The animation in Fig.
3
shows a sequence of consecutive single pulses from PSR B0329+54
, one of the brightest pulsars. This pulsar is seen in the
animation to stabilise into its characteristic 3-component form
after the summation of a number of seemingly erratic single
pulses. Stabilization time-scales are typically several hundred
pulses [94]. This property is of key importance in pulsar timing
measurements discussed in detail in §
4
.
Fig. 4 shows the rich diversity in morphology from simple single-component profiles to examples in which emission is observed over the entire pulse. The astute reader will notice two examples of ``interpulses'' - a secondary pulse separated by about 180 degrees from the main pulse. The most natural interpretation for this phenomenon is that the two pulses originate from opposite magnetic poles of the neutron star (see however [158]). Since this is an unlikely viewing angle we would expect interpulses to be a rare phenomenon. Indeed this is the case: the fraction of known pulsars in which interpulses are observed in their pulse profiles is only a few percent.
Two contrasting phenomenological models to explain the
observed pulse shapes are shown in Fig.
5
. The ``core and cone'' model, proposed by Rankin [198], depicts the beam as a core surrounded by a series of nested
cones. Alternatively, the ``patchy beam'' model, championed by
Lyne and Manchester [149,
89], has the beam populated by a series of randomly-distributed
emitting regions. Further work in this area, particularly in
trying to quantify the variety of pulse shapes (number of
distinct components and the relative fraction that they occur) is
necessary to improve our understanding of the fraction of sky
covered by the radio pulsar emission beam. We return to this
topic in the context of pulsar demography later on in §
3.2
.
![]() |
Binary and Millisecond Pulsars at the New Millennium
Duncan R. Lorimer http://www.livingreviews.org/lrr-2001-5 © Max-Planck-Gesellschaft. ISSN 1433-8351 Problems/Comments to livrev@aei-potsdam.mpg.de |