Cauchy-characteristic matching (CCM) is a way to avoid such
limitations by combining the strong points of characteristic and
Cauchy evolution into a global evolution [25]. One of the prime goals of computational relativity is the
simulation of the inspiral and merger of binary black holes.
Given the appropriate worldtube data for a binary system in its
interior, characteristic evolution can supply the exterior
spacetime and the radiated waveform. But determination of the
worldtube data for a binary requires an interior Cauchy
evolution. CCM is designed to solve such global problems. The
potential advantages of CCM over traditional boundary conditions
are:
These advantages have been realized in model tests but CCM has not yet been successful in either axisymmetric or fully three-dimensional general relativity. This difficulty may possibly arise from a pathology in the way boundary conditions have traditionally been applied in the Arnowitt-Deser-Misner (ADM) [10] formulation of the Einstein equations which, at present, is the only formulation for which CCM has been attempted.
Instabilities or inaccuracies introduced at boundaries have emerged as a major problem common to all ADM code development and have led to pessimism that such codes might be inherently unstable because of the lack of manifest hyperbolicity in the underlying equations. In order to shed light on this issue, B. Szilágyi [137, 138], as part of his thesis research, carried out a study of ADM evolution-boundary algorithms in the simple environment of linearized gravity, where nonlinear sources of physical or numerical instability are absent and computing time is reduced by a factor of five by use of a linearized code. The two main results, for prescribed values of lapse and shift, were:
The criteria for robust stability is that the initial Cauchy data and free boundary data be prescribed as random numbers. It is the most severe test of stability yet carried out in the Cauchy evolution of general relativity. Similar robust stability tests were previously successfully carried out for the PITT characteristic code.
CCM cannot work unless the Cauchy code, as well as the characteristic code, has a robustly stable boundary. This is necessarily so because interpolations continually introduce short wavelength noise into the neighborhood of the boundary. Robustness of the Cauchy boundary is a necessary (although not a sufficient) condition for the successful implementation of CCM. The robustly stable ADM evolution-boundary algorithm differs from previous approaches and offers fresh hope for the success of CCM in general relativity.
![]() |
Characteristic Evolution and Matching
Jeffrey Winicour http://www.livingreviews.org/lrr-2001-3 © Max-Planck-Gesellschaft. ISSN 1433-8351 Problems/Comments to livrev@aei-potsdam.mpg.de |