Jump To The First Citation Point In The Article 1 Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions, (Dover, New York, NY, U.S.A., 1972).
Jump To The First Citation Point In The Article 2 Allen, Z.A., Astone, P., Baggio, L., Busby, D., Bassan, M., Blair, D.G., Bonaldi, M., Bonifazi, P., Carelli, P., Cerdonio, M., Coccia, E., Conti, L., Cosmelli, C., Crivelli Visconti, V., D’Antonio, S., Fafone, V., Falferi, P., Fortini, P., Frasca, S., Hamilton, W.O., Heng, I.S., Ivanov, E.N., Johnson, W.W., Kingham, M., Locke, C.R., Marini, A., Martinucci, V., Mauceli, E., McHugh, M.P., Mezzena, R., Minenkov, Y., Modena, I., Modestino, G., Moleti, A., Ortolan, A., Pallottino, G.V., Pizzella, G., Prodi, G.A., Rocco, E., Ronga, F., Salemi, F., Santostasi, G., Taffarello, L., Terenzi, R., Tobar, M.E., Vedovato, G., Vinante, A., Visco, M., Vitale, S., Votano, L., and Zendri, J.P., “First Search for Gravitational Wave Bursts with a Network of Detectors”, Phys. Rev. Lett., 85, 5046-5050, (2000).
Jump To The First Citation Point In The Article 3 Ando, M., Arai, K., Takahashi, R., Heinzel, G., Kawamura, S., Tatsumi, D., Kanda, N., Tagoshi, H., Araya, A., Asada, H., Aso, Y., Barton, M.A., Fujimoto, M.-K., Fukushima, M., Futamase, T., Hayama, K., Horikoshi, G., Ishizuka, H., Kamikubota, N., Kawabe, K., Kawashima, N., Kobayashi, Y., Kojima, Y., Kondo, K., Kozai, Y., Kuroda, K., Matsuda, N., Mio, N., Miura, K., Miyakawa, O., Miyama, S.M., Miyoki, S., Moriwaki, S., Musha, M., Nagano, S., Nakagawa, K., Nakamura, T., Nakao, K., Numata, K., Ogawa, Y., Ohashi, M., Ohishi, N., Okutomi, S., Oohara, K., Otsuka, S., Saito, Y., Sasaki, M., Sato, S., Sekiya, A., Shibata, M., Somiya, K., Suzuki, T., Takamori, A., Tanaka, T., Taniguchi, S., Telada, S., Tochikubo, K., Tomaru, T., Tsubono, K., Tsuda, N., Uchiyama, T., Ueda, A., Ueda, K., Waseda, K., Watanabe, Y., Yakura, H., Yamamoto, K., and Yamazaki, T., “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950-3954, (2001).
Jump To The First Citation Point In The Article 4 Bardeen, J.M., and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., 14, 7-19, (1973).
Jump To The First Citation Point In The Article 5 Blanchet, L., “Gravitational radiation from post-Newtonian sources and inspiralling compact binaries”, Living Rev. Relativity, 5, lrr-2002-3, (2002), [Online Article]: cited on 06 June 2003, http://www.livingreviews.org/lrr-2002-3.
Jump To The First Citation Point In The Article 6 Blanchet, L., “Energy losses by gravitational radiation in inspiraling compact binaries to five halves post-Newtonian order”, Phys. Rev. D, 54, 1417-1438, (1996).
Jump To The First Citation Point In The Article 7 Blanchet, L., Damour, T., and Iyer, B.R., “Gravitational waves from inspiralling compact binaries: Energy loss and wave form to second post-Newtonian order”, Phys. Rev. D, 51, 5360-5386, (1995).
Jump To The First Citation Point In The Article 8 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational radiation damping of compact binary systems to second post-Newtonian order”, Phys. Rev. Lett., 74, 3515-3518, (1995).
Jump To The First Citation Point In The Article 9 Breuer, R.A., Gravitational Perturbation Theory and Synchrotron Radiation, volume 44 of Lecture Notes in Physics, (Springer-Verlag, Berlin, Germany, 1975).
Jump To The First Citation Point In The Article 10 California Institute of Technology, “LIGO Home Page”, [Online HTML Document]: cited on 21 January 2003, External Linkhttp://www.ligo.caltech.edu.
Jump To The First Citation Point In The Article 11 Chandrasekhar, S., “On the equations governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289-298, (1975).
Jump To The First Citation Point In The Article 12 Chandrasekhar, S., The Mathematical Theory of Black Holes, (Oxford University Press, New York, NY, U.S.A., 1983).
Jump To The First Citation Point In The Article 13 Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042-2062, (1975).
Jump To The First Citation Point In The Article 14 Cutler, C., Poisson, E., Finn, L.S., and Sussman, G.J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511-1518, (1993).
Jump To The First Citation Point In The Article 15 Damour, T., and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, Comptes Rendus Acad. Sci. Ser. II, 293, 537-540, (1981).
Jump To The First Citation Point In The Article 16 Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81-84, (1981).
Jump To The First Citation Point In The Article 17 Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General relativity, 156-219, (North-Holland, Amsterdam, Netherlands, 1979).
Jump To The First Citation Point In The Article 18 Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717-723, (1975).
Jump To The First Citation Point In The Article 19 Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., eds., Higher Transcendental Functions, volume I, (Robert E. Krieger Publishing Company, Malabar, FL, U.S.A., 1981).
Jump To The First Citation Point In The Article 20 European Space Agency, “LISA Home Page (ESA)”, [Online HTML Document]: cited on 30 September 2003, External Linkhttp://sci.esa.int/home/lisa.
Jump To The First Citation Point In The Article 21 Fackerell, E.D., and Crossman, R.G., “Spin-weighted angular spheroidal functions”, J. Math. Phys., 18, 1849-1854, (1977).
Jump To The First Citation Point In The Article 22 Futamase, T., and Schutz, B.F., “Newtonian and post-Newtonian approximations are asymptotic to general relativity”, Phys. Rev. D, 28, 2363-2372, (1983).
Jump To The First Citation Point In The Article 23 Futamase, T., and Schutz, B.F., “Gravitational radiation and the validity of the far-zone quadrupole formula in the Newtonian limit of general relativity”, Phys. Rev. D, 32, 2557-2565, (1985).
Jump To The First Citation Point In The Article 24 Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A, 15, 3737-3749, (1982).
Jump To The First Citation Point In The Article 25 Gal’tsov, D.V., Matiukhin, A.A., and Petukhov, V.I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387-390, (1980).
Jump To The First Citation Point In The Article 26 Gautschi, W., “Computational Aspects of Three-Term Recurrence Relations”, SIAM Rev., 9, 24-82, (1967).
Jump To The First Citation Point In The Article 27 Hough, J., and Rowan, S., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000), [Online Article]: cited on 21 January 2002, http://www.livingreviews.org/lrr-2000-3.
Jump To The First Citation Point In The Article 28 INFN, “VIRGO Home Page”, [Online HTML Document]: cited on 21 January 2003, External Linkhttp://www.virgo.infn.it.
Jump To The First Citation Point In The Article 29 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit I: Formulation, the first post-Newtonian and multipole terms”, Phys. Rev. D, 62, 064002-1-064002-12, (2000).
Jump To The First Citation Point In The Article 30 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038-1-064038-21, (2001).
Jump To The First Citation Point In The Article 31 Jet Propulsion Laboratory, “LISA Home Page (NASA)”, [Online HTML Document]: cited on 21 January 2003, External Linkhttp://lisa.jpl.nasa.gov.
Jump To The First Citation Point In The Article 32 Leaver, E.W., “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics”, J. Math. Phys., 27, 1238-1265, (1986).
Jump To The First Citation Point In The Article 33 Mano, S., Suzuki, H., and Takasugi, E., “Analytic solutions of the Teukolsky equation and their low frequency expansions”, Prog. Theor. Phys., 95, 1079-1096, (1996).
Jump To The First Citation Point In The Article 34 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1-121, (1997).
Jump To The First Citation Point In The Article 35 Nakamura, T., Oohara, K., and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1-218, (1987).
Jump To The First Citation Point In The Article 36 National Astronomy Observatory, Tokyo, “TAMA Home Page”, [Online HTML Document]: cited on 21 January 2003, External Linkhttp://tamago.mtk.nao.ac.jp.
Jump To The First Citation Point In The Article 37 Narayan, R., Piran, T., and Shemi, A., “Neutron star and black hole binaries in the Galaxy”, Astrophys. J., 379, L17-L20, (1991).
Jump To The First Citation Point In The Article 38 Newman, E.T., and Penrose, R., “An approach to gravitational radiation by a method of spin-coefficients”, J. Math. Phys., 7, 566-579, (1962).
Jump To The First Citation Point In The Article 39 Newman, E.T., and Penrose, R., “Errata: An approach to gravitational radiation by a method of spin-coefficients”, J. Math. Phys., 4, 998-998, (1963).
Jump To The First Citation Point In The Article 40 Ohashi, A., Tagoshi, H., and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Compact Star Orbiting a Rotating Black Hole in Brans-Dicke Theory: Circular Orbit Case”, Prog. Theor. Phys., 96, 713-728, (1996).
Jump To The First Citation Point In The Article 41 Papapetrou, A., “Spinning test-particles in general relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248-258, (1951).
Jump To The First Citation Point In The Article 42 Phinney, S., “The rate of neutron star binary mergers in the universe - Minimal predictions for gravity wave detectors”, Astrophys. J., 380, L17-L21, (1991).
Jump To The First Citation Point In The Article 43 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993).
Jump To The First Citation Point In The Article 44 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. IV. Analytical results for the slowly rotating case”, Phys. Rev. D, 48, 1860-1863, (1993).
Jump To The First Citation Point In The Article 45 Poisson, E., and Sasaki, M., “Gravitational radiation from a particle in circular orbit around a black hole. V. Black hole absorption and tail corrections”, Phys. Rev. D, 51, 5753-5767, (1995).
Jump To The First Citation Point In The Article 46 Press, W.H., and Teukolsky, S.A., “Perturbations of a Rotating Black Hole II. Dynamical Stability of the Kerr Metric”, Astrophys. J., 185, 649-674, (1973).
Jump To The First Citation Point In The Article 47 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063-1069, (1957).
Jump To The First Citation Point In The Article 48 S., Mano, and Takasugi, E., “Analytic Solutions of the Teukolsky Equation and Their Properties”, Prog. Theor. Phys., 97, 213-232, (1997).
Jump To The First Citation Point In The Article 49 Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor. Phys., 92, 17-36, (1994).
Jump To The First Citation Point In The Article 50 Sasaki, M., and Nakamura, T., “A class of new perturbation equations for the Kerr geometry”, Phys. Lett. A, 89, 68-70, (1982).
Jump To The First Citation Point In The Article 51 Sasaki, M., and Nakamura, T., “Gravitational Radiation from a Kerr Black Hole. I. Formulation and a Method for Numerical Analysis”, Prog. Theor. Phys., 67, 1788-1809, (1982).
Jump To The First Citation Point In The Article 52 Shibata, M., Sasaki, M., Tagoshi, H., and Tanaka, T., “Gravitational waves from a particle orbiting around a rotating black hole: Post-Newtonian expansion”, Phys. Rev. D, 51, 1646-1663, (1995).
Jump To The First Citation Point In The Article 53 Tagoshi, H., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 93, 307-333, (1995).
Jump To The First Citation Point In The Article 54 Tagoshi, H., Kanda, N., Tanaka, T., Tatsumi, D., Telada, S., Ando, M., Arai, K., Araya, A., Asada, H., Barton, M.A., Fujimoto, M.-K., Fukushima, M., Futamase, T., Heinzel, G., Horikoshi, G., Ishizuka, H., Kamikubota, N., Kawabe, K., Kawamura, S., Kawashima, N., Kojima, Y., Kozai, Y., Kuroda, K., Matsuda, N., Matsumura, S., Miki, S., Mio, N., Miyakawa, O., Miyama, S., Miyoki, S., Mizuno, E., Moriwaki, S., Musha, M., Nagano, S., Nakagawa, K., Nakamura, T., Nakao, K., Numata, K., Ogawa, Y., Ohashi, M., Ohishi, N., Okutomi, A., Oohara, K., Otsuka, S., Saito, Y., Sasaki, M., Sato, S., Sekiya, A., Shibata, M., Shirakata, K., Somiya, K., Suzuki, T., Takahashi, R., Takamori, A., Taniguchi, S., Tochikubo, K., Tomaru, T., Tsubono, K., Tsuda, N., Uchiyama, T., Ueda, A., Ueda, K., Ueda, K., Waseda, K., Watanabe, Y., Yakura, H., Yamamoto, K., and Yamazaki, T., “First search for gravitational waves from inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001-1-062001-5, (2001).
Jump To The First Citation Point In The Article 55 Tagoshi, H., Mano, S., and Takasugi, E., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole: Effects of Black Hole Absorption”, Prog. Theor. Phys., 98, 829-850, (1997).
Jump To The First Citation Point In The Article 56 Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016-4022, (1994).
Jump To The First Citation Point In The Article 57 Tagoshi, H., and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771, (1994).
Jump To The First Citation Point In The Article 58 Tagoshi, H., Shibata, M., Tanaka, T., and Sasaki, M., “Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v8) beyond the quadrupole formula”, Phys. Rev. D, 54, 1439-1459, (1996).
Jump To The First Citation Point In The Article 59 Tanaka, T., Mino, Y., Sasaki, M., and Shibata, M., “Gravitational waves from a spinning particle in circular orbits around a rotating black hole”, Phys. Rev. D, 54, 3762-3777, (1996).
Jump To The First Citation Point In The Article 60 Tanaka, T., Tagoshi, H., and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild Black Hole: 5.5 Post-Newtonian Formula”, Prog. Theor. Phys., 96, 1087-1101, (1996).
Jump To The First Citation Point In The Article 61 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635-648, (1973).
Jump To The First Citation Point In The Article 62 Teukolsky, S.A., and Press, W.H., “Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation”, Astrophys. J., 193, 443-461, (1974).
Jump To The First Citation Point In The Article 63 University of Hannover, “GEO 600 Home Page”, [Online HTML Document]: cited on 21 January 2003, External Linkhttp://www.geo600.uni-hannover.de.
Jump To The First Citation Point In The Article 64 Wagoner, R.V., and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764-775, (1976).
Jump To The First Citation Point In The Article 65 Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203-206, (1978).
Jump To The First Citation Point In The Article 66 Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational wave forms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813-4848, (1996).
Jump To The First Citation Point In The Article 67 Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2, 2141-2160, (1970).