Dubal, M. R.,
and Sarkies, E. A., ``Cauchy-characteristic matching
for a family of cylindrical vacuum solutions possessing
both gravitational degrees of freedom'',
Class. Quantum Grav.,
17
(16), 3157-3170, (2000).
d'Inverno, R. A., and Vickers,
J. A., ``Combining Cauchy and characteristic codes.
III. The interface problem in axial symmetry'',
Phys. Rev. D,
54
(8), 4919-4928, (1996).
d'Inverno, R. A., and Vickers,
J. A., ``Combining Cauchy and characteristic codes.
IV. The characteristic field equations in axial
symmetry'',
Phys. Rev. D,
56
(2), 772-784, (1997).
Dubal, M., d'Inverno, R., and Clarke, C.,
``Combining Cauchy and characteristic codes. II. The
interface problem for vacuum cylindrical symmetry'',
Phys. Rev. D,
52
(12), 6868-6881, (1995).
Friedrich, H., ``The asymptotic
characteristic initial value problem for Einstein's vacuum
field equations as an initial value problem for a
first-order quasilinear symmetric hyperbolic system'',
Proc. R. Soc. London, Ser. A,
378, 401-421, (1981).
Friedrich, H., ``On the regular and the
asymptotic characteristic initial value problem for
Einstein's vacuum field equations'',
Proc. R. Soc. London, Ser. A,
375, 169-184, (1981).
Friedrich, H., and Stewart, J. M.,
``Characteristic initial data and wavefront singularities
in general relativity'',
Proc. R. Soc. London, Ser. A,
385, 345-371, (1983).
Gómez, R., Husa, S., and Winicour, J.,
``Complete null data for a black hole collision'',
(September, 2000), [Online Los Alamos Archive Preprint]:
cited on 18 January 2001,
http://xxx.lanl.gov/abs/gr-qc/0009092
.
Gómez, R., Schmidt, B., and Winicour, J.,
``Newman-Penrose Constants and the Tails of Self
Gravitating Waves'',
Phys. Rev. D,
49
(6), 2828-2836, (1994).
Gundlach, C., Price, R., and Pullin, J.,
``Late-time behavior of stellar collapse and explosions:
I. Linear Perturbations'',
Phys. Rev. D,
49
(2), 883-889, (1994).
Gundlach, C., Price, R., and Pullin, J.,
``Late-time behavior of stellar collapse and explosions:
II. Nonlinear Evolution'',
Phys. Rev. D,
49
(2), 890-899, (1994).
Higdon, R., ``Absorbing boundary conditions
for difference approximations to the multi-dimensional wave
equation'',
Math. Comput.,
47
(176), 437-459, (1986).
Husa, S., Lechner, C., Purrer, M.,
Thornburg, J., and Aichelburg, P. C., ``Type II
critical collapse of a self-gravitating nonlinear
-model'',
Phys. Rev. D,
62, 104007, (2000).
Ipser, J., and Horwitz, G., ``The problem
of maximizing functionals in Newtonian stellar dynamics,
and its relation to thermodynamic and dynamical
stability'',
Astrophys. J.,
232
(3), 863-873, (1979).
Kates, R. E., and Kegeles, L. S.,
``Nonanalytic terms in the slow-motion expansion of a
radiating scalar field on a Schwarzschild background'',
Phys. Rev. D,
25
(8), 2030-2037, (1982).
Lehner, L., Bishop, N. T., Gómez, R.,
Szilágyi, B., and Winicour, J., ``Exact solutions for the
intrinsic geometry of black hole coalescence'',
Phys. Rev. D,
60, 044005, (1999).
Matzner, R. A., Seidel, H. E.,
Shapiro, S. L., Smarr, L. L., Suen, W.-M., and
Winicour, J., ``Geometry of a black hole collision'',
Science,
270, 941-947, (1995).
Newman, E. T., and Penrose, R., ``New
conservation laws for zero rest-mass fields in
asymptotically flat space-time'',
Proc. R. Soc. London, Ser. A,
305, 175-204, (1968).
Papadopoulos, P., and Font, J. A.,
``Relativistic hydrodynamics on spacelike and null
surfaces: Formalism and computation of spherically
symmetric spacetimes'',
Phys. Rev. D,
61, 024015, (2000).
Papadopoulos, P., and Font, J. A.,
``Imprints of accretion on gravitational waves from black
holes'',
Phys. Rev. D,
63, 044016, (2001). For a related online version see:
P. Papadopoulos, et al., ``Imprints of accretion on
gravitational waves from black holes'', (September, 2000),
[Online Los Alamos Archive Preprint]: cited on 18 January
2001,
http://xxx.lanl.gov/abs/gr-qc/0009024
.
Piran, T., Safier, P. N., and Katz,
J., ``Cylindrical gravitational waves with two degrees of
freedom: An exact solution'',
Phys. Rev. D,
34
(2), 331-332, (1986).
Rendall, A., ``Local and global existence
theorems for the Einstein equations'', (January, 2000),
[Article in Online Journal Living Reviews in Relativity]:
cited on 18 January 2001,
http://www.livingreviews.org/Articles/Volume3/2000-1rendall
.
Ryaben'kii, V., and Tsynkov, S. V.,
``An Application of the Difference Potentials Method to
Solving External Problems in CFD'', in Hafez, M., and
Oshima, K., eds.,
Computational Fluid Dynamics Review, volume 2, (World Scientific, Singapore,
1998).
Sachs, R. K., ``Gravitational waves in
general relativity VIII. Waves in asymptotically flat
space-time'',
Proc. R. Soc. London, Ser. A,
270, 103-126, (1962).
Scheel, M. A., L., Shapiro S.,
and Teukolsky, S. A., ``Collapse to black holes in
Brans-Dicke theory: I. Horizon boundary conditions for
dynamical spacetimes'',
Phys. Rev. D,
51
(8), 4208-4235, (1995).
Scheel, M. A., L., Shapiro S.,
and Teukolsky, S. A., ``Collapse to black holes in
Brans-Dicke theory: II. Comparison with general
relativity'',
Phys. Rev. D,
51
(8), 4236-4249, (1995).
Sperhake, U., Sjödin, K. R. P.,
and Vickers, J. A., ``Dynamic cosmic strings II:
Numerical evolution of excited strings'',
Phys. Rev. D,
63, 024012, (2001).
Stark, R. F., and Piran, T., ``A
general relativistic code for rotating axisymmetric
configurations and gravitational radiation: Numerical
methods and tests'',
Comput. Phys. Rep.,
5
(5), 221-264, (1987).
Stewart, J. M., ``Numerical
relativity'', in Bonnor, W. B., Isham, J. N., and
MacCallum, M. A. H., eds.,
Classical General Relativity, 231, (Cambridge University Press, Cambridge,
1984).
Stewart, J. M., ``The characteristic
initial value problem in general relativity'', in Winkler,
K.-H. A., and Norman, M. L., eds.,
Astrophysical Radiation Hydrodynamics, 531, (Reidel, Dordrecht, 1986).
Stewart, J. M., and Friedrich, H.,
``Numerical relativity I. The characteristic initial value
problem'',
Proc. R. Soc. London, Ser. A,
384, 427-454, (1982).
The Binary Black Hole Grand Challenge
Alliance, ``Boosted three-dimensional black hole evolution
with singularity excision'',
Phys. Rev. Lett.,
80
(12), 2512-2516, (1998).
The Binary Black Hole Grand Challenge
Alliance, ``Gravitational wave extraction and outer
boundary conditions by perturbative matching'',
Phys. Rev. Lett.,
80
(9), 1812-1815, (1998).
Thornburg, J., ``Coordinates and boundary
conditions for the general relativistic initial data
problem'',
Class. Quantum Grav.,
4
(5), 1119-1139, (1987).
Weber, J., and Wheeler, J. A.,
``Reality of the cylindrical gravitational waves of
Einstein and Rosen'',
Proc. R. Soc. London, Ser. A,
29, 509, (1957).
York, J., ``Kinematics and dynamics of
general relativity'', in Smarr, L. L., ed.,
Sources of Gravitational Radiation, 83-126, (Cambridge University Press, Cambridge,
1979).