Anderson, M., ``Scalar curvature and
geometrization structures for 3-manifolds'', in Grove, K.,
and Peterson, P., eds.,
Comparison geometry, 49-82, (Cambridge University Press, Cambridge,
1997).
Andersson, L., ``The global existence
problem in general relativity'', (November, 1999), [Online
Los Alamos Archive Preprint]: cited on 4 December 1999,
http://xxx.lanl.gov/abs/gr-qc/9911032
.
Andersson, L., Chrusciel, P.T., and
Friedrich, H., ``On the regularity of solutions to the
Yamabe equation and the existence of smooth hyperboloidal
initial data for Einstein's field equations'',
Commun. Math. Phys.,
149, 587-612, (1992).
Andréasson, H., ``Regularity of the gain
term and strong
convergence to equilibrium for the relativistic Boltzmann
equation'',
SIAM J. Math. Anal.,
27, 1386-1405, (1996).
Andréasson, H., Rein, G., and Rendall,
A.D., ``On the Einstein-Vlasov system with hyperbolic
symmetry'', (October, 2001), [Online Los Alamos Archive
Preprint]: cited on 28 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0110089
.
Anguige, K., ``A class of perfect-fluid
cosmologies with polarised Gowdy symmetry and a Kasner-like
singularity'', (May, 2000), [Online Los Alamos Archive
Preprint]: cited on 29 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0005086
.
Anguige, K., ``Isotropic cosmological
singularities 3: The Cauchy problem for the inhomogeneous
conformal Einstein-Vlasov equations.'',
Ann. Phys. (N. Y.),
282, 395-419, (2000).
Anninos, P., ``Computational Cosmology:
from the Early Universe to the Large Scale Structure'',
Living Rev. Relativity,
4, 2001-2, (February, 2001), [Online HTML Document]: cited
on 24 January 2002,
http://www.livingreviews.org/Articles/Volume4/2001-2anninos
.
Arnold, V.I., and Ilyashenko, Yu.S.,
``Ordinary differential equations'', in Anosov, D.V., and
Arnold, V.I., eds.,
Dynamical Systems I., 1-148, (Springer, Berlin, 1988).
Baouendi, M.S., and Goulaouic, C.,
``Remarks on the abstract form of nonlinear
Cauchy-Kovalevsky theorems'',
Commun. Part. Diff. Eq.,
2, 1151-1162, (1977).
Batt, J., Faltenbacher, W., and Horst, E.,
``Stationary spherically symmetric models in stellar
dynamics'',
Arch. Rat. Mech. Anal.,
93, 159-183, (1986).
Beale, J.T., Hou, T.Y., and Lowengrub,
J.S., ``Growth rates for the linearized motion of fluid
interfaces away from equilibrium'',
Commun. Pure Appl. Math.,
46, 1269-1301, (1993).
Beig, R., and Schmidt, B.G., ``Static,
self-gravitating elastic bodies'', (February, 2002),
[Online Los Alamos Archive Preprint]: cited on 8 February
2002,
http://xxx.lanl.gov/abs/gr-qc/0202024
.
Belinskii, V.A., Khalatnikov, I.M., and
Lifshitz, E.M., ``Oscillatory approach to a singular point
in the relativistic cosmology'',
Adv. Phys.,
19, 525-573, (1970).
Belinskii, V.A., Khalatnikov, I.M., and
Lifshitz, E.M., ``A general solution of the Einstein
equations with a time singularity'',
Adv. Phys.,
31, 639-667, (1982).
Berger, B.K., Chrusciel, P.T., Isenberg,
J., and Moncrief, V., ``Global foliations of vacuum
spacetimes with
isometry'',
Ann. Phys. (N. Y.),
260, 117-148, (1997).
Bizon, P., and Wasserman, A., ``On the
existence of self-similar spherically symmetric wave maps
coupled to gravity'',
Class. Quantum Grav.,
19, 3309-3322, (2002). For a related online version see:
P. Bizon, et al., ``On the existence of self-similar
spherically symmetric wave maps coupled to gravity'',
(January, 2002), [Online Los Alamos Archive Preprint]:
cited on 5 February 2002,
http://xxx.lanl.gov/abs/gr-qc/0201046
.
Bourguignon, J.-P., ``Stabilité par
déformation non-linéaire de la métrique de Minkowski
(d'après D. Christodoulou et S. Klainerman)'',
Asterisque,
201-203, 321-358, (1992).
Brodbeck, O., Heusler, M., Straumann, N.,
and Volkov, M., ``Rotating solitons and non-rotating
non-static black holes'',
Phys. Rev. Lett.,
79, 4310-4313, (1997).
Burnett, G.A., and Rendall, A.D.,
``Existence of maximal hypersurfaces in some spherically
symmetric spacetimes'',
Class. Quantum Grav.,
13, 111-123, (1996).
Carr, B. J., Coley, A. A.,
Goliath, M., Nilsson, U.S., and Uggla, C., ``Critical
phenomena and a new class of self-similar spherically
symmetric perfect-fluid solutions'',
Phys. Rev. D,
61, 081502-1-081502-5, (2000).
Carr, B.J., Coley, A.A., Goliath, M.,
Nilsson, U.S., and Uggla, C., ``The state space and
physical interpretation of self-similar spherically
symmetric perfect-fluid models'',
Class. Quantum Grav.,
18, 303-324, (2001).
Chae, D., ``Global existence of spherically
symmetric solutions to the coupled Einstein and nonlinear
Klein-Gordon system.'',
Class. Quantum Grav.,
18, 4589-4605, (2001).
Choquet-Bruhat, Y., and Cotsakis, S.,
``Global hyperbolicity and completeness'', (January, 2002),
[Online Los Alamos Archive Preprint]: cited on 20 February
2002,
http://xxx.lanl.gov/abs/gr-qc/0201057
.
Choquet-Bruhat, Y., and Moncrief, V.,
``Future global in time Einsteinian spacetimes with
U
(1) isometry group.'',
Ann. Inst. Henri Poincare,
2, 1007-1064, (2001).
Choquet-Bruhat, Y., and York, J., ``The
Cauchy problem'', in Held, A., ed.,
General relativity and gravitation, volume 1, 99-172, (Plenum, New York, 1980).
Christodoulou, D., ``Global existence of
generalised solutions of the spherically symmetric
Einstein-scalar equations in the large'',
Commun. Math. Phys.,
106, 587-621, (1986).
Christodoulou, D., ``The structure and
uniqueness of generalised solutions of the spherically
symmetric Einstein-scalar equations'',
Commun. Math. Phys.,
109, 591-611, (1987).
Christodoulou, D., ``The formation of black
holes and singularities in spherically symmetric
gravitational collapse'',
Commun. Pure Appl. Math.,
44, 339-373, (1991).
Christodoulou, D., ``Bounded variation
solutions of the spherically symmetric Einstein-scalar
field equations'',
Commun. Pure Appl. Math.,
46, 1131-1220, (1993).
Christodoulou, D., ``Self-gravitating
fluids: the continuation and termination of a free phase
boundary'',
Arch. Rat. Mech. Anal.,
133, 333-398, (1996).
Christodoulou, D., ``Self-gravitating
fluids: the formation of a free phase boundary in the phase
transition from soft to hard'',
Arch. Rat. Mech. Anal.,
134, 97-154, (1996).
Christodoulou, D., and Klainerman, S.,
``Asymptotic properties of linear field equations in
Minkowski space'',
Commun. Pure Appl. Math.,
43, 137-199, (1990).
Christodoulou, D., and Tahvildar-Zadeh,
A.S., ``On the regularity of spherically symmetric wave
maps'',
Commun. Pure Appl. Math.,
46, 1041-1091, (1993).
Chrusciel, P.T.,
On the uniqueness in the large of solutions of
Einstein's equations. (Strong cosmic censorship.), volume 20 of
Proc. Centre Math. Anal., (Australian National University, Canberra, 1991).
Chrusciel, P.T., ``Semi-global existence
and convergence of solutions of the Robinson-Trautman
(2-dimensional Calabi) equation'',
Commun. Math. Phys.,
137, 289-313, (1991).
Claudel, C.M., and Newman, K.P., ``The
Cauchy problem for quasi-linear hyperbolic evolution
problems with a singularity in the time'',
Proc. R. Soc. London, Ser. A,
454, 1073-1107, (1998).
Corvino, J., ``Scalar curvature deformation
and a gluing construction for the Einstein constraint
equations'',
Commun. Math. Phys.,
214, 137-189, (2000).
Dain, S., and Nagy, G., ``Initial data for
fluid bodies in general relativity'',
Phys. Rev. D,
65, 084020-1-084020-15, (2002). For a related online version
see: S. Dain, et al., ``Initial data for fluid bodies
in general relativity'', (January, 2002), [Online Los
Alamos Archive Preprint]: cited on 30 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0201091
.
Damour, T., Henneaux, M., Rendall, A.D.,
and Weaver, M., ``Kasner-like behaviour for subcritical
Einstein-matter systems'', (February, 2002), [Online Los
Alamos Archive Preprint]: cited on 20 February 2002,
http://xxx.lanl.gov/abs/gr-qc/0202069
.
de Oliveira, H.P., Ozorio de
Almeida, A.M., Damião Soares, I., and Tonini, E.V.,
``Homoclinic chaos in the dynamics of a general Bianchi
type-IX model'',
Phys. Rev. D,
65, 083511-1-083511-9, (2002). For a related online version
see: H.P. de Oliveira, et al., ``Homoclinic chaos in
the dynamics of a general Bianchi type-IX model'',
(February, 2002), [Online Los Alamos Archive Preprint]:
cited on 17 February 2002,
http://xxx.lanl.gov/abs/gr-qc/0202047
.
DiPerna, R.J., and Lions, P.-L., ``On the
Cauchy problem for Boltzmann equations: global existence
and weak stability'',
Ann. Math.,
130, 321-366, (1989).
Dossa, M., ``Espaces de Sobolev non
isotropes, à poids et problèmes de Cauchy quasi-linéaires
sur un conoïde caractéristique'',
Ann. Inst. Henri Poincare, A,
66, 37-107, (1997).
Ehlers, J., ``The Newtonian limit of
general relativity'', in Ferrarese, G., ed.,
Classical mechanics and relativity: relationship and
consistency, (Bibliopolis, Naples, 1991).
Friedrich, H., ``Existence and structure of
past asymptotically simple solutions of Einstein's field
equations with positive cosmological constant'',
J. Geom. Phys.,
3, 101-117, (1986).
Friedrich, H., ``On the global existence
and asymptotic behaviour of solutions to the
Einstein-Yang-Mills equations'',
J. Differ. Geom.,
34, 275-345, (1991).
Friedrich, H., and Rendall, A.D., ``The
Cauchy problem for the Einstein equations'', in Schmidt,
B. G., ed.,
Einstein's field equations and their physical
implications, (Springer, Berlin, 2000).
Glassey, R.T., and Schaeffer, J., ``The
relativistic Vlasov-Maxwell system in two space dimensions.
Part 1'',
Arch. Rat. Mech. Anal.,
141, 331-354, (1998).
Glassey, R.T., and Schaeffer, J., ``The
relativistic Vlasov-Maxwell system in two space dimensions.
Part 2'',
Arch. Rat. Mech. Anal.,
141, 355-374, (1998).
Guo, Y., and Tahvildar-Zadeh, A.S.,
``Formation of singularities in relativistic fluid dynamics
and in spherically symmetric plasma dynamics'', in Chen,
G.-Q., and DiBenedetto, E., eds.,
Nonlinear partial differential equations, (American Mathematical Society, Providence, 1999).
Hauser, I., and Ernst, F.J., ``Proof of a
generalized Geroch conjecture for the hyperbolic Ernst
equation'',
Gen. Relativ. Gravit.,
33, 195-293, (2001).
Henkel, O., ``Local prescribed mean
curvature foliations in cosmological spacetimes.'',
(August, 2001), [Online Los Alamos Archive Preprint]: cited
on 28 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0108003
.
Henkel, O., ``Global prescribed mean
curvature foliations in cosmological spacetimes with
matter. Part I.'', (October, 2001), [Online Los Alamos
Archive Preprint]: cited on 28 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0110081
.
Henkel, O., ``Global prescribed mean
curvature foliations in cosmological spacetimes with
matter. Part II.'', (October, 2001), [Online Los Alamos
Archive Preprint]: cited on 28 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0110082
.
Isenberg, J., ``Constant mean curvature
solutions of the Einstein constraint equations on closed
manifolds'',
Class. Quantum Grav.,
12, 2249-2274, (1995).
Isenberg, J., and Moncrief, V.,
``Asymptotic behaviour of the gravitational field and the
nature of singularities in Gowdy spacetimes'',
Ann. Phys. (N. Y.),
199, 84-122, (1990).
Isenberg, J., and Moncrief, V., ``A set of
nonconstant mean curvature solutions of the Einstein
constraint equations on closed manifolds'',
Class. Quantum Grav.,
13, 1819-1847, (1996).
Isenberg, J., and Rendall, A.D.,
``Cosmological spacetimes not covered by a constant mean
curvature slicing'',
Class. Quantum Grav.,
15, 3679-3688, (1998).
Kind, S., and Ehlers, J., ``Initial
boundary value problem for the spherically symmetric
Einstein equations for a perfect fluid'',
Class. Quantum Grav.,
18, 2123-2136, (1993).
Klainerman, S., and Nicolò, F., ``On local
and global aspects of the Cauchy problem in general
relativity'',
Class. Quantum Grav.,
16, R73-R157, (1999).
Klainerman, S., and Rodnianski, I., ``Rough
solution for the Einstein vacuum equations'', (September,
2001), [Online Los Alamos Archive Preprint]: cited on 1
March 2002,
http://xxx.lanl.gov/abs/math.AP/0109173
.
Kunze, M., and Rendall, A.D., ``Simplified
models of electromagnetic and gravitational radiation
damping.'',
Class. Quantum Grav.,
18, 3573-3587, (2001).
Lin, X.F., and Wald, R.M., ``Proof of the
closed universe recollapse conjecture for general Bianchi
type IX cosmologies'',
Phys. Rev. D,
41, 2444-2448, (1990).
Lions, P.-L., and Perthame, B.,
``Propagation of moments and regularity for the
three-dimensional Vlasov-Poisson system'',
Invent. Math.,
105, 415-430, (1991).
Makino, T., ``On the spiral structure of
the (R,M) diagram for a stellar model of the
Tolman-Oppenheimer-Volkoff equation'',
Funkcialaj Ekvacioj,
43, 471-489, (2000).
Mart´in-Garc´ia, J. M., and Gundlach,
C., ``Self-similar spherically symmetric solutions of the
massless Einstein-Vlasov system'',
Phys. Rev. D,
65, 084026-1-084026-18, (2002). For a related online version
see: J. M. Mart´in-Garc´ia, et al., ``Self-similar
spherically symmetric solutions of the massless
Einstein-Vlasov system'', (December, 2001), [Online Los
Alamos Archive Preprint]: cited on 17 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0112009
.
Moncrief, V., and Eardley, D., ``The global
existence problem and cosmic censorship in general
relativity'',
Gen. Relativ. Gravit.,
13, 887-892, (1981).
Newman, R.P.A.C., ``On the structure of
conformal singularities in classical general relativity.
II Evolution equations and a conjecture of
K. P. Tod'',
Proc. R. Soc. London, Ser. A,
443, 493-515, (1993).
Olabarrieta, I., and Choptuik, M.W.,
``Critical phenomena at the threshold of black hole
formation for collisionless matter in spherical symmetry'',
Phys. Rev. D,
65, 024007-1-024007-10, (2002).
Pfaffelmoser, K., ``Global classical
solutions of the Vlasov-Poisson system in three dimensions
for general initial data'',
J. Differ. Equations,
95, 281-303, (1992).
Rein, G., ``Cosmological solutions of the
Vlasov-Einstein system with spherical, plane and hyperbolic
symmetry'',
Math. Proc. Cambridge,
119, 739-762, (1996).
Rein, G., and Rendall, A.D., ``Global
existence of solutions of the spherically symmetric
Vlasov-Einstein system with small initial data'',
Commun. Math. Phys.,
150, 561-583, (1992).
Rein, G., and Rendall, A.D., ``Smooth
static solutions of the spherically symmetric
Vlasov-Einstein system'',
Ann. Inst. Henri Poincare, A,
59, 383-397, (1993).
Rein, G., and Rendall, A.D., ``Global
existence of classical solutions to the Vlasov-Poisson
system in a three dimensional, cosmological setting'',
Arch. Rat. Mech. Anal.,
126, 183-201, (1994).
Rein, G., and Rendall, A.D., ``Compact
support of spherically symmetric equilibria in relativistic
and non-relativistic galactic dynamics'',
Math. Proc. Cambridge,
128, 363-380, (2000).
Rendall, A.D., ``Cosmological models and
centre manifold theory'', (December, 2001), [Online Los
Alamos Archive Preprint]: cited on 21 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0112040
.
Rendall, A.D., ``Reduction of the
characteristic initial value problem to the Cauchy problem
and its applications to the Einstein equations'',
Proc. R. Soc. London, Ser. A,
427, 221-239, (1990).
Rendall, A.D., ``Existence of constant mean
curvature hypersurfaces in spacetimes with two-dimensional
local symmetry'',
Commun. Math. Phys.,
189, 145-164, (1997).
Rendall, A.D., ``Solutions of the Einstein
equations with matter'', in Francaviglia, M., Longhi, G.,
Lusanna, L., and Sorace, E., eds.,
Proceedings of the 14th International Conference on
General Relativity and Gravitation, 313-335, (World Scientific, Singapore, 1997).
Rendall, A.D., ``Blow-up for solutions of
hyperbolic PDE and spacetime singularities.'', in Depauw,
N., Robert, D., and Saint-Raymond, X., eds.,
Proceedings of Journées Equations aux Dérivées
Partielles, XIV-1-XIV-12, (Groupement 1151 du CNRS, Nantes,
2000).
Rendall, A.D., and Schmidt, B.G.,
``Existence and properties of spherically symmetric static
fluid bodies with given equation of state'',
Class. Quantum Grav.,
8, 985-1000, (1991).
Rendall, A.D., and Tod, K.P., ``Dynamics of
spatially homogeneous solutions of the Einstein-Vlasov
equations which are locally rotationally symmetric'',
Class. Quantum Grav.,
16, 1705-1726, (1999).
Ståhl, F., ``Fuchsian analysis of
and
Gowdy models'', (September, 2001), [Online Los Alamos
Archive Preprint]: cited on 31 January 2002,
http://xxx.lanl.gov/abs/gr-qc/0109011
.
Wainwright, J., Hancock, M.J., and Uggla,
C., ``Asymptotic self-similarity breaking at late times in
cosmology'',
Class. Quantum Grav.,
16, 2577-2598, (1999).