 |
1 |
Abramowitz, M., and Stegun, I.A., eds.,
Handbook of Mathematical Functions,
(Dover, New York, NY, U.S.A., 1972). |
 |
2 |
Allen, Z.A., Astone, P., Baggio, L.,
Busby, D., Bassan, M., Blair, D.G., Bonaldi, M., Bonifazi, P.,
Carelli, P., Cerdonio, M., Coccia, E., Conti, L., Cosmelli, C.,
Crivelli Visconti, V., D’Antonio, S., Fafone, V., Falferi, P.,
Fortini, P., Frasca, S., Hamilton, W.O., Heng, I.S., Ivanov, E.N.,
Johnson, W.W., Kingham, M., Locke, C.R., Marini, A., Martinucci,
V., Mauceli, E., McHugh, M.P., Mezzena, R., Minenkov, Y., Modena,
I., Modestino, G., Moleti, A., Ortolan, A., Pallottino, G.V.,
Pizzella, G., Prodi, G.A., Rocco, E., Ronga, F., Salemi, F.,
Santostasi, G., Taffarello, L., Terenzi, R., Tobar, M.E., Vedovato,
G., Vinante, A., Visco, M., Vitale, S., Votano, L., and Zendri,
J.P., “First Search for Gravitational Wave Bursts with a Network of
Detectors”, Phys. Rev. Lett., 85,
5046-5050, (2000). |
 |
3 |
Ando, M., Arai, K., Takahashi, R.,
Heinzel, G., Kawamura, S., Tatsumi, D., Kanda, N., Tagoshi, H.,
Araya, A., Asada, H., Aso, Y., Barton, M.A., Fujimoto, M.-K.,
Fukushima, M., Futamase, T., Hayama, K., Horikoshi, G., Ishizuka,
H., Kamikubota, N., Kawabe, K., Kawashima, N., Kobayashi, Y.,
Kojima, Y., Kondo, K., Kozai, Y., Kuroda, K., Matsuda, N., Mio, N.,
Miura, K., Miyakawa, O., Miyama, S.M., Miyoki, S., Moriwaki, S.,
Musha, M., Nagano, S., Nakagawa, K., Nakamura, T., Nakao, K.,
Numata, K., Ogawa, Y., Ohashi, M., Ohishi, N., Okutomi, S., Oohara,
K., Otsuka, S., Saito, Y., Sasaki, M., Sato, S., Sekiya, A.,
Shibata, M., Somiya, K., Suzuki, T., Takamori, A., Tanaka, T.,
Taniguchi, S., Telada, S., Tochikubo, K., Tomaru, T., Tsubono, K.,
Tsuda, N., Uchiyama, T., Ueda, A., Ueda, K., Waseda, K., Watanabe,
Y., Yakura, H., Yamamoto, K., and Yamazaki, T., “Stable Operation
of a 300-m Laser Interferometer with Sufficient Sensitivity to
Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950-3954, (2001). |
 |
4 |
Bardeen, J.M., and Press, W.H.,
“Radiation fields in the Schwarzschild background”, J. Math. Phys.,
14, 7-19, (1973). |
 |
5 |
Blanchet, L., “Gravitational radiation
from post-Newtonian sources and inspiralling compact binaries”,
Living Rev. Relativity, 5, lrr-2002-3, (2002), [Online Article]:
cited on 06 June 2003, http://www.livingreviews.org/lrr-2002-3. |
 |
6 |
Blanchet, L., “Energy losses by
gravitational radiation in inspiraling compact binaries to five
halves post-Newtonian order”, Phys. Rev.
D, 54, 1417-1438,
(1996). |
 |
7 |
Blanchet, L., Damour, T., and Iyer, B.R.,
“Gravitational waves from inspiralling compact binaries: Energy
loss and wave form to second post-Newtonian order”, Phys. Rev. D, 51, 5360-5386, (1995). |
 |
8 |
Blanchet, L., Damour, T., Iyer, B.R.,
Will, C.M., and Wiseman, A.G., “Gravitational radiation damping of
compact binary systems to second post-Newtonian order”, Phys. Rev. Lett., 74, 3515-3518, (1995). |
 |
9 |
Breuer, R.A., Gravitational Perturbation Theory and Synchrotron
Radiation, volume 44 of Lecture
Notes in Physics, (Springer-Verlag, Berlin, Germany,
1975). |
 |
10 |
California Institute of Technology, “LIGO
Home Page”, [Online HTML Document]: cited on 21 January 2003, http://www.ligo.caltech.edu. |
 |
11 |
Chandrasekhar, S., “On the equations
governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289-298, (1975). |
 |
12 |
Chandrasekhar, S., The Mathematical Theory of Black Holes,
(Oxford University Press, New York, NY, U.S.A., 1983). |
 |
13 |
Chrzanowski, P.L., “Vector potential and
metric perturbations of a rotating black hole”, Phys. Rev. D,
11, 2042-2062, (1975). |
 |
14 |
Cutler, C., Poisson, E., Finn, L.S., and
Sussman, G.J., “Gravitational radiation from a particle in circular
orbit around a black hole. II. Numerical results for the
nonrotating case”, Phys. Rev. D, 47,
1511-1518, (1993). |
 |
15 |
Damour, T., and Deruelle, N., “Lagrangien
généralisé du système de deux masses ponctuelles, à l’approximation
post-post-newtonienne de la relativité générale”, Comptes Rendus Acad.
Sci. Ser. II, 293, 537-540,
(1981). |
 |
16 |
Damour, T., and Deruelle, N., “Radiation
reaction and angular momentum loss in small angle gravitational
scattering”, Phys. Lett. A, 87, 81-84, (1981). |
 |
17 |
Dixon, W.G., “Extended bodies in general
relativity: Their description and motion”, in Ehlers, J., ed.,
Isolated Gravitating Systems in General
relativity, 156-219, (North-Holland, Amsterdam, Netherlands,
1979). |
 |
18 |
Epstein, R., and Wagoner, R.V.,
“Post-Newtonian generation of gravitational waves”, Astrophys. J.,
197, 717-723, (1975). |
 |
19 |
Erdélyi, A., Magnus, W., Oberhettinger,
F., and Tricomi, F.G., eds., Higher
Transcendental Functions,
volume I, (Robert E. Krieger Publishing Company, Malabar, FL,
U.S.A., 1981). |
 |
20 |
European Space Agency, “LISA Home Page
(ESA)”, [Online HTML Document]: cited on 30 September 2003, http://sci.esa.int/home/lisa. |
 |
21 |
Fackerell, E.D., and Crossman, R.G.,
“Spin-weighted angular spheroidal functions”, J. Math. Phys.,
18, 1849-1854, (1977). |
 |
22 |
Futamase, T., and Schutz, B.F.,
“Newtonian and post-Newtonian approximations are asymptotic to
general relativity”, Phys. Rev. D,
28, 2363-2372, (1983). |
 |
23 |
Futamase, T., and Schutz, B.F.,
“Gravitational radiation and the validity of the far-zone
quadrupole formula in the Newtonian limit of general relativity”,
Phys. Rev. D, 32, 2557-2565, (1985). |
 |
24 |
Gal’tsov, D.V., “Radiation reaction in
the Kerr gravitational field”, J. Phys.
A, 15, 3737-3749,
(1982). |
 |
25 |
Gal’tsov, D.V., Matiukhin, A.A., and
Petukhov, V.I., “Relativistic corrections to the gravitational
radiation of a binary system and the fine structure of the
spectrum”, Phys. Lett. A, 77, 387-390,
(1980). |
 |
26 |
Gautschi, W., “Computational Aspects of
Three-Term Recurrence Relations”, SIAM
Rev., 9, 24-82,
(1967). |
 |
27 |
Hough, J., and Rowan, S., “Gravitational
Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000), [Online Article]:
cited on 21 January 2002, http://www.livingreviews.org/lrr-2000-3. |
 |
28 |
INFN, “VIRGO Home Page”, [Online HTML
Document]: cited on 21 January 2003, http://www.virgo.infn.it. |
 |
29 |
Itoh, Y., Futamase, T., and Asada, H.,
“Equation of motion for relativistic compact binaries with the
strong field point particle limit I: Formulation, the first
post-Newtonian and multipole terms”, Phys.
Rev. D, 62, 064002-1-064002-12,
(2000). |
 |
30 |
Itoh, Y., Futamase, T., and Asada, H.,
“Equation of motion for relativistic compact binaries with the
strong field point particle limit: The second and half
post-Newtonian order”, Phys. Rev. D, 63,
064038-1-064038-21, (2001). |
 |
31 |
Jet Propulsion Laboratory, “LISA Home
Page (NASA)”, [Online HTML Document]: cited on 21 January 2003, http://lisa.jpl.nasa.gov. |
 |
32 |
Leaver, E.W., “Solutions to a generalized
spheroidal wave equation: Teukolsky’s equations in general
relativity, and the two-center problem in molecular quantum
mechanics”, J. Math. Phys., 27, 1238-1265, (1986). |
 |
33 |
Mano, S., Suzuki, H., and Takasugi, E.,
“Analytic solutions of the Teukolsky equation and their low
frequency expansions”, Prog. Theor.
Phys., 95, 1079-1096,
(1996). |
 |
34 |
Mino, Y., Sasaki, M., Shibata, M.,
Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1-121, (1997). |
 |
35 |
Nakamura, T., Oohara, K., and Kojima, Y.,
“General Relativistic Collapse to Black Holes and Gravitational
Waves from Black Holes”, Prog. Theor. Phys.
Suppl., 90, 1-218,
(1987). |
 |
36 |
National Astronomy Observatory, Tokyo,
“TAMA Home Page”, [Online HTML Document]: cited on 21 January 2003,
http://tamago.mtk.nao.ac.jp. |
 |
37 |
Narayan, R., Piran, T., and Shemi, A.,
“Neutron star and black hole binaries in the Galaxy”, Astrophys. J., 379, L17-L20, (1991). |
 |
38 |
Newman, E.T., and Penrose, R., “An
approach to gravitational radiation by a method of
spin-coefficients”, J. Math. Phys.,
7, 566-579, (1962). |
 |
39 |
Newman, E.T., and Penrose, R., “Errata:
An approach to gravitational radiation by a method of
spin-coefficients”, J. Math. Phys.,
4, 998-998, (1963). |
 |
40 |
Ohashi, A., Tagoshi, H., and Sasaki, M.,
“Post-Newtonian Expansion of Gravitational Waves from a Compact
Star Orbiting a Rotating Black Hole in Brans-Dicke Theory: Circular
Orbit Case”, Prog. Theor. Phys., 96, 713-728, (1996). |
 |
41 |
Papapetrou, A., “Spinning test-particles
in general relativity. I”, Proc. R. Soc.
London, Ser. A, 209, 248-258,
(1951). |
 |
42 |
Phinney, S., “The rate of neutron star
binary mergers in the universe - Minimal predictions for gravity
wave detectors”, Astrophys. J., 380, L17-L21, (1991). |
 |
43 |
Poisson, E., “Gravitational radiation
from a particle in circular orbit around a black hole. I.
Analytical results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993). |
 |
44 |
Poisson, E., “Gravitational radiation
from a particle in circular orbit around a black hole. IV.
Analytical results for the slowly rotating case”, Phys. Rev. D, 48, 1860-1863, (1993). |
 |
45 |
Poisson, E., and Sasaki, M.,
“Gravitational radiation from a particle in circular orbit around a
black hole. V. Black hole absorption and tail corrections”, Phys. Rev. D, 51, 5753-5767, (1995). |
 |
46 |
Press, W.H., and Teukolsky, S.A.,
“Perturbations of a Rotating Black Hole II. Dynamical Stability of
the Kerr Metric”, Astrophys. J., 185, 649-674, (1973). |
 |
47 |
Regge, T., and Wheeler, J.A., “Stability
of a Schwarzschild Singularity”, Phys.
Rev., 108, 1063-1069,
(1957). |
 |
48 |
S., Mano, and Takasugi, E., “Analytic
Solutions of the Teukolsky Equation and Their Properties”, Prog. Theor. Phys., 97, 213-232, (1997). |
 |
49 |
Sasaki, M., “Post-Newtonian Expansion of
the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor.
Phys., 92, 17-36,
(1994). |
 |
50 |
Sasaki, M., and Nakamura, T., “A class of
new perturbation equations for the Kerr geometry”, Phys. Lett. A, 89, 68-70, (1982). |
 |
51 |
Sasaki, M., and Nakamura, T.,
“Gravitational Radiation from a Kerr Black Hole. I. Formulation and
a Method for Numerical Analysis”, Prog.
Theor. Phys., 67, 1788-1809,
(1982). |
 |
52 |
Shibata, M., Sasaki, M., Tagoshi, H., and
Tanaka, T., “Gravitational waves from a particle orbiting around a
rotating black hole: Post-Newtonian expansion”, Phys. Rev. D, 51, 1646-1663, (1995). |
 |
53 |
Tagoshi, H., “Post-Newtonian Expansion of
Gravitational Waves from a Particle in Slightly eccentric Orbit
around a Rotating Black Hole”, Prog. Theor.
Phys., 93, 307-333,
(1995). |
 |
54 |
Tagoshi, H., Kanda, N., Tanaka, T.,
Tatsumi, D., Telada, S., Ando, M., Arai, K., Araya, A., Asada, H.,
Barton, M.A., Fujimoto, M.-K., Fukushima, M., Futamase, T.,
Heinzel, G., Horikoshi, G., Ishizuka, H., Kamikubota, N., Kawabe,
K., Kawamura, S., Kawashima, N., Kojima, Y., Kozai, Y., Kuroda, K.,
Matsuda, N., Matsumura, S., Miki, S., Mio, N., Miyakawa, O.,
Miyama, S., Miyoki, S., Mizuno, E., Moriwaki, S., Musha, M.,
Nagano, S., Nakagawa, K., Nakamura, T., Nakao, K., Numata, K.,
Ogawa, Y., Ohashi, M., Ohishi, N., Okutomi, A., Oohara, K., Otsuka,
S., Saito, Y., Sasaki, M., Sato, S., Sekiya, A., Shibata, M.,
Shirakata, K., Somiya, K., Suzuki, T., Takahashi, R., Takamori, A.,
Taniguchi, S., Tochikubo, K., Tomaru, T., Tsubono, K., Tsuda, N.,
Uchiyama, T., Ueda, A., Ueda, K., Ueda, K., Waseda, K., Watanabe,
Y., Yakura, H., Yamamoto, K., and Yamazaki, T., “First search for
gravitational waves from inspiraling compact binaries using TAMA300
data”, Phys. Rev. D, 63, 062001-1-062001-5, (2001). |
 |
55 |
Tagoshi, H., Mano, S., and Takasugi, E.,
“Post-Newtonian Expansion of Gravitational Waves from a Particle in
Circular Orbits around a Rotating Black Hole: Effects of Black Hole
Absorption”, Prog. Theor. Phys., 98, 829-850, (1997). |
 |
56 |
Tagoshi, H., and Nakamura, T.,
“Gravitational waves from a point particle in circular orbit around
a black hole: Logarithmic terms in the post-Newtonian expansion”,
Phys. Rev. D, 49, 4016-4022, (1994). |
 |
57 |
Tagoshi, H., and Sasaki, M.,
“Post-Newtonian Expansion of Gravitational Waves from a Particle in
Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771, (1994). |
 |
58 |
Tagoshi, H., Shibata, M., Tanaka, T., and
Sasaki, M., “Post-Newtonian expansion of gravitational waves from a
particle in circular orbits around a rotating black hole: Up to
O(v8)
beyond the quadrupole formula”, Phys. Rev.
D, 54, 1439-1459,
(1996). |
 |
59 |
Tanaka, T., Mino, Y., Sasaki, M., and
Shibata, M., “Gravitational waves from a spinning particle in
circular orbits around a rotating black hole”, Phys. Rev. D, 54, 3762-3777, (1996). |
 |
60 |
Tanaka, T., Tagoshi, H., and Sasaki, M.,
“Gravitational Waves by a Particle in Circular Orbits around a
Schwarzschild Black Hole: 5.5 Post-Newtonian Formula”, Prog. Theor. Phys., 96, 1087-1101, (1996). |
 |
61 |
Teukolsky, S.A., “Perturbations of a
Rotating Black Hole. I. Fundamental Equations for Gravitational,
Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635-648, (1973). |
 |
62 |
Teukolsky, S.A., and Press, W.H.,
“Perturbations of a rotating black hole. III. Interaction of the
hole with gravitational and electromagnetic radiation”, Astrophys. J., 193, 443-461, (1974). |
 |
63 |
University of Hannover, “GEO 600 Home
Page”, [Online HTML Document]: cited on 21 January 2003, http://www.geo600.uni-hannover.de. |
 |
64 |
Wagoner, R.V., and Will, C.M.,
“Post-Newtonian gravitational radiation from orbiting point
masses”, Astrophys. J., 210, 764-775, (1976). |
 |
65 |
Wald, R.M., “Construction of Solutions of
Gravitational, Electromagnetic, or Other Perturbation Equations
from Solutions of Decoupled Equations”, Phys.
Rev. Lett., 41, 203-206,
(1978). |
 |
66 |
Will, C.M., and Wiseman, A.G.,
“Gravitational radiation from compact binary systems: Gravitational
wave forms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813-4848, (1996). |
 |
67 |
Zerilli, F.J., “Gravitational field of a
particle falling in a Schwarzschild geometry analyzed in tensor
harmonics”, Phys. Rev. D, 2, 2141-2160, (1970). |