 |
1 |
Abrahams, A., Anderson, A.,
Choquet-Bruhat, Y., and York Jr, J.W., “Einstein and
Yang-Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75,
3377-3381, (1996). For a related online version see:
A. Abrahams, et al., “Einstein and Yang-Mills theories in
hyperbolic form without gauge fixing”, (June, 1995), [Online Los
Alamos Archive Preprint]: cited on December 19, 1999, http://arxiv.org/abs/gr-qc/9506072. |
 |
2 |
Alcubierre, M., Brandt, S.,
Brügmann, B., Holz, D., Seidel, E., Takahashi, R., and Thornburg,
J., “Symmetry without symmetry: Numerical simulation of
axisymmetric systems using cartesian grids”, Int. J. Mod. Phys. D,
10, 273-290, (2001). |
 |
3 |
Andersson, L., and
Chruściel, P.T., “On ‘hyperboloidal’ Cauchy data for vacuum
Einstein equations and obstructions to smoothness of
‘null-infinity”’, Phys. Rev. Lett., 70(19),
2829-2832, (1993). For a related online version see:
L. Andersson, et al., “On ‘hyperboloidal’ Cauchy data for
vacuum Einstein equations and obstructions to smoothness of
‘null-infinity”’, (April, 1993), [Online Los Alamos Archive
Preprint]: cited on December 19, 1999, http://arxiv.org/abs/gr-qc/9304019. |
 |
4 |
Andersson, L., and
Chruściel, P.T., “On hyperboloidal Cauchy data for vacuum Einstein
equations and obstructions to smoothness of scri”, Commun. Math. Phys., 161(3),
533-568, (1994). |
 |
5 |
Andersson, L., Chruściel,
P.T., and Friedrich, H., “On the regularity of solutions to the
Yamabe equation and the existence of smooth hyperboloidal initial
data for Einstein’s field equations”, Commun. Math. Phys., 149,
587-612, (1992). |
 |
6 |
Arnowitt, R., Deser, S., and
Misner, C.W., “The dynamics of general relativity”, in Witten,
Louis, ed., Gravitation: An Introduction to
Current Research, 227-265, (Wiley, New York, NY, U.S.A.,
1962). |
 |
7 |
Ashtekar, A., “Asymptotic
structure of the gravitational field at spatial infinity”, in Held,
A., ed., General Relativity and
Gravitation, chapter 2, 37-70, (Plenum Press, New York,
NY, U.S.A., 1980). |
 |
8 |
Ashtekar, A., “Asymptotic
properties of isolated systems: recent developments”, in Bertotti,
B., de Felice, F., and Pascolini, A., eds., General Relativity and Gravitation, 37-68,
(Reidel Publishing Company, Dordrecht, Netherlands,
1984). |
 |
9 |
Ashtekar, A., Asymptotic quantization, (Bibliopolis,
Naples, Italy, 1987). |
 |
10 |
Ashtekar, A., Bombelli, L.,
and Reula, O., “The covariant phase space of asymptotically flat
gravitational fields”, in Francaviglia, M., ed., Mechanics, analysis and geometry: 200 years
after Lagrange, 417-450,
(North-Holland Publishing Co., Amsterdam, Netherlands,
1991). |
 |
11 |
Ashtekar, A., and Hansen,
R.O., “A unified treatment of null and spatial infinity. I.
Universal structure, asymptotic symmetries and conserved quantities
at spatial infinity”, J. Math. Phys., 19,
1542-1566, (1978). |
 |
12 |
Ashtekar, A., and Romano,
J., “Spatial infinity as a boundary of space-time”, Class. Quantum Grav.,
9, 1069-1100, (1992). |
 |
13 |
Ashtekar, A., and Streubel,
M., “Symplectic geometry of radiative modes and conserved
quantities at null infinity”, Proc. R. Soc. London,
Ser. A, 376, 585-607, (1981). |
 |
14 |
Ashtekar, A., and
Xanthopoulos, B., “Isometries compatible with the asymptotic
flatness at null infinity: A complete description”, J. Math. Phys., 19,
2216-2222, (1978). |
 |
15 |
Bartnik, R., “The
spherically symmetric Einstein-Yang-Mills equations”, in Perjes,
Z., ed., Physics Today: Proceedings of the
1988 Hungarian Relativity Workshop, Tihany, 221-240, (Nova
Science Publishers, New York, NY, U.S.A., 1992). |
 |
16 |
Bateman, H., “The
transformations of the electrodynamical equations”, Proc. London Math. Soc. 2,
8, 223-264, (1910). |
 |
17 |
Baumgarte, T.W., and
Shapiro, S.L., “On the numerical integration of Einstein’s field
equations”, Phys. Rev. D,
59, 024007, (1999). For a related
online version see: T.W. Baumgarte, et al., “On the Numerical
Integration of Einstein’s Field Equations”, (October, 1998),
[Online Los Alamos Archive Preprint]: cited on December 19, 1999,
http://arxiv.org/abs/gr-qc/9810065. |
 |
18 |
Beig, R., “Integration of
Einstein’s equations near spatial infinity”, Proc. R. Soc. London,
Ser. A, 391, 295-304, (1984). |
 |
19 |
Beig, R., and Schmidt, B.G.,
“Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87,
65-80, (1982). |
 |
20 |
Beig, R., and Simon, W.,
“Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78,
75-82, (1980). |
 |
21 |
Bičák, J., Hoenselaers, C.,
and Schmidt, B.G., “The solutions of the Einstein equations for
uniformly accelerated particles without nodal symmetries. II.
Self-accelerating particles”, Proc. R. Soc. London,
Ser. A, 390, 411-419, (1983). |
 |
22 |
Bičák, J., and Schmidt,
B.G., “Asymptotically flat radiative space-times with
boost-rotation symmetry”, Phys. Rev. D,
40, 1827-1853, (1989). |
 |
23 |
Bishop, N.T., “Some aspects
of the characteristic initial value problem”, in d’ Inverno,
R.A., ed., Approaches to Numerical
Relativity, 20-33, (Cambridge University Press, Cambridge,
U.K., 1993). |
 |
24 |
Bishop, N.T., Gómez, R.,
Isaacson, R.A., Lehner, L., Szilagy, B., and Winicour, J., “Cauchy
Characteristic Matching”, in Iyer, B., ed., On the black hole trail, 383-408, (Kluwer,
Dodrecht, Netherlands, 1998). |
 |
25 |
Bonazzola, S., Gourgoulhon,
E., and Marck, J.-A., “Spectral methods in general relativistic
astrophysics”, J. Comput. Appl. Math., 109,
433-473, (1999). |
 |
26 |
Bondi, H., Pirani, F.A.E.,
and Robinson, I., “Gravitational waves in general relativity III.
Exact plane waves”, Proc. R. Soc. London,
Ser. A, 251, 519-533, (1959). |
 |
27 |
Bondi, H., van der
Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general
relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London,
Ser. A, 269, 21-52, (1962). |
 |
28 |
Bonnor, W.B., and Rotenberg,
M.A., “Gravitational waves from isolated sources”, Proc. R. Soc. London,
Ser. A, 289, 247-274, (1966). |
 |
29 |
Choquet-Bruhat, Y., and
York, J.W., “The Cauchy Problem”, in Held, A., ed., General Relativity and
Gravitation, volume 1, chapter 4, 99-172, (Plenum
Press, New York, NY, U.S.A., 1980). |
 |
30 |
Christodoulou, D., “The
formation of black holes and singularities in spherically symmetric
gravitational collapse”, Commun. Pure
Appl. Math., 44, 339-373, (1991). |
 |
31 |
Christodoulou, D., and
Klainermann, S., The global nonlinear
stability of the Minkowski space, (Princeton University
Press, Princeton, CA, U.S.A., 1993). |
 |
32 |
Chruściel, P.T., and Delay,
E., “Existence of non-trivial, vacuum, asymptotically simple
space-times”, Class. Quantum Grav., 19, L71-L79, (2002). For a related online
version see: P.T. Chruściel, et al., “Existence of non-trivial,
vacuum, asymptotically simple space-times”, (March, 2002), [Online
Los Alamos Archive Preprint]: cited on 18 March 2003, http://arxiv.org/abs/gr-qc/0203053. |
 |
33 |
Chruściel, P.T., and Delay,
E., “Existence of non-trivial, vacuum, asymptotically simple
spacetimes”, Class. Quantum Grav., 19, 3389, (2002). |
 |
34 |
Chruściel, P.T., MacCallum,
M.A., and Singleton, D., “Gravitational waves in general
relativity. XIV. Bondi expansions and the ‘polyhomogeneity’ of
I”, Philos. Trans. R. Soc. London,
Ser. A, 350(1692), 113-141, (1995). For a related
online version see: P.T. Chruściel, et al., “Gravitational waves in
general relativity. XIV. Bondi expansions and the “polyhomogeneity”
of I”, (May, 1993), [Online Los
Alamos Archive Preprint]: cited on December 19, 1999, http://arxiv.org/abs/gr-qc/9305021. |
 |
35 |
Corvino, J., “Scalar
curvature deformation and a gluing construction for the Einstein
constraint equations”, Commun. Math. Phys., 214,
137-189, (2000). |
 |
36 |
Corvino, J., and Schoen, R.,
“On the asymptotics for the Einstein constraint equations”,
(January, 2003), [Online Los Alamos Archive Preprint]: cited on 9
July 2003, http://arxiv.org/abs/gr-qc/0301071. |
 |
37 |
Courant, R., Friedrichs,
K.O., and Lewy, H., “Über die partiellen Differenzengleichungen der
mathematischen Physik”, Math. Ann., 100,
32-74, (1928). |
 |
38 |
Cunningham, E., “The
principle of relativity in electrodynamics and an extension
thereof”, Proc. London Math. Soc. 2,
8, 77-98, (1910). |
 |
39 |
Cutler, C., and Wald, R.M.,
“Existence of radiating Einstein-Maxwell solutions which are C on all of I- and I+”, Class. Quantum
Grav., 6, 453-466,
(1989). |
 |
40 |
Dixon, W. G., “Analysis
of the Newman-Unti integration procedure for asymptotically flat
space-times”, J. Math. Phys., 11,
1238-1248, (1970). |
 |
41 |
Ehlers, J., and Sachs, R.K.,
“Erhaltungssätze für die Wirkung in elektromagnetischen und
gravischen Strahlungsfeldern”, Z. Phys.,
155, 498-506, (1959). |
 |
42 |
Einstein, A., “Über
Gravitationswellen”, Sitz. Ber. Preuss. Akad. Wiss., 154-167, (1918). |
 |
43 |
Engquist, B., and Majda, A.,
“Absorbing boundary conditions for the numerical simulation of
waves”, Math. Comput., 31(139), 629-651, (1977). |
 |
44 |
Frauendiener, J., “Geometric
description of energy-momentum pseudotensors”, Class. Quantum Grav.,
6, L237-L241, (1989). |
 |
45 |
Frauendiener, J., “Numerical
treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. I. The conformal field equations”, Phys. Rev. D,
58, 064002, (1998). For a related
online version see: J. Frauendiener, “Numerical treatment of
the hyperboloidal initial value problem for the vacuum Einstein
equations. I. The conformal field equations”, (December, 1997),
[Online Los Alamos Archive Preprint]: cited on December 19, 1999,
http://arxiv.org/abs/gr-qc/9712050. |
 |
46 |
Frauendiener, J., “Numerical
treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. II. The evolution equations”, Phys. Rev. D,
58, 064003, (1998). For a related
online version see: J. Frauendiener, “Numerical treatment of
the hyperboloidal initial value problem for the vacuum Einstein
equations. II. The evolution equations”, (December, 1997), [Online
Los Alamos Archive Preprint]: cited on December 19, 1999, http://arxiv.org/abs/gr-qc/9712052. |
 |
47 |
Frauendiener, J.,
“Calculating initial data for the conformal field equations by
pseudo-spectral methods”, J. Comput. Appl. Math., 109(1-2), 475-491, (1999). For a related
online version see: J. Frauendiener, “Calculating initial data
for the conformal field equations by pseudo-spectral methods”,
(June, 1998), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999, http://arxiv.org/abs/gr-qc/9806103. |
 |
48 |
Frauendiener, J., Conformal methods in numerical relativity,
Habilitationsschrift, (Universität Tübingen, Tübingen, Germany,
1999). |
 |
49 |
Frauendiener, J., “Numerical
treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. III. On the determination of radiation”, Class. Quantum
Grav., 17(2), 373-387, (2000).
For a related online version see: J. Frauendiener, “Numerical
treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. III. On the determination of radiation”,
(August, 1998), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999, http://arxiv.org/abs/gr-qc/9808072. |
 |
50 |
Frauendiener, J., “On
discretizations of axisymmetric systems”, Phys. Rev. D,
66, 104027, (2002). For a related
online version see: J. Frauendiener, “On discretizations of
axisymmetric systems”, (June, 2003), [Online Los Alamos Archive
Preprint]: cited on 22 July 2003, http://arxiv.org/abs/gr-qc/0207092. |
 |
51 |
Frauendiener, J., “Some
aspects of the numerical treatment of the conformal field
equations”, in Frauendiener, J., and Friedrich, H., eds., The conformal structure of space-times:
Geometry, Analysis, Numerics,
volume 604 of Lecture Notes in
Physics, 261-282, (Springer-Verlag, Heidelberg, Germany,
2002). |
 |
52 |
Frauendiener, J., and Hein,
M., “Numerical simulation of axisymmetric isolated systems in
General Relativity”, Phys. Rev. D,
66, 124004, (2002). For a related
online version see: J. Frauendiener, et al., “Numerical
simulation of axisymmetric isolated systems in General Relativity”,
(June, 2002), [Online Los Alamos Archive Preprint]: cited on 22
July 2003, http://arxiv.org/abs/gr-qc/0207094. |
 |
53 |
Friedrich, H., “Radiative
gravitational fields and asymptotically static or stationary
initial data”, (April, 2003), [Online Los Alamos Archive Preprint]:
cited on 9 July 2003, http://arxiv.org/abs/gr-qc/0304003. |
 |
54 |
Friedrich, H., “On the
regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations”, in Walker, M., ed., Proceedings of the third Gregynog relativity workshop, Gravitational Radiation
Theory, number MPI-PAE / Astro 204 in Max-Planck Green
Report, (Max-Planck-Institut f. Physik und Astrophysik, München,
Germany, 1979). |
 |
55 |
Friedrich, H., “The
asymptotic characteristic initial value problem for Einstein’s
vacuum field equations as an initial value problem for a
first-order quasilinear symmetric hyperbolic system”, Proc. R. Soc. London,
Ser. A, 378, 401-421, (1981). |
 |
56 |
Friedrich, H., “On the
regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations”, Proc. R. Soc. London,
Ser. A, 375, 169-184, (1981). |
 |
57 |
Friedrich, H., “On the
existence of analytic null asymptotically flat solutions of
Einstein’s field equations”, Proc. R. Soc. London,
Ser. A, 381, 361-371, (1982). |
 |
58 |
Friedrich, H., “Cauchy
problems for the conformal vacuum field equations in general
relativity”, Commun. Math. Phys., 91,
445-472, (1983). |
 |
59 |
Friedrich, H., “On the
hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100,
525-543, (1985). |
 |
60 |
Friedrich, H., “On purely
radiative space-times”, Commun. Math. Phys., 103,
36-65, (1986). |
 |
61 |
Friedrich, H., “On the
existence of n-geodesically complete or future complete solutions
of Einstein’s field equations with smooth asymptotic structure”,
Commun. Math. Phys., 107,
587-609, (1986). |
 |
62 |
Friedrich, H., “On static
and radiative space-times”, Commun. Math. Phys., 119,
51-73, (1988). |
 |
63 |
Friedrich, H., “On the
global existence and the asymptotic behavior of solutions to the
Einstein-Maxwell-Yang-Mills equations”, J. Differ. Geom., 34,
275-345, (1991). |
 |
64 |
Friedrich, H., “Asymptotic
structure of space-time”, in Janis, A.I., and Porter, J.R., eds.,
Recent Advances
in General Relativity: Essays in Honour of E.T. Newman, 146-181, (Birkhäuser Inc., Boston,
MA, U.S.A., 1992). |
 |
65 |
Friedrich, H., “Einstein
equations and conformal structure: Existence of anti-de Sitter-type
space-times”, J. Geom. Phys., 17,
125-184, (1995). |
 |
66 |
Friedrich, H., “Hyperbolic
reductions for Einstein’s field equations”, Class. Quantum
Grav., 13, 1451-1469,
(1996). |
 |
67 |
Friedrich, H., “Einstein’s
equation and conformal structure”, in Huggett, S.A., Mason, L.J.,
Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry and the Work of Roger Penrose,
81-98, (Oxford University Press, Oxford, U.K., 1998). |
 |
68 |
Friedrich, H.,
“Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24,
83-163, (1998). |
 |
69 |
Friedrich, H., “Conformal
Einstein evolution”, in Frauendiener, J., and Friedrich, H., eds.,
The conformal
structure of space-times: Geometry, Analysis, Numerics,
volume 604 of Lecture Notes in Physics, 1-50, (Springer-Verlag,
Heidelberg, Germany, 2002). For a related online version see:
H. Friedrich, “Conformal Einstein evolution”, (September,
2002), [Online Los Alamos Archive Preprint]: cited on 9 July 2003,
http://arxiv.org/abs/gr-qc/0209018. |
 |
70 |
Friedrich, H., “Conformal
geodesics on vacuum space-times”, Commun. Math. Phys., 235,
513-543, (2003). For a related online version see:
H. Friedrich, “Conformal geodesics on vacuum space-times”,
(January, 2002), [Online Los Alamos Archive Preprint]: cited on 9
July 2003, http://arxiv.org/abs/gr-qc/0201006. |
 |
71 |
Friedrich, H., and Kánnár,
J., “Bondi-type systems near space-like infinity and the
calculation of the NP-constants”, J. Math. Phys., 41(4),
2195-2232, (2000). For a related online version see:
H. Friedrich, et al., “Bondi-type systems near space-like
infinity and the calculation of the NP-constants”, (November,
1999), [Online Los Alamos Archive Preprint]: cited on December 19,
1999, http://arxiv.org/abs/gr-qc/9910077. |
 |
72 |
Friedrich, H., and Nagy, G.,
“The initial boundary value problem for Einstein’s vacuum field
equations”, Commun. Math. Phys., 201,
619-655, (1998). |
 |
73 |
Friedrich, H., and Schmidt,
B.G., “Conformal geodesics in general relativity”, Proc. R. Soc. London,
Ser. A, 414(1846), 171-195, (1987). |
 |
74 |
Frittelli, S., and Reula,
O., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166,
221-235, (1994). |
 |
75 |
Geroch, R., “Local
characterization of singularities in general relativity”, J. Math. Phys., 9,
450-465, (1968). |
 |
76 |
Geroch, R., “Multipole
moments. I. Flat space”, J. Math. Phys., 11(6),
1955-1961, (1970). |
 |
77 |
Geroch, R., “Multipole
moments. II. Curved space”, J. Math. Phys., 11(8),
2580-2588, (1970). |
 |
78 |
Geroch, R., “Space-time
structure from a global point of view”, in Sachs, R.K., ed., General Relativity and
Cosmology, 71-103, (Academic Press, New York, NY, U.S.A.,
1971). |
 |
79 |
Geroch, R., “Asymptotic
Structure of Space-time”, in Esposito, F.P., and Witten, L., eds.,
Asymptotic Structure of Space-Time,
1-105, (Plenum Press, New York, NY, U.S.A., 1977). |
 |
80 |
Geroch, R., Held, A., and
Penrose, R., “A space-time calculus based on pairs of null
directions”, J. Math. Phys., 14,
874-881, (1973). |
 |
81 |
Geroch, R., and Horowitz,
G.T., “Asymptotically simple does not imply asymptotically
minkowskian”, Phys. Rev. Lett., 40(4),
203-206, (1978). |
 |
82 |
Geroch, R., and Winicour,
J., “Linkages in general relativity”, J. Math. Phys., 22,
803-812, (1981). |
 |
83 |
Glass, E.N., and Goldberg,
J.N., “Newman-Penrose constants and their invariant
transformations”, J. Math. Phys., 11(12),
3400-3412, (1970). |
 |
84 |
Goldberg, J.N., “Invariant
transformations and Newman-Penrose constants”, J. Math. Phys., 8(11),
2161-2166, (1967). |
 |
85 |
Goldberg, J.N., “Invariant
transformations, conservation laws and energy-momentum”, in Held,
A., ed., General Relativity and
Gravitation, volume 1, chapter 15, 469-489,
(Plenum Press, New York, NY, U.S.A., 1980). |
 |
86 |
Gustafsson, B., Kreiss,
H.-O., and Oliger, J., Time dependent
problems and difference methods, (Wiley, New York, NY,
U.S.A., 1995). |
 |
87 |
Hansen, R., “Multipole
moments of stationary space-times”, J. Math. Phys., 15,
46-52, (1974). |
 |
88 |
Hawking, S.W., and Ellis,
G.F.R., The large scale structure of
space-time, (Cambridge University Press, Cambridge, U.K.,
1973). |
 |
89 |
Hübner, P., Numerische und analytische Untersuchungen von
(singulären,) asymptotisch flachen Raumzeiten mit konformen Techniken,
PhD thesis, (Ludwig-Maximilians-Universität, München, Germany,
1993). |
 |
90 |
Hübner, P., “Method for
calculating the global structure of (singular) spacetimes”, Phys. Rev. D,
53(2), 701-721, (1994). For a related
online version see: P. Hübner, “Method for calculating the
global structure of (singular) spacetimes”, (September, 1994),
[Online Los Alamos Archive Preprint]: cited on December 19, 1999,
http://arxiv.org/abs/gr-qc/9409029. |
 |
91 |
Hübner, P., “General
relativistic scalar-field models and asymptotic flatness”, Class. Quantum Grav.,
12(3), 791-808, (1995). For a related
online version see: P. Hübner, “General relativistic
scalar-field models and asymptotic flatness”, (August, 1994),
[Online Los Alamos Archive Preprint]: cited on December 19, 1999,
http://arxiv.org/abs/gr-qc/9408012. |
 |
92 |
Hübner, P., “Numerical
approach to the global structure of space-time”, Helv. Phys. Acta, 69,
317-320, (1996). |
 |
93 |
Hübner, P., “More about
vacuum spacetimes with toroidal null infinities”, Class. Quantum Grav.,
15, L21-L25, (1998). |
 |
94 |
Hübner, P., “How to avoid
artificial boundaries in the numerical calculation of black hole
space-times”, Class. Quantum Grav., 16(7), 2145-2164, (1999). For a related
online version see: P. Hübner, “How to avoid artificial
boundaries in the numerical calculation of black hole space-times”,
(April, 1999), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999, http://arxiv.org/abs/gr-qc/9804065. |
 |
95 |
Hübner, P., “A scheme to
numerically evolve data for the conformal Einstein equation”, Class. Quantum
Grav., 16(9), 2823-2843,
(1999). For a related online version see: P. Hübner, “A scheme
to numerically evolve data for the conformal Einstein equation”,
(March, 1999), [Online Los Alamos Archive Preprint]: cited on
December 19, 1999, http://arxiv.org/abs/gr-qc/9903088. |
 |
96 |
Huggett, S.A., Mason, L.J.,
Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry and the Work of Roger
Penrose, (Oxford University Press, Oxford, U.K.,
1998). |
 |
97 |
Hungerbühler, R., Lösung kugelsymmetrischer Systeme in der Allgemeinen Relativitätstheorie mit
Pseudospektralmethoden, Diplomarbeit, (Universität Tübingen,
Tübingen, Germany, 1997). |
 |
98 |
Husa, S., “Into thin air;
climbing up a smooth route to null-infinity”, (July, 2003), [Online
HTML Page]: cited on 11 July 2003, http://online.kitp.ucsb.edu/online/gravity03/husa/.
Talk given at KITP Santa Barbara. |
 |
99 |
Husa, S., “Numerical
relativity with the conformal field equations”, in Fernandez, L.,
and Gonzalez, L., eds., Proceedings of the
Spanish Relativity meeting, Madrid, 2001, Lecture Notes in
Physics, (Springer-Verlag, Heidelberg, Germany, 2002). For a
related online version see: S. Husa, “Numerical relativity
with the conformal field equations”, (April, 2002), [Online Los
Alamos Archive Preprint]: cited on 11 July 2003, http://arxiv.org/abs/gr-qc/0204057. To
appear. |
 |
100 |
Husa, S., “Problems and
Successes in the Numerical Approach to the Conformal Field
Equations”, in Frauendiener, J., and Friedrich, H., eds., The conformal structure of space-times: Geometry, Analysis, Numerics,
volume 604 of Lecture Notes in
Physics, 239-259, (Springer-Verlag, Heidelberg, Germany,
2002). For a related online version see: S. Husa, “Problems
and Successes in the Numerical Approach to the Conformal Field
Equations”, (April, 2002), [Online Los Alamos Archive Preprint]:
cited on 11 July 2003, http://arxiv.org/abs/gr-qc/0204043. |
 |
101 |
Isenberg, J., and Park, J.,
“Asymptotically hyberbolic nonconstant mean curvature solutions of
the Einstein constraint equations”, Class. Quantum
Grav., 14, A189-A201,
(1997). |
 |
102 |
Jordan, P., Ehlers, J., and
Sachs, R.K., “Beiträge zur Theorie der reinen
Gravitationsstrahlung”, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl.,
1, 1-85, (1961). |
 |
103 |
Kánnár, J., “Hyperboloidal
initial data for the vacuum Einstein equations with cosmological
constant”, Class. Quantum Grav., 13(11), 3075-3084, (1996). |
 |
104 |
Kánnár, J., “On the
existence of C solutions to the
asymptotic characteristic initial value problem in general
elativity”, Proc. R. Soc. London,
Ser. A, 452, 945-952, (1996). |
 |
105 |
Kozameh, C.N., “Dynamics of
null surfaces in general relativity”, in Dadhich, N., and Narlikar,
J., eds., Gravitation and Relativity: At the
turn of the Millennium. Proceedings of the GR-15 Conference, 139-152, (IUCAA, Pune, India,
1998). |
 |
106 |
Lichnerowicz, A., Théories relativistes de la gravitation et de
l’électromagnétisme, (Masson
et Cie., Paris, France, 1955). |
 |
107 |
Lichnerowicz, A., “Sur les
ondes et radiations gravitationnelles”, Comptes Rendus Acad. Sci., 246,
893-896, (1958). |
 |
108 |
Marder, L., “Gravitational
waves in general relativity I. Cylindrical waves”, Proc. R. Soc. London, Ser. A,
244, 524-537, (1958). |
 |
109 |
Marder, L., “Gravitational
waves in general relativity II. The reflexion of cylindrical
waves”, Proc. R. Soc. London,
Ser. A, 246, 133-143, (1958). |
 |
110 |
Marder, L., “Gravitational
waves in general relativity V. An exact spherical wave”, Proc. R. Soc. London,
Ser. A, 261, 91-96, (1961). |
 |
111 |
Max Planck Institute for
Gravitational Physics, “The Cactus Homepage”, (2003), [Online HTML
document]: cited on 11 July 2003, http://www.cactus.org/. |
 |
112 |
McCarthy, P.J.,
“Representations of the Bondi-Metzner-Sachs group I. Determination
of the representations”, Proc. R. Soc. London,
Ser. A, 330, 517-535, (1972). |
 |
113 |
McCarthy, P.J., “Structure
of the Bondi-Metzner-Sachs group”, J. Math. Phys., 13(11),
1837-1842, (1972). |
 |
114 |
McCarthy, P.J.,
“Representations of the Bondi-Metzner-Sachs group II. Properties
and classification of the representations”, Proc. R. Soc. London,
Ser. A, 333, 317-336, (1973). |
 |
115 |
McLennan, J.A., “Conformal
invariance and conservation laws for relativistic wave equations
for zero rest mass”, Nuovo Cimento,
3, 1360-1379, (1956). |
 |
116 |
Newman, E.T., “Heaven and
its properties”, Gen. Relativ. Gravit., 7,
107-111, (1976). |
 |
117 |
Newman, E.T., and Penrose,
R., “An approach to gravitational radiation by a method of spin
coefficients”, J. Math. Phys., 3,
896-902, (1962). Errata 4 (1963),
998. |
 |
118 |
Newman, E.T., and Penrose,
R., “Note on the Bondi-Metzner-Sachs group”, J. Math. Phys., 7,
863-879, (1966). |
 |
119 |
Newman, E.T., and Penrose,
R., “New conservation laws for zero rest-mass fields in
asymptotically flat space-time”, Proc. R. Soc. London,
Ser. A, 305, 175-204, (1968). |
 |
120 |
Newman, E.T., and Tod, K.P.,
“Asymptotically flat space-times”, in Held, A., ed., General Relativity and
Gravitation, volume 2, chapter 1, 1-36, (Plenum
Press, New York, NY, U.S.A., 1980). |
 |
121 |
Newman, E.T., and Unti,
T.W.J., “Behavior of asymptotically flat empty spaces”, J. Math. Phys., 3,
891-901, (1962). |
 |
122 |
Newman, R.P.A.C., “The
global structure of simple space-times”, Commun. Math. Phys., 123,
17-52, (1989). |
 |
123 |
Penrose, R., “A generalized
inverse for matrices”, Proc. Cambridge
Philos. Soc., 51, 406-413, (1955). |
 |
124 |
Penrose, R., “A spinor
approach to general relativity”, Ann. Phys. (N.
Y.), 10, 171-201,
(1960). |
 |
125 |
Penrose, R., “The light cone
at infinity”, in Infeld, L., ed., Relativistic Theories of Gravitation,
369-373, (Pergamon Press, Oxford, U.K., 1964). |
 |
126 |
Penrose, R., “Zero rest-mass
fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London,
Ser. A, 284, 159-203, (1965). |
 |
127 |
Penrose, R., “Structure of
space-time”, in DeWitt, C.M., and Wheeler, J.A., eds., Battelle Rencontres, 121-235, (W.A. Benjamin,
Inc., New York, NY, U.S.A., 1968). |
 |
128 |
Penrose, R., “Relativistic
symmetry groups”, in Barut, A.O., ed., Group
Theory in non-linear Problems,
chapter 1, 1-58, (Reidel Publishing Company, Dordrecht,
Netherlands, 1974). |
 |
129 |
Penrose, R., “Nonlinear
gravitons and curved twistor theory”, Gen. Relativ. Gravit., 7,
31-52, (1976). |
 |
130 |
Penrose, R., “Null
hypersurface initial data for classical fields of arbitrary spin
and for general relativity”, Gen. Relativ. Gravit., 12,
225-264, (1980). originally published in Aerospace Research Laboratories Report 63-56 (P. G.
Bergmann). |
 |
131 |
Penrose, R., “Quasi-local
mass and angular momentum in general relativity”, Proc. R. Soc. London,
Ser. A, 381, 53-63, (1982). |
 |
132 |
Penrose, R., “The central
programme of twistor theory”, Chaos Solitons
Fractals, 10(2-3), 581-611,
(1999). |
 |
133 |
Penrose, R., “Some remarks
on twistor theory”, in Harvey, A., ed., On
Einstein’s Path: Essays in Honor of
Engelbert Schücking, chapter 25, 353-366, (Springer,
New York, NY, U.S.A., 1999). |
 |
134 |
Penrose, R., and Rindler,
W., Spinors and Spacetime,
volume 1, (Cambridge University Press, Cambridge, U.K.,
1984). |
 |
135 |
Penrose, R., and Rindler,
W., Spinors and Spacetime,
volume 2, (Cambridge University Press, Cambridge, U.K.,
1986). |
 |
136 |
Pirani, F.A.E., “Invariant
formulation of gravitational radiation theory”, Phys. Rev., 105,
1089-1099, (1957). |
 |
137 |
Pirani, F.A.E.,
“Gravitational waves in general relativity IV. The gravitational
field of a fast-moving particle”, Proc. R. Soc. London,
Ser. A, 252, 96-101, (1959). |
 |
138 |
Rendall, A.D., “Local and
global existence theorems for the Einstein equations”, Living Rev. Relativity, 5,
lrr-2002-6, (September, 2002), [Online Journal Article]: cited on
23 July 2003, http://www.livingreviews.org/lrr-2002-6. |
 |
139 |
Robinson, D.C., “Conserved
quantities of Newman and Penrose”, J. Math. Phys., 10(9),
1745-1753, (1969). |
 |
140 |
Rosen, N., “Plane polarised
waves in the general theory of relativity”, Phys. Z. Sowjetunion, 12, 366-372, (1937). |
 |
141 |
Sachs, R.K., “Propagation
laws for null and type III gravitational waves”, Z. Phys.,
157, 462-477, (1960). |
 |
142 |
Sachs, R.K., “Gravitational
waves in general relativity VI. The outgoing radiation condition”,
Proc. R. Soc. London,
Ser. A, 264, 309-338, (1961). |
 |
143 |
Sachs, R.K., “Asymptotic
symmetries in gravitational theories”, Phys. Rev., 128,
2851-2864, (1962). |
 |
144 |
Sachs, R.K., “Gravitational
waves in general relativity VIII. Waves in asymptotically flat
space-time”, Proc. R. Soc. London,
Ser. A, 270, 103-127, (1962). |
 |
145 |
Sachs, R.K., “Characteristic
initial value problem for gravitational theory”, in Infeld, L.,
ed., Relativistic Theories of
Gravitation, 93-105, (Pergamon Press, Oxford, U.K.,
1964). |
 |
146 |
Sachs, R.K., “Gravitational
radiation”, in DeWitt, C.M., and DeWitt, B., eds., Relativity, Groups and
Topology, 523-562, (Gordon and Breach, New York, NY, U.S.A.,
1964). |
 |
147 |
Sachs, R.K., and Bergmann,
P.G., “Structure of particles in linearized gravitational theory”,
Phys. Rev., 112(2),
674-680, (1958). |
 |
148 |
Schmidt, B.G., “A new
definition of conformal and projective infinity of space-times”,
Commun. Math. Phys., 36,
73-90, (1974). |
 |
149 |
Schmidt, B.G., “Conformal
bundle boundaries”, in Esposito, F.P., and Witten, L., eds., Asymptotic structure of space-time, 429-440,
(Plenum Press, New York, NY, U.S.A., 1977). |
 |
150 |
Schmidt, B.G., “Asymptotic
structure of isolated systems”, in Ehlers, J., ed., Isolated Gravitating
Systems in General Relativity, 11-49, (Academic Press, New
York, NY, U.S.A., 1978). |
 |
151 |
Schmidt, B.G., “On the
uniqueness of boundaries at infinity of asymptotically flat
spacetimes”, Class. Quantum Grav., 8, 1491-1504, (1991). |
 |
152 |
Schmidt, B.G., “Vacuum
space-times with toroidal null infinities”, Class. Quantum
Grav., 13, 2811-2816,
(1996). |
 |
153 |
Simon, W., and Beig, R.,
“The multipole structure of stationary space-times”, J. Math. Phys., 24(5),
1163-1171, (1983). |
 |
154 |
Sommers, P., “The geometry
of the gravitational field at space-like infinity”, J. Math. Phys., 19,
549-554, (1978). |
 |
155 |
Streubel, M., “‘Conserved’
quantities for isolated gravitational systems”, Gen. Relativ. Gravit., 9(6),
551-561, (1978). |
 |
156 |
Trautman, A., “Boundary
Conditions at infinity for physical theories”, Bull. Acad. Polon. Sci. Cl. III,
6, 403-406, (1958). |
 |
157 |
Trautman, A., “Radiation and
boundary conditions in the theory of gravitation”, Bull. Acad. Polon. Sci. Cl. III,
6, 407-412, (1958). |
 |
158 |
Trefethen, L.N., “Group
velocity in finite difference schemes”, SIAM
Rev., 24, 113-136,
(1982). |
 |
159 |
Trefethen, L.N., “Finite
Difference and Spectral Methods for Ordinary and Partial
Differential Equations”, graduate textbook, privately published,
(1996). |
 |
160 |
Valiente Kroon, J.A.,
“A new class of obstructions to the smoothness of null infinity”,
(November, 2002), [Online Los Alamos Archive Preprint]: cited on 9
July 2003, http://arxiv.org/abs/gr-qc/0211024. |
 |
161 |
Valiente Kroon, J.A.,
“Conserved quantities for polyhomogeneous space-times”, Class. Quantum Grav.,
15, 2479-2491, (1998). For a related
online version see: J.A. Valiente Kroon, “Conserved Quantities
for Polyhomogeneous Space-Times”, (May, 1998), [Online Los Alamos
Archive Preprint]: cited on December 19, 1999, http://arxiv.org/abs/gr-qc/9805094. |
 |
162 |
Valiente Kroon, J.A.,
“Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous
spacetimes”, Class. Quantum Grav., 16, 1653-1665, (1999). For a related online
version see: J.A. Valiente Kroon, “Logarithmic Newman-Penrose
constants for arbitrary polyhomogeneous spacetimes”, (December,
1998), [Online Los Alamos Archive Preprint]: cited on December 19,
1999, http://arxiv.org/abs/gr-qc/9812004. |
 |
163 |
Wald, R.M., General Relativity, (Chicago University
Press, Chicago, IL, U.S.A., 1984). |
 |
164 |
Winicour, J.,
“Characteristic evolution and matching”, Living Rev. Relativity, 4,
lrr-2001-3, (March, 2001), [Online Journal Article]: cited on 23
July 2003, http://www.livingreviews.org/lrr-2001-3. |
 |
165 |
Winicour, J., “Angular
momentum in general relativity”, in Held, A., ed., General Relativity and
Gravitation, volume 1, chapter 3, 71-96, (Plenum
Press, New York, NY, U.S.A., 1980). |
 |
166 |
Winicour, J., “Logarithmic
asymptotic flatness”, Found. Phys., 15,
605-616, (1985). |