Jump To The First Citation Point In The Article 1 Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr, J.W., “Einstein and Yang-Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75, 3377-3381, (1996). For a related online version see: A. Abrahams, et al., “Einstein and Yang-Mills theories in hyperbolic form without gauge fixing”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9506072.
Jump To The First Citation Point In The Article 2 Alcubierre, M., Brandt, S., Brügmann, B., Holz, D., Seidel, E., Takahashi, R., and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using cartesian grids”, Int. J. Mod. Phys. D, 10, 273-290, (2001).
Jump To The First Citation Point In The Article 3 Andersson, L., and Chruściel, P.T., “On ‘hyperboloidal’ Cauchy data for vacuum Einstein equations and obstructions to smoothness of ‘null-infinity”’, Phys. Rev. Lett., 70(19), 2829-2832, (1993). For a related online version see: L. Andersson, et al., “On ‘hyperboloidal’ Cauchy data for vacuum Einstein equations and obstructions to smoothness of ‘null-infinity”’, (April, 1993), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9304019.
Jump To The First Citation Point In The Article 4 Andersson, L., and Chruściel, P.T., “On hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of scri”, Commun. Math. Phys., 161(3), 533-568, (1994).
Jump To The First Citation Point In The Article 5 Andersson, L., Chruściel, P.T., and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587-612, (1992).
Jump To The First Citation Point In The Article 6 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, Louis, ed., Gravitation: An Introduction to Current Research, 227-265, (Wiley, New York, NY, U.S.A., 1962).
Jump To The First Citation Point In The Article 7 Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation, chapter 2, 37-70, (Plenum Press, New York, NY, U.S.A., 1980).
Jump To The First Citation Point In The Article 8 Ashtekar, A., “Asymptotic properties of isolated systems: recent developments”, in Bertotti, B., de Felice, F., and Pascolini, A., eds., General Relativity and Gravitation, 37-68, (Reidel Publishing Company, Dordrecht, Netherlands, 1984).
Jump To The First Citation Point In The Article 9 Ashtekar, A., Asymptotic quantization, (Bibliopolis, Naples, Italy, 1987).
Jump To The First Citation Point In The Article 10 Ashtekar, A., Bombelli, L., and Reula, O., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., ed., Mechanics, analysis and geometry: 200 years after Lagrange, 417-450, (North-Holland Publishing Co., Amsterdam, Netherlands, 1991).
Jump To The First Citation Point In The Article 11 Ashtekar, A., and Hansen, R.O., “A unified treatment of null and spatial infinity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542-1566, (1978).
Jump To The First Citation Point In The Article 12 Ashtekar, A., and Romano, J., “Spatial infinity as a boundary of space-time”, Class. Quantum Grav., 9, 1069-1100, (1992).
Jump To The First Citation Point In The Article 13 Ashtekar, A., and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585-607, (1981).
Jump To The First Citation Point In The Article 14 Ashtekar, A., and Xanthopoulos, B., “Isometries compatible with the asymptotic flatness at null infinity: A complete description”, J. Math. Phys., 19, 2216-2222, (1978).
Jump To The First Citation Point In The Article 15 Bartnik, R., “The spherically symmetric Einstein-Yang-Mills equations”, in Perjes, Z., ed., Physics Today: Proceedings of the 1988 Hungarian Relativity Workshop, Tihany, 221-240, (Nova Science Publishers, New York, NY, U.S.A., 1992).
Jump To The First Citation Point In The Article 16 Bateman, H., “The transformations of the electrodynamical equations”, Proc. London Math. Soc. 2, 8, 223-264, (1910).
Jump To The First Citation Point In The Article 17 Baumgarte, T.W., and Shapiro, S.L., “On the numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, (1999). For a related online version see: T.W. Baumgarte, et al., “On the Numerical Integration of Einstein’s Field Equations”, (October, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9810065.
Jump To The First Citation Point In The Article 18 Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295-304, (1984).
Jump To The First Citation Point In The Article 19 Beig, R., and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87, 65-80, (1982).
Jump To The First Citation Point In The Article 20 Beig, R., and Simon, W., “Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78, 75-82, (1980).
Jump To The First Citation Point In The Article 21 Bičák, J., Hoenselaers, C., and Schmidt, B.G., “The solutions of the Einstein equations for uniformly accelerated particles without nodal symmetries. II. Self-accelerating particles”, Proc. R. Soc. London, Ser. A, 390, 411-419, (1983).
Jump To The First Citation Point In The Article 22 Bičák, J., and Schmidt, B.G., “Asymptotically flat radiative space-times with boost-rotation symmetry”, Phys. Rev. D, 40, 1827-1853, (1989).
Jump To The First Citation Point In The Article 23 Bishop, N.T., “Some aspects of the characteristic initial value problem”, in d’ Inverno, R.A., ed., Approaches to Numerical Relativity, 20-33, (Cambridge University Press, Cambridge, U.K., 1993).
Jump To The First Citation Point In The Article 24 Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilagy, B., and Winicour, J., “Cauchy Characteristic Matching”, in Iyer, B., ed., On the black hole trail, 383-408, (Kluwer, Dodrecht, Netherlands, 1998).
Jump To The First Citation Point In The Article 25 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Spectral methods in general relativistic astrophysics”, J. Comput. Appl. Math., 109, 433-473, (1999).
Jump To The First Citation Point In The Article 26 Bondi, H., Pirani, F.A.E., and Robinson, I., “Gravitational waves in general relativity III. Exact plane waves”, Proc. R. Soc. London, Ser. A, 251, 519-533, (1959).
Jump To The First Citation Point In The Article 27 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21-52, (1962).
Jump To The First Citation Point In The Article 28 Bonnor, W.B., and Rotenberg, M.A., “Gravitational waves from isolated sources”, Proc. R. Soc. London, Ser. A, 289, 247-274, (1966).
Jump To The First Citation Point In The Article 29 Choquet-Bruhat, Y., and York, J.W., “The Cauchy Problem”, in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 4, 99-172, (Plenum Press, New York, NY, U.S.A., 1980).
Jump To The First Citation Point In The Article 30 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339-373, (1991).
Jump To The First Citation Point In The Article 31 Christodoulou, D., and Klainermann, S., The global nonlinear stability of the Minkowski space, (Princeton University Press, Princeton, CA, U.S.A., 1993).
Jump To The First Citation Point In The Article 32 Chruściel, P.T., and Delay, E., “Existence of non-trivial, vacuum, asymptotically simple space-times”, Class. Quantum Grav., 19, L71-L79, (2002). For a related online version see: P.T. Chruściel, et al., “Existence of non-trivial, vacuum, asymptotically simple space-times”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 18 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0203053.
Jump To The First Citation Point In The Article 33 Chruściel, P.T., and Delay, E., “Existence of non-trivial, vacuum, asymptotically simple spacetimes”, Class. Quantum Grav., 19, 3389, (2002).
Jump To The First Citation Point In The Article 34 Chruściel, P.T., MacCallum, M.A., and Singleton, D., “Gravitational waves in general relativity. XIV. Bondi expansions and the ‘polyhomogeneity’ of I”, Philos. Trans. R. Soc. London, Ser. A, 350(1692), 113-141, (1995). For a related online version see: P.T. Chruściel, et al., “Gravitational waves in general relativity. XIV. Bondi expansions and the “polyhomogeneity” of I”, (May, 1993), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9305021.
Jump To The First Citation Point In The Article 35 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137-189, (2000).
Jump To The First Citation Point In The Article 36 Corvino, J., and Schoen, R., “On the asymptotics for the Einstein constraint equations”, (January, 2003), [Online Los Alamos Archive Preprint]: cited on 9 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0301071.
Jump To The First Citation Point In The Article 37 Courant, R., Friedrichs, K.O., and Lewy, H., “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100, 32-74, (1928).
Jump To The First Citation Point In The Article 38 Cunningham, E., “The principle of relativity in electrodynamics and an extension thereof”, Proc. London Math. Soc. 2, 8, 77-98, (1910).
Jump To The First Citation Point In The Article 39 Cutler, C., and Wald, R.M., “Existence of radiating Einstein-Maxwell solutions which are Coo on all of I- and I+”, Class. Quantum Grav., 6, 453-466, (1989).
Jump To The First Citation Point In The Article 40 Dixon, W. G., “Analysis of the Newman-Unti integration procedure for asymptotically flat space-times”, J. Math. Phys., 11, 1238-1248, (1970).
Jump To The First Citation Point In The Article 41 Ehlers, J., and Sachs, R.K., “Erhaltungssätze für die Wirkung in elektromagnetischen und gravischen Strahlungsfeldern”, Z. Phys., 155, 498-506, (1959).
Jump To The First Citation Point In The Article 42 Einstein, A., “Über Gravitationswellen”, Sitz. Ber. Preuss. Akad. Wiss., 154-167, (1918).
Jump To The First Citation Point In The Article 43 Engquist, B., and Majda, A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31(139), 629-651, (1977).
Jump To The First Citation Point In The Article 44 Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class. Quantum Grav., 6, L237-L241, (1989).
Jump To The First Citation Point In The Article 45 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations”, Phys. Rev. D, 58, 064002, (1998). For a related online version see: J. Frauendiener, “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9712050.
Jump To The First Citation Point In The Article 46 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations”, Phys. Rev. D, 58, 064003, (1998). For a related online version see: J. Frauendiener, “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations”, (December, 1997), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9712052.
Jump To The First Citation Point In The Article 47 Frauendiener, J., “Calculating initial data for the conformal field equations by pseudo-spectral methods”, J. Comput. Appl. Math., 109(1-2), 475-491, (1999). For a related online version see: J. Frauendiener, “Calculating initial data for the conformal field equations by pseudo-spectral methods”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9806103.
Jump To The First Citation Point In The Article 48 Frauendiener, J., Conformal methods in numerical relativity, Habilitationsschrift, (Universität Tübingen, Tübingen, Germany, 1999).
Jump To The First Citation Point In The Article 49 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation”, Class. Quantum Grav., 17(2), 373-387, (2000). For a related online version see: J. Frauendiener, “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation”, (August, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9808072.
Jump To The First Citation Point In The Article 50 Frauendiener, J., “On discretizations of axisymmetric systems”, Phys. Rev. D, 66, 104027, (2002). For a related online version see: J. Frauendiener, “On discretizations of axisymmetric systems”, (June, 2003), [Online Los Alamos Archive Preprint]: cited on 22 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0207092.
Jump To The First Citation Point In The Article 51 Frauendiener, J., “Some aspects of the numerical treatment of the conformal field equations”, in Frauendiener, J., and Friedrich, H., eds., The conformal structure of space-times: Geometry, Analysis, Numerics, volume 604 of Lecture Notes in Physics, 261-282, (Springer-Verlag, Heidelberg, Germany, 2002).
Jump To The First Citation Point In The Article 52 Frauendiener, J., and Hein, M., “Numerical simulation of axisymmetric isolated systems in General Relativity”, Phys. Rev. D, 66, 124004, (2002). For a related online version see: J. Frauendiener, et al., “Numerical simulation of axisymmetric isolated systems in General Relativity”, (June, 2002), [Online Los Alamos Archive Preprint]: cited on 22 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0207094.
Jump To The First Citation Point In The Article 53 Friedrich, H., “Radiative gravitational fields and asymptotically static or stationary initial data”, (April, 2003), [Online Los Alamos Archive Preprint]: cited on 9 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0304003.
Jump To The First Citation Point In The Article 54 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, in Walker, M., ed., Proceedings of the third Gregynog relativity workshop, Gravitational Radiation Theory, number MPI-PAE / Astro 204 in Max-Planck Green Report, (Max-Planck-Institut f. Physik und Astrophysik, München, Germany, 1979).
Jump To The First Citation Point In The Article 55 Friedrich, H., “The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system”, Proc. R. Soc. London, Ser. A, 378, 401-421, (1981).
Jump To The First Citation Point In The Article 56 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169-184, (1981).
Jump To The First Citation Point In The Article 57 Friedrich, H., “On the existence of analytic null asymptotically flat solutions of Einstein’s field equations”, Proc. R. Soc. London, Ser. A, 381, 361-371, (1982).
Jump To The First Citation Point In The Article 58 Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”, Commun. Math. Phys., 91, 445-472, (1983).
Jump To The First Citation Point In The Article 59 Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100, 525-543, (1985).
Jump To The First Citation Point In The Article 60 Friedrich, H., “On purely radiative space-times”, Commun. Math. Phys., 103, 36-65, (1986).
Jump To The First Citation Point In The Article 61 Friedrich, H., “On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure”, Commun. Math. Phys., 107, 587-609, (1986).
Jump To The First Citation Point In The Article 62 Friedrich, H., “On static and radiative space-times”, Commun. Math. Phys., 119, 51-73, (1988).
Jump To The First Citation Point In The Article 63 Friedrich, H., “On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations”, J. Differ. Geom., 34, 275-345, (1991).
Jump To The First Citation Point In The Article 64 Friedrich, H., “Asymptotic structure of space-time”, in Janis, A.I., and Porter, J.R., eds., Recent Advances in General Relativity: Essays in Honour of E.T. Newman, 146-181, (Birkhäuser Inc., Boston, MA, U.S.A., 1992).
Jump To The First Citation Point In The Article 65 Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type space-times”, J. Geom. Phys., 17, 125-184, (1995).
Jump To The First Citation Point In The Article 66 Friedrich, H., “Hyperbolic reductions for Einstein’s field equations”, Class. Quantum Grav., 13, 1451-1469, (1996).
Jump To The First Citation Point In The Article 67 Friedrich, H., “Einstein’s equation and conformal structure”, in Huggett, S.A., Mason, L.J., Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry and the Work of Roger Penrose, 81-98, (Oxford University Press, Oxford, U.K., 1998).
Jump To The First Citation Point In The Article 68 Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83-163, (1998).
Jump To The First Citation Point In The Article 69 Friedrich, H., “Conformal Einstein evolution”, in Frauendiener, J., and Friedrich, H., eds., The conformal structure of space-times: Geometry, Analysis, Numerics, volume 604 of Lecture Notes in Physics, 1-50, (Springer-Verlag, Heidelberg, Germany, 2002). For a related online version see: H. Friedrich, “Conformal Einstein evolution”, (September, 2002), [Online Los Alamos Archive Preprint]: cited on 9 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0209018.
Jump To The First Citation Point In The Article 70 Friedrich, H., “Conformal geodesics on vacuum space-times”, Commun. Math. Phys., 235, 513-543, (2003). For a related online version see: H. Friedrich, “Conformal geodesics on vacuum space-times”, (January, 2002), [Online Los Alamos Archive Preprint]: cited on 9 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0201006.
Jump To The First Citation Point In The Article 71 Friedrich, H., and Kánnár, J., “Bondi-type systems near space-like infinity and the calculation of the NP-constants”, J. Math. Phys., 41(4), 2195-2232, (2000). For a related online version see: H. Friedrich, et al., “Bondi-type systems near space-like infinity and the calculation of the NP-constants”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9910077.
Jump To The First Citation Point In The Article 72 Friedrich, H., and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619-655, (1998).
Jump To The First Citation Point In The Article 73 Friedrich, H., and Schmidt, B.G., “Conformal geodesics in general relativity”, Proc. R. Soc. London, Ser. A, 414(1846), 171-195, (1987).
Jump To The First Citation Point In The Article 74 Frittelli, S., and Reula, O., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166, 221-235, (1994).
Jump To The First Citation Point In The Article 75 Geroch, R., “Local characterization of singularities in general relativity”, J. Math. Phys., 9, 450-465, (1968).
Jump To The First Citation Point In The Article 76 Geroch, R., “Multipole moments. I. Flat space”, J. Math. Phys., 11(6), 1955-1961, (1970).
Jump To The First Citation Point In The Article 77 Geroch, R., “Multipole moments. II. Curved space”, J. Math. Phys., 11(8), 2580-2588, (1970).
Jump To The First Citation Point In The Article 78 Geroch, R., “Space-time structure from a global point of view”, in Sachs, R.K., ed., General Relativity and Cosmology, 71-103, (Academic Press, New York, NY, U.S.A., 1971).
Jump To The First Citation Point In The Article 79 Geroch, R., “Asymptotic Structure of Space-time”, in Esposito, F.P., and Witten, L., eds., Asymptotic Structure of Space-Time, 1-105, (Plenum Press, New York, NY, U.S.A., 1977).
Jump To The First Citation Point In The Article 80 Geroch, R., Held, A., and Penrose, R., “A space-time calculus based on pairs of null directions”, J. Math. Phys., 14, 874-881, (1973).
Jump To The First Citation Point In The Article 81 Geroch, R., and Horowitz, G.T., “Asymptotically simple does not imply asymptotically minkowskian”, Phys. Rev. Lett., 40(4), 203-206, (1978).
Jump To The First Citation Point In The Article 82 Geroch, R., and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803-812, (1981).
Jump To The First Citation Point In The Article 83 Glass, E.N., and Goldberg, J.N., “Newman-Penrose constants and their invariant transformations”, J. Math. Phys., 11(12), 3400-3412, (1970).
Jump To The First Citation Point In The Article 84 Goldberg, J.N., “Invariant transformations and Newman-Penrose constants”, J. Math. Phys., 8(11), 2161-2166, (1967).
Jump To The First Citation Point In The Article 85 Goldberg, J.N., “Invariant transformations, conservation laws and energy-momentum”, in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 15, 469-489, (Plenum Press, New York, NY, U.S.A., 1980).
Jump To The First Citation Point In The Article 86 Gustafsson, B., Kreiss, H.-O., and Oliger, J., Time dependent problems and difference methods, (Wiley, New York, NY, U.S.A., 1995).
Jump To The First Citation Point In The Article 87 Hansen, R., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46-52, (1974).
Jump To The First Citation Point In The Article 88 Hawking, S.W., and Ellis, G.F.R., The large scale structure of space-time, (Cambridge University Press, Cambridge, U.K., 1973).
Jump To The First Citation Point In The Article 89 Hübner, P., Numerische und analytische Untersuchungen von (singulären,) asymptotisch flachen Raumzeiten mit konformen Techniken, PhD thesis, (Ludwig-Maximilians-Universität, München, Germany, 1993).
Jump To The First Citation Point In The Article 90 Hübner, P., “Method for calculating the global structure of (singular) spacetimes”, Phys. Rev. D, 53(2), 701-721, (1994). For a related online version see: P. Hübner, “Method for calculating the global structure of (singular) spacetimes”, (September, 1994), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9409029.
Jump To The First Citation Point In The Article 91 Hübner, P., “General relativistic scalar-field models and asymptotic flatness”, Class. Quantum Grav., 12(3), 791-808, (1995). For a related online version see: P. Hübner, “General relativistic scalar-field models and asymptotic flatness”, (August, 1994), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9408012.
Jump To The First Citation Point In The Article 92 Hübner, P., “Numerical approach to the global structure of space-time”, Helv. Phys. Acta, 69, 317-320, (1996).
Jump To The First Citation Point In The Article 93 Hübner, P., “More about vacuum spacetimes with toroidal null infinities”, Class. Quantum Grav., 15, L21-L25, (1998).
Jump To The First Citation Point In The Article 94 Hübner, P., “How to avoid artificial boundaries in the numerical calculation of black hole space-times”, Class. Quantum Grav., 16(7), 2145-2164, (1999). For a related online version see: P. Hübner, “How to avoid artificial boundaries in the numerical calculation of black hole space-times”, (April, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9804065.
Jump To The First Citation Point In The Article 95 Hübner, P., “A scheme to numerically evolve data for the conformal Einstein equation”, Class. Quantum Grav., 16(9), 2823-2843, (1999). For a related online version see: P. Hübner, “A scheme to numerically evolve data for the conformal Einstein equation”, (March, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9903088.
Jump To The First Citation Point In The Article 96 Huggett, S.A., Mason, L.J., Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry and the Work of Roger Penrose, (Oxford University Press, Oxford, U.K., 1998).
Jump To The First Citation Point In The Article 97 Hungerbühler, R., Lösung kugelsymmetrischer Systeme in der Allgemeinen Relativitätstheorie mit Pseudospektralmethoden, Diplomarbeit, (Universität Tübingen, Tübingen, Germany, 1997).
Jump To The First Citation Point In The Article 98 Husa, S., “Into thin air; climbing up a smooth route to null-infinity”, (July, 2003), [Online HTML Page]: cited on 11 July 2003, External Linkhttp://online.kitp.ucsb.edu/online/gravity03/husa/. Talk given at KITP Santa Barbara.
Jump To The First Citation Point In The Article 99 Husa, S., “Numerical relativity with the conformal field equations”, in Fernandez, L., and Gonzalez, L., eds., Proceedings of the Spanish Relativity meeting, Madrid, 2001, Lecture Notes in Physics, (Springer-Verlag, Heidelberg, Germany, 2002). For a related online version see: S. Husa, “Numerical relativity with the conformal field equations”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 11 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0204057. To appear.
Jump To The First Citation Point In The Article 100 Husa, S., “Problems and Successes in the Numerical Approach to the Conformal Field Equations”, in Frauendiener, J., and Friedrich, H., eds., The conformal structure of space-times: Geometry, Analysis, Numerics, volume 604 of Lecture Notes in Physics, 239-259, (Springer-Verlag, Heidelberg, Germany, 2002). For a related online version see: S. Husa, “Problems and Successes in the Numerical Approach to the Conformal Field Equations”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 11 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0204043.
Jump To The First Citation Point In The Article 101 Isenberg, J., and Park, J., “Asymptotically hyberbolic nonconstant mean curvature solutions of the Einstein constraint equations”, Class. Quantum Grav., 14, A189-A201, (1997).
Jump To The First Citation Point In The Article 102 Jordan, P., Ehlers, J., and Sachs, R.K., “Beiträge zur Theorie der reinen Gravitationsstrahlung”, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., 1, 1-85, (1961).
Jump To The First Citation Point In The Article 103 Kánnár, J., “Hyperboloidal initial data for the vacuum Einstein equations with cosmological constant”, Class. Quantum Grav., 13(11), 3075-3084, (1996).
Jump To The First Citation Point In The Article 104 Kánnár, J., “On the existence of Coo solutions to the asymptotic characteristic initial value problem in general elativity”, Proc. R. Soc. London, Ser. A, 452, 945-952, (1996).
Jump To The First Citation Point In The Article 105 Kozameh, C.N., “Dynamics of null surfaces in general relativity”, in Dadhich, N., and Narlikar, J., eds., Gravitation and Relativity: At the turn of the Millennium. Proceedings of the GR-15 Conference, 139-152, (IUCAA, Pune, India, 1998).
Jump To The First Citation Point In The Article 106 Lichnerowicz, A., Théories relativistes de la gravitation et de l’électromagnétisme, (Masson et Cie., Paris, France, 1955).
Jump To The First Citation Point In The Article 107 Lichnerowicz, A., “Sur les ondes et radiations gravitationnelles”, Comptes Rendus Acad. Sci., 246, 893-896, (1958).
Jump To The First Citation Point In The Article 108 Marder, L., “Gravitational waves in general relativity I. Cylindrical waves”, Proc. R. Soc. London, Ser. A, 244, 524-537, (1958).
Jump To The First Citation Point In The Article 109 Marder, L., “Gravitational waves in general relativity II. The reflexion of cylindrical waves”, Proc. R. Soc. London, Ser. A, 246, 133-143, (1958).
Jump To The First Citation Point In The Article 110 Marder, L., “Gravitational waves in general relativity V. An exact spherical wave”, Proc. R. Soc. London, Ser. A, 261, 91-96, (1961).
Jump To The First Citation Point In The Article 111 Max Planck Institute for Gravitational Physics, “The Cactus Homepage”, (2003), [Online HTML document]: cited on 11 July 2003, External Linkhttp://www.cactus.org/.
Jump To The First Citation Point In The Article 112 McCarthy, P.J., “Representations of the Bondi-Metzner-Sachs group I. Determination of the representations”, Proc. R. Soc. London, Ser. A, 330, 517-535, (1972).
Jump To The First Citation Point In The Article 113 McCarthy, P.J., “Structure of the Bondi-Metzner-Sachs group”, J. Math. Phys., 13(11), 1837-1842, (1972).
Jump To The First Citation Point In The Article 114 McCarthy, P.J., “Representations of the Bondi-Metzner-Sachs group II. Properties and classification of the representations”, Proc. R. Soc. London, Ser. A, 333, 317-336, (1973).
Jump To The First Citation Point In The Article 115 McLennan, J.A., “Conformal invariance and conservation laws for relativistic wave equations for zero rest mass”, Nuovo Cimento, 3, 1360-1379, (1956).
Jump To The First Citation Point In The Article 116 Newman, E.T., “Heaven and its properties”, Gen. Relativ. Gravit., 7, 107-111, (1976).
Jump To The First Citation Point In The Article 117 Newman, E.T., and Penrose, R., “An approach to gravitational radiation by a method of spin coefficients”, J. Math. Phys., 3, 896-902, (1962). Errata 4 (1963), 998.
Jump To The First Citation Point In The Article 118 Newman, E.T., and Penrose, R., “Note on the Bondi-Metzner-Sachs group”, J. Math. Phys., 7, 863-879, (1966).
Jump To The First Citation Point In The Article 119 Newman, E.T., and Penrose, R., “New conservation laws for zero rest-mass fields in asymptotically flat space-time”, Proc. R. Soc. London, Ser. A, 305, 175-204, (1968).
Jump To The First Citation Point In The Article 120 Newman, E.T., and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation, volume 2, chapter 1, 1-36, (Plenum Press, New York, NY, U.S.A., 1980).
Jump To The First Citation Point In The Article 121 Newman, E.T., and Unti, T.W.J., “Behavior of asymptotically flat empty spaces”, J. Math. Phys., 3, 891-901, (1962).
Jump To The First Citation Point In The Article 122 Newman, R.P.A.C., “The global structure of simple space-times”, Commun. Math. Phys., 123, 17-52, (1989).
Jump To The First Citation Point In The Article 123 Penrose, R., “A generalized inverse for matrices”, Proc. Cambridge Philos. Soc., 51, 406-413, (1955).
Jump To The First Citation Point In The Article 124 Penrose, R., “A spinor approach to general relativity”, Ann. Phys. (N. Y.), 10, 171-201, (1960).
Jump To The First Citation Point In The Article 125 Penrose, R., “The light cone at infinity”, in Infeld, L., ed., Relativistic Theories of Gravitation, 369-373, (Pergamon Press, Oxford, U.K., 1964).
Jump To The First Citation Point In The Article 126 Penrose, R., “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London, Ser. A, 284, 159-203, (1965).
Jump To The First Citation Point In The Article 127 Penrose, R., “Structure of space-time”, in DeWitt, C.M., and Wheeler, J.A., eds., Battelle Rencontres, 121-235, (W.A. Benjamin, Inc., New York, NY, U.S.A., 1968).
Jump To The First Citation Point In The Article 128 Penrose, R., “Relativistic symmetry groups”, in Barut, A.O., ed., Group Theory in non-linear Problems, chapter 1, 1-58, (Reidel Publishing Company, Dordrecht, Netherlands, 1974).
Jump To The First Citation Point In The Article 129 Penrose, R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativ. Gravit., 7, 31-52, (1976).
Jump To The First Citation Point In The Article 130 Penrose, R., “Null hypersurface initial data for classical fields of arbitrary spin and for general relativity”, Gen. Relativ. Gravit., 12, 225-264, (1980). originally published in Aerospace Research Laboratories Report 63-56 (P. G. Bergmann).
Jump To The First Citation Point In The Article 131 Penrose, R., “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, Ser. A, 381, 53-63, (1982).
Jump To The First Citation Point In The Article 132 Penrose, R., “The central programme of twistor theory”, Chaos Solitons Fractals, 10(2-3), 581-611, (1999).
Jump To The First Citation Point In The Article 133 Penrose, R., “Some remarks on twistor theory”, in Harvey, A., ed., On Einstein’s Path: Essays in Honor of Engelbert Schücking, chapter 25, 353-366, (Springer, New York, NY, U.S.A., 1999).
Jump To The First Citation Point In The Article 134 Penrose, R., and Rindler, W., Spinors and Spacetime, volume 1, (Cambridge University Press, Cambridge, U.K., 1984).
Jump To The First Citation Point In The Article 135 Penrose, R., and Rindler, W., Spinors and Spacetime, volume 2, (Cambridge University Press, Cambridge, U.K., 1986).
Jump To The First Citation Point In The Article 136 Pirani, F.A.E., “Invariant formulation of gravitational radiation theory”, Phys. Rev., 105, 1089-1099, (1957).
Jump To The First Citation Point In The Article 137 Pirani, F.A.E., “Gravitational waves in general relativity IV. The gravitational field of a fast-moving particle”, Proc. R. Soc. London, Ser. A, 252, 96-101, (1959).
Jump To The First Citation Point In The Article 138 Rendall, A.D., “Local and global existence theorems for the Einstein equations”, Living Rev. Relativity, 5, lrr-2002-6, (September, 2002), [Online Journal Article]: cited on 23 July 2003, http://www.livingreviews.org/lrr-2002-6.
Jump To The First Citation Point In The Article 139 Robinson, D.C., “Conserved quantities of Newman and Penrose”, J. Math. Phys., 10(9), 1745-1753, (1969).
Jump To The First Citation Point In The Article 140 Rosen, N., “Plane polarised waves in the general theory of relativity”, Phys. Z. Sowjetunion, 12, 366-372, (1937).
Jump To The First Citation Point In The Article 141 Sachs, R.K., “Propagation laws for null and type III gravitational waves”, Z. Phys., 157, 462-477, (1960).
Jump To The First Citation Point In The Article 142 Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309-338, (1961).
Jump To The First Citation Point In The Article 143 Sachs, R.K., “Asymptotic symmetries in gravitational theories”, Phys. Rev., 128, 2851-2864, (1962).
Jump To The First Citation Point In The Article 144 Sachs, R.K., “Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time”, Proc. R. Soc. London, Ser. A, 270, 103-127, (1962).
Jump To The First Citation Point In The Article 145 Sachs, R.K., “Characteristic initial value problem for gravitational theory”, in Infeld, L., ed., Relativistic Theories of Gravitation, 93-105, (Pergamon Press, Oxford, U.K., 1964).
Jump To The First Citation Point In The Article 146 Sachs, R.K., “Gravitational radiation”, in DeWitt, C.M., and DeWitt, B., eds., Relativity, Groups and Topology, 523-562, (Gordon and Breach, New York, NY, U.S.A., 1964).
Jump To The First Citation Point In The Article 147 Sachs, R.K., and Bergmann, P.G., “Structure of particles in linearized gravitational theory”, Phys. Rev., 112(2), 674-680, (1958).
Jump To The First Citation Point In The Article 148 Schmidt, B.G., “A new definition of conformal and projective infinity of space-times”, Commun. Math. Phys., 36, 73-90, (1974).
Jump To The First Citation Point In The Article 149 Schmidt, B.G., “Conformal bundle boundaries”, in Esposito, F.P., and Witten, L., eds., Asymptotic structure of space-time, 429-440, (Plenum Press, New York, NY, U.S.A., 1977).
Jump To The First Citation Point In The Article 150 Schmidt, B.G., “Asymptotic structure of isolated systems”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity, 11-49, (Academic Press, New York, NY, U.S.A., 1978).
Jump To The First Citation Point In The Article 151 Schmidt, B.G., “On the uniqueness of boundaries at infinity of asymptotically flat spacetimes”, Class. Quantum Grav., 8, 1491-1504, (1991).
Jump To The First Citation Point In The Article 152 Schmidt, B.G., “Vacuum space-times with toroidal null infinities”, Class. Quantum Grav., 13, 2811-2816, (1996).
Jump To The First Citation Point In The Article 153 Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24(5), 1163-1171, (1983).
Jump To The First Citation Point In The Article 154 Sommers, P., “The geometry of the gravitational field at space-like infinity”, J. Math. Phys., 19, 549-554, (1978).
Jump To The First Citation Point In The Article 155 Streubel, M., “‘Conserved’ quantities for isolated gravitational systems”, Gen. Relativ. Gravit., 9(6), 551-561, (1978).
Jump To The First Citation Point In The Article 156 Trautman, A., “Boundary Conditions at infinity for physical theories”, Bull. Acad. Polon. Sci. Cl. III, 6, 403-406, (1958).
Jump To The First Citation Point In The Article 157 Trautman, A., “Radiation and boundary conditions in the theory of gravitation”, Bull. Acad. Polon. Sci. Cl. III, 6, 407-412, (1958).
Jump To The First Citation Point In The Article 158 Trefethen, L.N., “Group velocity in finite difference schemes”, SIAM Rev., 24, 113-136, (1982).
Jump To The First Citation Point In The Article 159 Trefethen, L.N., “Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations”, graduate textbook, privately published, (1996).
Jump To The First Citation Point In The Article 160 Valiente Kroon, J.A., “A new class of obstructions to the smoothness of null infinity”, (November, 2002), [Online Los Alamos Archive Preprint]: cited on 9 July 2003, External Linkhttp://arxiv.org/abs/gr-qc/0211024.
Jump To The First Citation Point In The Article 161 Valiente Kroon, J.A., “Conserved quantities for polyhomogeneous space-times”, Class. Quantum Grav., 15, 2479-2491, (1998). For a related online version see: J.A. Valiente Kroon, “Conserved Quantities for Polyhomogeneous Space-Times”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9805094.
Jump To The First Citation Point In The Article 162 Valiente Kroon, J.A., “Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes”, Class. Quantum Grav., 16, 1653-1665, (1999). For a related online version see: J.A. Valiente Kroon, “Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes”, (December, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://arxiv.org/abs/gr-qc/9812004.
Jump To The First Citation Point In The Article 163 Wald, R.M., General Relativity, (Chicago University Press, Chicago, IL, U.S.A., 1984).
Jump To The First Citation Point In The Article 164 Winicour, J., “Characteristic evolution and matching”, Living Rev. Relativity, 4, lrr-2001-3, (March, 2001), [Online Journal Article]: cited on 23 July 2003, http://www.livingreviews.org/lrr-2001-3.
Jump To The First Citation Point In The Article 165 Winicour, J., “Angular momentum in general relativity”, in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 3, 71-96, (Plenum Press, New York, NY, U.S.A., 1980).
Jump To The First Citation Point In The Article 166 Winicour, J., “Logarithmic asymptotic flatness”, Found. Phys., 15, 605-616, (1985).