Jump To The First Citation Point In The Article 1 School of Mathematical and Computational Sciences, University of St Andrews, “The MacTutor History of Mathematics Archive”, [Online Database]: cited on 28 January 2003, External Linkhttp://turnbull.mcs.st-and.ac.uk/history/.
Jump To The First Citation Point In The Article 2 “News and Views”, Nature, 123(3092), 174-175, (1929).
Jump To The First Citation Point In The Article 3 Anderson, W., “Gewöhnliche Materie und strahlende Energie als verschiedene ‘Phasen’ eines und desselben Grundstoffes”, Z. Phys., 54, 433-444, (1929).
Jump To The First Citation Point In The Article 4 Bach, R., “Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffs”, Math. Z., 9, 110-135, (1921).
Jump To The First Citation Point In The Article 5 Bargmann, V., “Über eine Verallgemeinerung des Einsteinschen Raumtyps”, Z. Phys., 65, 830-847, (1930).
Jump To The First Citation Point In The Article 6 Bargmann, V., “Bemerkungen zur allgemein-relativistischen Fassung der Quantentheorie”, Sitzungsber. Preuss. Akad. Wiss.(XXIV), 346-354, (1932).
Jump To The First Citation Point In The Article 7 Bargmann, V., “Über den Zusammenhang zwischen Semivektoren und Spinoren und die Reduktion der Diracgleichungen für Semivektoren”, Helv. Phys. Acta, 7, 57-82, (1934).
Jump To The First Citation Point In The Article 8 Bargmann, V., “Relativity”, in Theoretical Physics in the Twentieth Century, 187-198, (Interscience Publishers, New York, 1960).
Jump To The First Citation Point In The Article 9 Beck, G., “Allgemeine Relativitätstheorie”, in Geiger, H., and Scheel, K., eds., Handbuch der Physik, volume 4, 299-407, (Springer, Berlin, 1929).
Jump To The First Citation Point In The Article 10 Becquerel, J., Le Principe de relativité et la théorie de la gravitation, (Gauthier-Villars, Paris, 1922).
Jump To The First Citation Point In The Article 11 Bergia, S., “Attempts at unified field theories (1919-1955). Alleged failure and intrinsic validation/refutation criteria”, in Earman, J., Janssen, M., and Norton, J. D., eds., The Attraction of Gravitation. New Studies in the History of General Relativity, volume 5 of Einstein Studies, 274-307, (Birkhäuser, Boston, 1993).
Jump To The First Citation Point In The Article 12 Bergmann, P.G., “Unitary Field Theory: Yesterday, Today, Tomorrow”, in Treder, H.-J., ed., Einstein-Centenarium 1979, (Akademie-Verlag, Berlin, 1979).
Jump To The First Citation Point In The Article 13 Berwald, L., “Differentialinvarianten in der Geometrie. Riemannsche Mannigfaltigkeiten und ihre Verallgemeinerung”, in Enzyklopädie der Mathematischen Wissenschaften, volume III D 11, (Teubner, Leipzig und Berlin, 1923).
Jump To The First Citation Point In The Article 14 Biezunski, M., La diffusion de la théorie de la relativité en France, PhD Thesis, (Université VII, Département de Didactique des Sciences physiques et de la Technologie, Paris, 1981).
Jump To The First Citation Point In The Article 15 Biezunski, M., “Inside the coconut: The Einstein-Cartan discussion”, in Howard, D., and Stachel, J., eds., Einstein and the History of General Relativity, volume 1 of Einstein Studies, 315-324, (Birkhäuser, Boston/Basel/Berlin, 1989).
Jump To The First Citation Point In The Article 16 Biezunski, M., Histoire de la physique moderne, (La Découverte, Paris, 1993).
Jump To The First Citation Point In The Article 17 Birkhoff, G.D., “The hydrogen atom and the Balmer formula”, Proc. Nat. Acad. Sci. U.S.A., 13, 165-169, (1927).
Jump To The First Citation Point In The Article 18 Birkhoff, G.D., “A theory of matter and electricity”, Proc. Nat. Acad. Sci. U.S.A., 13, 160-165, (1927).
Jump To The First Citation Point In The Article 19 Born, M., Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen, (Springer, Berlin, 1920).
Jump To The First Citation Point In The Article 20 Born, M., Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen, (Springer, Berlin, 1922), 2nd, exp. edition.
Jump To The First Citation Point In The Article 21 Born, M., “Quelques problèmes de méchanique quantique”, Ann. Henri Poincare, 1, 205-284, (1930).
Jump To The First Citation Point In The Article 22 Bortolotti, E., “On metric connections with absolute parallelism”, Proc. K. Akad. Wetensch., 30, 216-218, (1927).
Jump To The First Citation Point In The Article 23 Bortolotti, E., “Parallelismo assoluto nella varietá a connessione affine e nuove veduti sulla relativitá”, Mem. Accad. Sci. Ist. Bologna, Cl. Sci. Fis., 6, 45-58, (1928).
Jump To The First Citation Point In The Article 24 Bortolotti, E., “Stelle di congruenze e parallelisme assoluto: basi geometriche di una recente teoria di Einstein”, Rend. Lincei, 9, 530-538, (1929).
Jump To The First Citation Point In The Article 25 Bortolotti, E., “Stelle di congruenze e parallelisme assoluto: basi geometriche di una recente teoria di Einstein”, Rend. Lincei, 9, 530-538, (1929).
Jump To The First Citation Point In The Article 26 Boyd, P.T., Centrella, J.M., and Klasky, S.A., “Properties of gravitational ‘solitons”’, Phys. Rev. D, 43, 379-90, (1991).
Jump To The First Citation Point In The Article 27 Buchdahl, H.A., “Gauge-invariant generalization of field theories with asymmetric fundamental tensor”, Quart. J. Math., 8, 89-96, (1957).
Jump To The First Citation Point In The Article 28 Cao, T.Y., Conceptual developments of 20th century field theories, (Cambridge University Press, Cambridge, 1997).
Jump To The First Citation Point In The Article 29 Cartan, E., “La théorie unitaire d‘Einstein-Mayer”, in Oeuvres Complètes, volume III/2, 1863-1875. manuscrit datant de 1934 environ.
Jump To The First Citation Point In The Article 30 Cartan, E., “Sur les équations de structure des espaces généralisés et l‘Univers optique”, C. R. Acad. Sci., 174, 857-859, (1922).
Jump To The First Citation Point In The Article 31 Cartan, E., “Sur les espaces généralisés et la théorie de la relativité”, C. R. Acad. Sci., 174, 734-737, (1922).
Jump To The First Citation Point In The Article 32 Cartan, E., “Sur les variétés à connexion affine courbure de Riemann et les espaces à torsion”, C. R. Acad. Sci., 174, 593-595, (1922).
Jump To The First Citation Point In The Article 33 Cartan, E., “Sur les variétés à connexion affine et la théorie de la relativité généralisée”, Ann. Sci. Ecole Norm. Sup., 40, 325-412, (1923).
Jump To The First Citation Point In The Article 34 Cartan, E., “La Géométrie des groupes de transformations”, J. Math. Pures Appl., 6, 1-119, (1927).
Jump To The First Citation Point In The Article 35 Cartan, E., “Notice historique sur la notion de parallélisme absolu”, Math. Ann., 102, 698-706, (1930).
Jump To The First Citation Point In The Article 36 Cartan, E., “Le parallelisme absolu et la théorie unitaire du champ”, Rev. Metaphys. Morale, 38, 13-28, (1931). Oeuvres Complètes, tome III, 2 pp 1167-1185.
Jump To The First Citation Point In The Article 37 Cartan, E., “Sur la théorie des systèmes en involution et ses applications à la Relativité”, Bull. Soc. Math. France, 59, 88-118, (1931).
Jump To The First Citation Point In The Article 38 Cartan, E., “Sur les espaces de Riemann dans lesquels le transport par parallélism conserve la courbure”, Rend. Lincei, 6, 544-547, (3)., (1926).
Jump To The First Citation Point In The Article 39 Cartan, E., and Schouten, J.A., “On Riemaniann geometries admitting an absolute parallelism”, Proc. K. Akad. Wetensch., 29, 933-946, (1926).
Jump To The First Citation Point In The Article 40 Cartan, E., and Schouten, J.A., “On the Geometry of the Group-manifold of Simple and Semi-simple Groups”, Proc. K. Akad. Wetensch., 29, 803-815, (1926).
Jump To The First Citation Point In The Article 41 Cartan, H., Oeuvres Complètes, (Gauthier-Villars, Paris, 1950). 3 parts with 2 vols. each - 1955.
Jump To The First Citation Point In The Article 42 Chandrasekhar, S., Eddington: The most distinguished astrophysicist of his time, (Cambridge University Press, Cambridge, 1983).
Jump To The First Citation Point In The Article 43 Darrieus, M.G., “Sur une form remarquable des équations de Maxwell-Lorentz dans l’univers à cinq dimensions”, J. Phys. Radium, 8, 444-446, (1927).
Jump To The First Citation Point In The Article 44 Darwin, C.G., “The wave equations of the electron”, Proc. R. Soc. London, Ser. A, 118, 654-680, (1928).
Jump To The First Citation Point In The Article 45 Darwin, C.G., “La théorie ondulatoire de la matière”, Ann. Henri Poincare, 1, 25-51, (1930).
Jump To The First Citation Point In The Article 46 de Broglie, L., “L’univers à cinq dimensions et la mécanique ondulatoire”, J. Phys. Radium, 8, 65-73, (1927).
Jump To The First Citation Point In The Article 47 de Broglie, L., “Réponse à la note de M. O. Klein”, J. Phys. Radium, 8, 244, (1927).
Jump To The First Citation Point In The Article 48 de Donder, T.E., “Généralisation relativiste de la nouvelle théorie d‘Einstein”, C. R. Acad. Sci., 187, 817-819, (1928).
Jump To The First Citation Point In The Article 49 De Sabbata, V., and Schmutzer, E., eds., Unified field theories in more than 4 dimensions, (World Scientific, Singapore, 1983).
Jump To The First Citation Point In The Article 50 Debever, R., ed., Elie Cartan-Albert Einstein: Lettres sur le parallelisme absolu 1929-1932, (Academie Royale de Belgique, Bruxelles, 1979).
Jump To The First Citation Point In The Article 51 Dienes, P., “Sur la théorie électromagnétique relativiste”, C. R. Acad. Sci., 176, 238-241, (1923).
Jump To The First Citation Point In The Article 52 Dirac, P.A.M., “The quantum theory of emission and absorption of radiation”, Proc. R. Soc. London, Ser. A, 114, 243-265, (1927).
Jump To The First Citation Point In The Article 53 Dirac, P.A.M., “The quantum theory of the electron”, Proc. R. Soc. London, Ser. A, 117, 610-624, (1928).
Jump To The First Citation Point In The Article 54 Dirac, P.A.M., “The quantum theory of the electron”, Proc. R. Soc. London, Ser. A, 118, 351-361, (1928).
Jump To The First Citation Point In The Article 55 Dirac, P.A.M., “A Theory of Electrons and Protons”, Proc. R. Soc. London, Ser. A, 126, 360-365, (1930).
Jump To The First Citation Point In The Article 56 Dirac, P.A.M., “Quantised Singularities in the Electromagnetic Field”, Proc. R. Soc. London, Ser. A, 133, 60-72, (1931).
Jump To The First Citation Point In The Article 57 Eddington, A.S., Space, Time, and Gravitation: An outline of the general relativity theory, (Cambiridge University Press, Cambridge, 1920).
Jump To The First Citation Point In The Article 58 Eddington, A.S., “A generalisation of Weyl’s theory of the electromagnetic and gravitational fields”, Proc. R. Soc. London, Ser. A, 99, 104-122, (1921).
Jump To The First Citation Point In The Article 59 Eddington, A.S., The mathematical theory of relativity, (Cambridge University Press, Cambridge, 1924), 2nd edition. 1st. edition 1923.
Jump To The First Citation Point In The Article 60 Eddington, A.S., Relativitätstheorie in mathematischer Behandlung, (Springer, Berlin, 1925).
Jump To The First Citation Point In The Article 61 Eddington, A.S., “A symmetrical treatment of the wave equation”, Proc. R. Soc. London, Ser. A, 121, 524-542, (1928).
Jump To The First Citation Point In The Article 62 Eddington, A.S., “Einstein’s Field-Theory”, Nature, 123(3095), 280-281, (1929).
Jump To The First Citation Point In The Article 63 Eddington, A.S., The Expanding Universe, (Cambridge University Press, Cambridge, 1933).
Jump To The First Citation Point In The Article 64 Eddington, A.S., The Mathematical Theory of Relativity, (Cambridge University Press, Cambridge, 1960). Reprint of the 1st ed. 1923.
Jump To The First Citation Point In The Article 65 Ehlers, J., “The nature and structure of space-time”, in Mehra, J., ed., The physicists conception of nature, (North-Holland, Dordrecht, 1973).
Jump To The First Citation Point In The Article 66 Ehlers, J., “Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie”, in Nitsch, J., Pfarr, J., and Stachow, E.-W., eds., Grundlagenprobleme der modernen Physik, (Bibliographisches Institut, Mannheim, 1981).
Jump To The First Citation Point In The Article 67 Ehlers, J., Pirani, F.A.E., and Schild, A., “The Geometry of Free Fall and Light Propagation”, in O’Raiffeartaigh, L., ed., Studies in Relativity: Papers in honour of J. L. Synge, 63-84, (Clarendon Press, Oxford, 1972).
Jump To The First Citation Point In The Article 68 Ehrenfest, P., “Einige die Quantenmechanik betreffende Erkundigungsfragen”, Z. Phys., 78, 555-559, (1932).
Jump To The First Citation Point In The Article 69 Einstein, A., “Letter to De Haas, May 7, 1933”.
Jump To The First Citation Point In The Article 70 Einstein, A., “Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?”, Sitzungsber. Preuss. Akad. Wiss.(20), 349-356, (1919).
Jump To The First Citation Point In The Article 71 Einstein, A., “Antwort auf vorstehende Betrachtung”, Die Naturwissenschaften, 8, 1010-1011, (1920).
Jump To The First Citation Point In The Article 72 Einstein, A., “Geometrie und Erfahrung”, Sitzungsber. Preuss. Akad. Wiss.(5), 123-130, (1921).
Jump To The First Citation Point In The Article 73 Einstein, A., “Über eine naheliegende Ergänzung des Fundamentes der allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss.(12, 13, 14), 261-264, (1921).
Jump To The First Citation Point In The Article 74 Einstein, A., “Bemerkungen zu meiner Arbeit ‘Zur allgemeinen Relativitätstheorie”’, Sitzungsber. Preuss. Akad. Wiss.(12-14), 76-77, (1923).
Jump To The First Citation Point In The Article 75 Einstein, A., “Bietet die Feldtheorie Möglichkeiten zur Lösung des Quantenproblems?”, Sitzungsber. Preuss. Akad. Wiss., 359-364, (1923).
Jump To The First Citation Point In The Article 76 Einstein, A., “Zur affinen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss.(17), 137-140, (1923).
Jump To The First Citation Point In The Article 77 Einstein, A., “Zur allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss.(5), 32-38, (1923).
Jump To The First Citation Point In The Article 78 Einstein, A., “Einheitliche Feldtheorie von Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss.(22), 414-419, (1925).
Jump To The First Citation Point In The Article 79 Einstein, A., “Elektron und allgemeine Relativitätstheorie”, Physica, 5, 330-334, (1925).
Jump To The First Citation Point In The Article 80 Einstein, A., “Über die formale Beziehung des Riemannschen Krümmungstensors zu den Feldgleichungen der Gravitation”, Math. Ann., 97, 99-103, (1926/27).
Jump To The First Citation Point In The Article 81 Einstein, A., “Zu Kaluzas Theorie des Zusammenhangs von Gravitation und Elektrizität (1. Mitteilung)”, Sitzungsber. Preuss. Akad. Wiss.(6), 23-25, (1927).
Jump To The First Citation Point In The Article 82 Einstein, A., “Zu Kaluzas Theorie des Zusammenhangs von Gravitation und Elektrizität (2. Mitteilung)”, Sitzungsber. Preuss. Akad. Wiss.(6), 26-30, (1927).
Jump To The First Citation Point In The Article 83 Einstein, A., “Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss.(18), 224-227, (1928).
Jump To The First Citation Point In The Article 84 Einstein, A., “Riemann-Geometrie mit Aufrechterhaltung des Begriffs des Fernparallelismus”, Sitzungsber. Preuss. Akad. Wiss.(17), 217-221, (1928).
Jump To The First Citation Point In The Article 85 Einstein, A., “Einheitliche Feldtheorie und Hamiltonsches Prinzip”, Sitzungsber. Preuss. Akad. Wiss.(10), 156-159, (1929).
Jump To The First Citation Point In The Article 86 Einstein, A., “The New Field Theory I, II”, Observatory, 51, 82-87, 114-118, (1929).
Jump To The First Citation Point In The Article 87 Einstein, A., “Über den gegenwärtigen Stand der Feldtheorie”, in Honegger, E., ed., Prof. Dr. A. Stodola. Überreicht von seinen Freunden und Schülern, (Orell Füssli, Zürich und Leipzig, 1929).
Jump To The First Citation Point In The Article 88 Einstein, A., “Zur einheitlichen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss.(I), 2-7, (1929).
Jump To The First Citation Point In The Article 89 Einstein, A., “Auf die Riemann-Metrik und den Fernparallelismus gegründete einheitliche Feldtheorie”, Math. Ann., 102, 685-697, (1930).
Jump To The First Citation Point In The Article 90 Einstein, A., “Die Kompatibilität der Feldgleichungen in der einheitlichen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss.(1), 18-23, (1930).
Jump To The First Citation Point In The Article 91 Einstein, A., “Professor Einstein’s adress at the University of Nottingham”, Science, 71, 608-611, (1930).
Jump To The First Citation Point In The Article 92 Einstein, A., “Théorie unitaire du champs physique”, Ann. Henri Poincare, 1, 1-24, (1930).
Jump To The First Citation Point In The Article 93 Einstein, A., “Zur Theorie der Räume mit Riemann-Metrik und Fernparallelismus”, Sitzungsber. Preuss. Akad. Wiss.(6), 1-2, (1930).
Jump To The First Citation Point In The Article 94 Einstein, A., “Gravitational and electromagnetic fields”, Science, 74, 438-439, (1931).
Jump To The First Citation Point In The Article 95 Einstein, A., “Maxwell’s influence on the development of the conception of physical reality”, in James Clark Maxwell: A Commemoration Volume, (Cambridge University Press, Cambridge, 1931).
Jump To The First Citation Point In The Article 96 Einstein, A., “Der gegenwärtige Stand der Relativitätstheorie”, Die Quelle, 82, 440-442, (1932).
Jump To The First Citation Point In The Article 97 Einstein, A., “A Generalization of the Relativistic Theory of Gravitation”, Ann. Math., 46, 578-584, (1945).
Jump To The First Citation Point In The Article 98 Einstein, A., Briefe an Maurice Solovine, (Gauthier-Villars, Paris, 1956).
Jump To The First Citation Point In The Article 99 Einstein, A., “Zur Methodik der Theoretischen Physik”, in Albert Einstein: Mein Weltbild, (Ullstein, Frankfurt, 1984). Erstdruck 1934 Amsterdam.
Jump To The First Citation Point In The Article 100 Einstein, A., in Schulman, R., Kox, A.J., Janssen, M., and Illy, J., eds., Einstein Collected Papers, volume 8A(Doc. 140), 195, (Princeton University Press, Princeton, 1997).
Jump To The First Citation Point In The Article 101 Einstein, A., in Schulman, R., Kox, A.J., Janssen, M., and Illy, J., eds., Einstein Collected Papers, volume 8B(Doc. 144), 199, (Princeton University Press, Princeton, 1997).
Jump To The First Citation Point In The Article 102 Einstein, A., and Bergmann, P., “On a generalization of Kaluza’s theory of electricity”, Ann. Math., 39, 683-701, (1938).
Jump To The First Citation Point In The Article 103 Einstein, A., Born, H., and Born, M., Albert Einstein, Hedwig und Max Born, Briefwechsel: 1916-1955 / kommentiert von Max Born; Geleitwort von Bertrand Russell; Vorwort von Werner Heisenberg, (Edition Erbrich, Frankfurt am Main, 1982).
Jump To The First Citation Point In The Article 104 Einstein, A., and Fokker, A. D., “Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls”, Ann. Phys., 44, 321-328, (1914).
Jump To The First Citation Point In The Article 105 Einstein, A., and Grommer, J., “Beweis der Nichtexistenz eines überall regulären zentrisch symmetrischen Feldes nach der Feldtheorie von Kaluza”, in Einstein, A., ed., Mathematica et physica, volume 1(7) of Scripta Hierosolymitana, 1-4, (Hebrew University, Jerusalem, 1923).
Jump To The First Citation Point In The Article 106 Einstein, A., and Mayer, W., “Zwei strenge statische Lösungen der Feldgleichungen der einheitlichen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss.(6), 110-120, (1930).
Jump To The First Citation Point In The Article 107 Einstein, A., and Mayer, W., “Einheitliche Theorie von Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss.(25), 541-557, (1931).
Jump To The First Citation Point In The Article 108 Einstein, A., and Mayer, W., “Systematische Untersuchung über kompatible Feldgleichungen, welche in einem Riemannschen Raume mit Fernparallelismus gesetzt werden können”, Sitzungsber. Preuss. Akad. Wiss.(13), 257-265, (1931).
Jump To The First Citation Point In The Article 109 Einstein, A., and Mayer, W., “Einheitliche Theorie von Gravitation und Elektrizität. Zweite Abhandlung”, Sitzungsber. Preuss. Akad. Wiss.(12), 130-137, (1932).
Jump To The First Citation Point In The Article 110 Einstein, A., and Mayer, W., “Semi-Vektoren und Spinoren”, Sitzungsber. Preuss. Akad. Wiss.(32), 522- 550, (1932).
Jump To The First Citation Point In The Article 111 Einstein, A., and Mayer, W., “Die Diracgleichungen für Semivektoren”, Proc. K. Akad. Wetensch., 36, 497-516, (1933).
Jump To The First Citation Point In The Article 112 Einstein, A., and Mayer, W., “Spaltung der natürlichen Feldgleichungen für Semi-Vektoren in Spinor-Gleichungen vom Diracschen Typus”, Proc. K. Akad. Wetensch., 36(2), 615-619, (1933).
Jump To The First Citation Point In The Article 113 Einstein, A., and Mayer, W., “Darstellung der Semi-Vektoren als gewöhnliche Vektoren von besonderem Differentiationscharakter”, Ann. Math., 35, 104-110, (1934).
Jump To The First Citation Point In The Article 114 Eisenhart, L.P., “Fields of parallel vectors in the geometry of paths”, Proc. Nat. Acad. Sci. U.S.A., 8, 207-212, (1922).
Jump To The First Citation Point In The Article 115 Eisenhart, L.P., “Spaces with corresponding paths”, Proc. Nat. Acad. Sci. U.S.A., 8, 233-238, (1922).
Jump To The First Citation Point In The Article 116 Eisenhart, L.P., “The geometry of paths and general relativity”, Ann. Math., 24, 367-392, (1922/23).
Jump To The First Citation Point In The Article 117 Eisenhart, L.P., “Another interpretation of the fundamental gauge vector of Weyl’s theory of relativity”, Proc. Nat. Acad. Sci. U.S.A., 9, 175-178, (1923).
Jump To The First Citation Point In The Article 118 Eisenhart, L.P., “Linear connections of a space which are determined by simply transitive continuous groups”, Proc. Nat. Acad. Sci. U.S.A., 11, 246-249, (1925).
Jump To The First Citation Point In The Article 119 Eisenhart, L.P., Riemannian Geometry, (Princeton University Press, Princeton, 1925).
Jump To The First Citation Point In The Article 120 Eisenhart, L.P., “Einstein’s recent theory of gravitation and electricity”, Proc. Nat. Acad. Sci. U.S.A., 12, 125-129, (1926).
Jump To The First Citation Point In The Article 121 Eisenhart, L.P., Non-Riemannian Geometry, volume VIII of American Mathematical Society Colloquium Publications, (American Mathematical Society, Providence, 1927).
Jump To The First Citation Point In The Article 122 Eisenhart, L.P., and Veblen, O., “The Riemann Geometry and its generalizations”, Proc. Nat. Acad. Sci. U.S.A., 8, 19-23, (1922).
Jump To The First Citation Point In The Article 123 Eyraud, H., “La Théorie affine asymétrique du champs électromagnétique et gravifique et le rayonnement atomique”, C. R. Acad. Sci., 180, 1245-1248, (1925).
Jump To The First Citation Point In The Article 124 Eyraud, H., “Sur le charactère riemannien projectif du champ gravifique électromagnétique”, C. R. Acad. Sci., 180, 127-129, (1925).
Jump To The First Citation Point In The Article 125 Fabre, L., Les Théories d’Einstein, (Payot, Paris, 1921). Nouvelle éd.
Jump To The First Citation Point In The Article 126 Finsler, P., Über Kurven und Flächen in allgemeinen Räumen, volume 11 of Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften: Mathematische Reihe, (Birkhäuser, Basel, 1951). Unveränderter Nachdruck der Dissertation von 1918.
Jump To The First Citation Point In The Article 127 Fisher, J.W., “The Wave Equation in Five Dimensions”, Proc. R. Soc. London, Ser. A, 123, 489-493, (1929).
Jump To The First Citation Point In The Article 128 Fisher, J.W., and Flint, H.T., “The Equations of the Quantum Theory”, Proc. R. Soc. London, Ser. A, 126, 644-653, (1930).
Jump To The First Citation Point In The Article 129 Flint, H.T., “The First and Second Order Equations of the Quantum Theory”, Proc. R. Soc. London, Ser. A, 124, 143-150, (1929).
Jump To The First Citation Point In The Article 130 Fock, V., “Über die invariante Form der Wellen- und der Bewegungsgleichung für einen geladenen Massenpunkt”, Z. Phys., 39, 226-232, (1926).
Jump To The First Citation Point In The Article 131 Fock, V., “Geometrisierung der Diracschen Theorie des Elektrons”, Z. Phys., 57, 261-277, (1929).
Jump To The First Citation Point In The Article 132 Fock, V., “L’équation d’onde de Dirac et la Géometrie de Riemann”, J. Phys. Radium, 10, 392-405, (1929).
Jump To The First Citation Point In The Article 133 Fock, V., “Sur les équations de Dirac dans la théorie de relativité générale”, C. R. Acad. Sci., 189, 25-27, (1929).
Jump To The First Citation Point In The Article 134 Fock, V., and Iwanenko, D., “Géometrie quantique linéaire et déplacement parallèle”, C. R. Acad. Sci., 188, 1470-1472, (1929).
Jump To The First Citation Point In The Article 135 Fock, V., and Iwanenko, D., “Über eine mögliche geometrische Deutung der relativistischen Quantentheorie”, Z. Phys., 54, 798-802, (1929).
Jump To The First Citation Point In The Article 136 Fölsing, A., Albert Einstein. Eine Biographie, (Suhrkamp, Frankfurt am Main, 1993).
Jump To The First Citation Point In The Article 137 Förster, R., Beiträge zur spezielleren Theorie der Riemannschen P-Funktion, (Teubner, Leipzig, 1908). PhD Thesis, University of Leipzig.
Jump To The First Citation Point In The Article 138 Fréedericksz, V., and Isakson, A., “Einige Bemerkungen über die Feldgeometrie”, Phys. Z., 30, 645, (1929).
Jump To The First Citation Point In The Article 139 French, A.P., ed., Einstein: A Centenary Volume, (Heinemann, London, 1979).
Jump To The First Citation Point In The Article 140 Frenkel, J., “Die Wellenmechanik des rotierenden Elektrons und die Grundgleichnungen des elektromagnetischen Feldes”, Z. Phys., 52, 356-363, (1928).
Jump To The First Citation Point In The Article 141 Frenkel, J., “Zur Wellenmechanik des rotierenden Elektrons”, Z. Phys., 47, 786-803, (1928).
Jump To The First Citation Point In The Article 142 Friedmann, A., and Schouten, J.A., “Über die Geometrie der halb-symmetrischen Übertragungen”, Math. Z., 21, 211-223, (1924).
Jump To The First Citation Point In The Article 143 Goenner, H., “Unified field theories from Eddington and Einstein up to now”, in de Sabbata, V., and Karade, T. M., eds., Proceedings of the A. Eddington Centennial Symposium, Vol. 1: Relativistic Astrophysics and Cosmology, (World Scientific, Singapore, 1984).
Jump To The First Citation Point In The Article 144 Goenner, H., and Havas, P., “Spherically-Symmetric Space-Times with vanishing Curvature Scalar”, J. Math. Phys., 21, 1159-1167, (1980).
Jump To The First Citation Point In The Article 145 Goenner, H., and Wuensch, D., What did Kaluza and Klein contribute to Kaluza-Klein-theory?, (Max-Planck-Institute for the History of Science, Berlin, Germany, 2003), Report no. 235.
Jump To The First Citation Point In The Article 146 Goldstein, C., and Ritter, J., The Varieties of Unity: Sounding Unified Theories 1920-1930, (Max-Planck-Institut for History of Science, Berlin, Germany, 2000), Report no. 149.
Jump To The First Citation Point In The Article 147 Gonseth, F., and Juvet, G., “Les équations de l’électromagnétisme et l’équation de M. Schrödinger”, C. R. Acad. Sci., 185, 535-538, (1927). eratum p. 732.
Jump To The First Citation Point In The Article 148 Gonseth, F., and Juvet, G., “Sur la métrique de l’espace à cinq dimensions de l’électromagnétisme at de la gravitation”, C. R. Acad. Sci., 185, 412-413, (1927).
Jump To The First Citation Point In The Article 149 Gonseth, F., and Juvet, G., “Sur l’équation de M. Schrödinger”, C. R. Acad. Sci., 185, 448-450, (1927). eratum p. 624.
Jump To The First Citation Point In The Article 150 Gonseth, F., and Juvet, G., “Sur les équations de l’électromagnétisme”, C. R. Acad. Sci., 185, 341-343, (1927). eratum p. 483.
Jump To The First Citation Point In The Article 151 Gordon, W., “Der Strom der Diracschen Elektronentheorie”, Z. Phys., 50, 630-632, (1928).
Jump To The First Citation Point In The Article 152 Gorelik, G., “Hermann Weyl and Large Numbers in Relativistic Cosmology”, in Balashow, Y., and Vizgin, V., eds., Einstein Studies in Russia, 91-106, (Birkhäuser, Boston/Basel/Zürich, 2002).
Jump To The First Citation Point In The Article 153 Grommer, J., “Eine kleine Bemerkung zur neuen Einsteinschen Feldtheorie”, Phys. Z., 30, 645, (1929).
Jump To The First Citation Point In The Article 154 Grüning, M., Ein Haus für Albert Einstein. Erinnerungen, Briefe, Dokumente, (Verlag der Nation, Berlin, 1990).
Jump To The First Citation Point In The Article 155 Hattori, K., “Über eine formale Erweiterung der Relativitätstheorie und ihren Zusammenhang mit der Theorie der Elektrizität”, Phys. Z., 29, 538 - 549, (1928).
Jump To The First Citation Point In The Article 156 Havas, P., “Einstein, Relativity and Gravitation Research in Vienna before 1938”, in Goenner, H., Renn, J., Ritter, J., and Sauer, T., eds., The expanding worlds of general relativity, 87-125, (Birkhäuser, Boston/Basel/Zürich, 1999).
Jump To The First Citation Point In The Article 157 Hehl, F.W., von der Heyde, P., Kerlick, G.D., and Nester, J. M., “General relativity with spin and torsion: Foundations and Prospects”, Rev. Mod. Phys., 48, 393-416, (1976).
Jump To The First Citation Point In The Article 158 Heisenberg, W., and Pauli, W., “Zur Quantendynamik der Wellenfelder”, Z. Phys., 56, 1-61, (1929).
Jump To The First Citation Point In The Article 159 Hermann, A., Einstein. Der Weltweise und sein Jahrhundert. Eine Biographie, (Piper, München, 1994).
Jump To The First Citation Point In The Article 160 Hessenberg, G., “Vektorielle Begründung der Differentialgeometrie”, Math. Ann., 78, 187-217, (1917).
Jump To The First Citation Point In The Article 161 Hilbert, D., “Die Grundlagen der Physik (Erste Mitteilung)”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 395-407, (1915).
Jump To The First Citation Point In The Article 162 Hoffmann, B., “Projective Relativity and the Quantum Field”, Phys. Rev., 37, 88-89, (1930).
Jump To The First Citation Point In The Article 163 Hosokawa, T., “Connections in the manifold admitting generalized transformations”, Proc. Imp. Acad. Japan, 8, 348-351, (1932).
Jump To The First Citation Point In The Article 164 Infeld, L., “Bemerkungen zu der Arbeit von Herrn K. Hattori”, Phys. Z., 29, 810-811, (1928).
Jump To The First Citation Point In The Article 165 Infeld, L., “Zur Feldtheorie von Elektrizität und Gravitation”, Phys. Z., 29, 145-147, (1928).
Jump To The First Citation Point In The Article 166 Infeld, L., and van der Waerden, B.L., “Die Wellengleichung des Elektrons in der allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss.(IX), 380-401, (1933).
Jump To The First Citation Point In The Article 167 Infeld, L., and van der Waerden, B.L., “Die Wellengleichung des Elektrons in der allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss.(IX), 380-401, (1933).
Jump To The First Citation Point In The Article 168 Ivanenkov, D., and Fock, V., “Vorträge und Diskussionen der Theoretisch-Physikalischen Konferenz in Charkow (19.-25. Mai 1929)”, Phys. Z., 30, 645-655, 700-717, (1929).
Jump To The First Citation Point In The Article 169 Jauch, J.M., and Rohrlich, F., The theory of photons and electrons, (Springer, Berlin/Heidelberg, 1980), 2nd, exp. edition.
Jump To The First Citation Point In The Article 170 Jehle, H., “Zur allgemeinen relativistischen Quantenmechanik”, Z. Phys., 87, 370-374, (1933).
Jump To The First Citation Point In The Article 171 Jehle, H., “Zur allgemein-relativistischen Quantenmechanik II. Kosmologische Quantenerscheinungen”, Z. Phys., 94, 692-706, (1935).
Jump To The First Citation Point In The Article 172 Jordan, P., “Über die Polarisation der Lichtquanten”, Z. Phys., 44, 292-300, (1927).
Jump To The First Citation Point In The Article 173 Jordan, P., “Über Wellen und Korpuskeln in der Quantenmechanik”, Z. Phys., 45, 766-775, (1927).
Jump To The First Citation Point In The Article 174 Jordan, P., “Zur Quantenmechanik der Gasentartung”, Z. Phys., 44, 473-480, (1927).
Jump To The First Citation Point In The Article 175 Jordan, P., Schwerkraft und Weltall, (Vieweg, Braunschweig, 1955), 2nd edition.
Jump To The First Citation Point In The Article 176 Jordan, P., Albert Einstein. Sein Lebenswerk und die Zukunft der Physik, (Huber, Frauenfeld, 1969).
Jump To The First Citation Point In The Article 177 Jordan, P., and Klein, O., “Zum Mehrkörperproblem der Quantentheorie”, Z. Phys., 45, 751-765, (1927).
Jump To The First Citation Point In The Article 178 Jordan, P., and Wigner, E., “Über das Paulische ‘Aquivalenzverbot”’, Z. Phys., 47, 631-651, (1928).
Jump To The First Citation Point In The Article 179 Juvet, G., “Les formules de Frenet pour un espace de M. Weyl”, C. R. Acad. Sci., 172, 1647-1650, (1921).
Jump To The First Citation Point In The Article 180 Kaluza, T., “Zum Unitätsproblem in der Physik”, Sitzungsber. Preuss. Akad. Wiss., 966-972, (1921). Zum Unitätsproblem in der Physik.
Jump To The First Citation Point In The Article 181 Kawaguchi, A., “Die Differentialgeometrie in der verallgemeinerten Mannigfaltigkeit”, Rend. Circ. Mat. Palermo, 56, 245-276, (1932).
Jump To The First Citation Point In The Article 182 Kirsten, C., and Treder, H.-J., Albert Einstein in Berlin 1913-1933. Teil I: Darstellungen und Dokumente, (Akademie-Verlag, Berlin, 1979).
Jump To The First Citation Point In The Article 183 Klein, O., “The Atomicity of Electricity as a Quantum Law”, Nature, 118, 516, (1926).
Jump To The First Citation Point In The Article 184 Klein, O., “Quanten-Theorie und 5-dimensionale Relativitätstheorie”, Z. Phys., 37, 895-906, (1926).
Jump To The First Citation Point In The Article 185 Klein, O., “Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips”, Z. Phys., 41, 407-442, (1927).
Jump To The First Citation Point In The Article 186 Klein, O., “Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips”, Z. Phys., 41, 407-442, (1927).
Jump To The First Citation Point In The Article 187 Klein, O., “Sur l’article de M. L. de Broglie: ‘L’univers à cinq dimensions et la méchanique ondulatoire”’, J. Phys. Radium, 8, 242-243, (1927).
Jump To The First Citation Point In The Article 188 Klein, O., “Zur fünfdimensionalen Darstellung der Relativitätstheorie”, Z. Phys., 46, 188-208, (1928).
Jump To The First Citation Point In The Article 189 Kojevnikov, A., “Dirac’s quantum electrodynamics”, in Balashow, Y., and Vizgin, V., eds., Einstein Studies in Russia, 229-259, (Birkhäuser, Boston/Basel/Zürich, 2002).
Jump To The First Citation Point In The Article 190 König, M., Herleitung und Untersuchung der Feld- und Bewegungsgleichungen von an das Gravitationsfeld gekoppelten Tensorfeld-Theorien, Masters Thesis, (Institut für Theoretische Physik, Universität Göttingen, 2000).
Jump To The First Citation Point In The Article 191 König, R., “Beiträge zu einer allgemeinen linearen Mannigfaltigkeitslehre”, Jahresber. Deutsch. Math.-Verein., 28, 213-228, (1919).
Jump To The First Citation Point In The Article 192 König, R., “Über affine Geometrie XXIV. Ein Beitrag zu ihrer Grundlegung”, Ber. Saechs. Gesellsch. Wiss., 71, 1-19, (1919).
Jump To The First Citation Point In The Article 193 Kopf, A., “Physik des Kosmos”, in Kopf, A., ed., Müller-Pouillets Lehrbuch der Physik, volume 5,  2, (Vieweg, Braunschweig, 1928), 11th edition.
Jump To The First Citation Point In The Article 194 Kosambi, D., “Affin-geometrische Grundlagen der einheitlichen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss., 342-345, (1932).
Jump To The First Citation Point In The Article 195 Kretschmann, E., “Über den physikalischen Sinn der Relativitätspostulate; A. Einsteins neue und seine ursprüngliche Relativitätstheorie”, Ann. Phys., 53, 592-614, (1917).
Jump To The First Citation Point In The Article 196 Kunii, S., “On a unified field theory of gravitational and electromagnetic fields”, Mem. Coll. Sci. Kyoto Univ., Ser. A, 14, 195-212, (1931).
Jump To The First Citation Point In The Article 197 Lanczos, C., “Die Erhaltungssätze in der feldmässigen Darstellung der Diracschen Theorie”, Z. Phys., 57, 484-493, (1929).
Jump To The First Citation Point In The Article 198 Lanczos, C., “Die tensoranalytischen Beziehungen der Diracschen Gleichung”, Z. Phys., 57, 447-473, (1929).
Jump To The First Citation Point In The Article 199 Lanczos, C., “Zur kovarianten Formulierung der Diracschen Gleichung”, Z. Phys., 57, 474-483, (1929).
Jump To The First Citation Point In The Article 200 Lanczos, C., “Die neue Feldtheorie Einsteins”, Ergeb. Exakten Naturwiss., 10, 97-132, (1931).
Jump To The First Citation Point In The Article 201 Lanczos, C., “Elektromagnetismus als natürliche Eigenschaft der Riemannschen Geometrie”, Z. Phys., 73, 147-168, (1931).
Jump To The First Citation Point In The Article 202 Laporte, O., and Uhlenbeck, G.E., “Application of Spinor Analysis to the Maxwell and Dirac Equations”, Phys. Rev., 37, 1380-1397, (1931).
Jump To The First Citation Point In The Article 203 Levi-Civita, T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana”, Rend. Circ. Mat. Palermo, 42, 173-205, (1917).
Jump To The First Citation Point In The Article 204 Levi-Civita, T., Lezioni di calcolo differenziale assoluto, (Stock, Roma, 1925).
Jump To The First Citation Point In The Article 205 Levi-Civita, T., “A proposed modification of Einstein’s field theory”, Nature, 123, 678-679, (1929).
Jump To The First Citation Point In The Article 206 Levi-Civita, T., “Vereinfachte Herstellung der Einsteinschen einheitlichen Feldgleichungen”, Sitzungsber. Preuss. Akad. Wiss.(IX), 137-153, (1929).
Jump To The First Citation Point In The Article 207 Levi-Civita, T., “Diracsche und Schrödingersche Gleichungen”, Sitzungsber. Preuss. Akad. Wiss.(V), 240-250, (1933).
Jump To The First Citation Point In The Article 208 Lichnerowicz, A., Théories de la Gravitation et de L’Électromagnétisme, (Masson, Paris, 1955).
Jump To The First Citation Point In The Article 209 Lopes Gagean, D., and Costa Leite, M., “A theoria de Kaluza-Klein”, Analise (Lisboa), 5, 151-198, (1986).
Jump To The First Citation Point In The Article 210 Lorentz, H.A., “The determination of the potentials in the general theory of relativity with some remarks about the measurement of lengths and intervals of time and about the theories of Weyl and Eddington”, in Collected Papers, volume 5, 363-382, (Nijhoff, The Hague, 1937). Original paper in Proc. Acad. Amsterdam, 29 (1923) 383.
Jump To The First Citation Point In The Article 211 Ludwig, G., Fortschritte der projektiven Relativitätstheorie, (Vieweg, Braunschweig, 1951).
Jump To The First Citation Point In The Article 212 Madelung, E., “Eine Übertragung der Diracschen Theorie des Elektrons in gewohnte Formen”, Z. Phys., 54, 303-306, (1929).
Jump To The First Citation Point In The Article 213 Maeterlick, M., Geheimnisse des Weltalls, (Deutsche Verlagsanstalt, Berlin und Leipzig, 1930).
Jump To The First Citation Point In The Article 214 Majer, U., and Sauer, T., “Hilbert’s world equations and his vision of a unified science”, Preprint, Hilbert-Edition, University of Göttingen, (February, 2003).
Jump To The First Citation Point In The Article 215 Mandel, H., “Zur Herleitung der Feldgleichungen in der allgemeinen Relativitätstheorie. Erste Mitteilung”, Z. Phys., 39, 136-145, (1926).
Jump To The First Citation Point In The Article 216 Mandel, H., “Zur Herleitung der Feldgleichungen in der allgemeinen Relativitätstheorie. 2. Mitteilung”, Z. Phys., 45, 285-306, (1927).
Jump To The First Citation Point In The Article 217 Mandel, H., “Über den Zusammenhang zwischen der Einsteinschen Theorie des Fernparallelismus und der fünfdimensionalen Feldtheorie”, Z. Phys., 56, 838-844, (1929).
Jump To The First Citation Point In The Article 218 Mandel, H., “Über den Zusammenhang zwischen der Einsteinschen Theorie des Fernparallelismus und der fünfdimensionalen Feldtheorie”, Z. Phys., 56, 838-844, (1929).
Jump To The First Citation Point In The Article 219 Mandel, H., “Zur Axiomatik der 5-dimensionalen Relativitätstheorie”, Z. Phys., 54, 564-566, (1929).
Jump To The First Citation Point In The Article 220 Mandel, H., “Zur tensoriellen Form der wellenmechanischen Gleichung des Elektrons”, Z. Phys., 54, 567-570, (1929).
Jump To The First Citation Point In The Article 221 Mandel, H., “Einige vergleichende Bemerkungen zur Quantentheorie des Elektrons”, Z. Phys., 60, 782-794, (1930).
Jump To The First Citation Point In The Article 222 Mastrobisi, G.J., “Il ‘Manoscritto di Singapore’ (1923) di Albert Einstein. Per una Teoria del ‘Campo Unificato’ tra possibilità fisica e necessità matematica”, Nuncius, 17, 269-305, (2002).
Jump To The First Citation Point In The Article 223 Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, (Kaiseisha Press, Shikagen, 1986). Otsushi,.
Jump To The First Citation Point In The Article 224 McVittie, G.C., “On Einstein’s Unified Field Theory”, Proc. R. Soc. London, Ser. A, 124, 366-374, (1929).
Jump To The First Citation Point In The Article 225 McVittie, G.C., “Solution with axial symmetry of Einstein’s equations of teleparallelism”, Proc. Edinburgh Math. Soc., 2, 140, (1931).
Jump To The First Citation Point In The Article 226 Michal, A.D., “Notes on scalar extensions of tensors and properties of local coordinates”, Proc. Nat. Acad. Sci. U.S.A., 17, 132-136, (1931).
Jump To The First Citation Point In The Article 227 Michal, A.D., and Botsford, J.L., “Extension of the New Einstein Geometry”, Proc. Nat. Acad. Sci. U.S.A., 18, 554-558, (1932).
Jump To The First Citation Point In The Article 228 Mie, G., “Grundlagen einer Theorie der Materie”, Ann. Phys., 37, 511-534, (1912).
Jump To The First Citation Point In The Article 229 Mie, G., “Grundlagen einer Theorie der Materie. II”, Ann. Phys., 39, 1-40, (1912).
Jump To The First Citation Point In The Article 230 Mie, G., “Grundlagen einer Theorie der Materie. III”, Ann. Phys., 40, 1-66, (1913).
Jump To The First Citation Point In The Article 231 Mie, G., “Untersuchungen zum Problem der Quantenelektrik”, Ann. Phys., 85, 711-729, (1928).
Jump To The First Citation Point In The Article 232 Milne, E. et al., “Physical Science and Philosophy”, Nature Suppl., 139, 997-1008, (1937).
Jump To The First Citation Point In The Article 233 Misner, C.W., Thorne, K., and Wheeler, J.A., Gravitation, (Freeman, San Francisco, 1973).
Jump To The First Citation Point In The Article 234 Neugebauer, G., and Kramer, D., “Soliton concept in general relativity”, Gen. Relativ. Gravit., 13, 195-200, (1981).
Jump To The First Citation Point In The Article 235 Neumann, E.R., Vorlesungen zur Einführung in die Relativitätstheorie, (Gustav Fischer, Jena, 1922).
Jump To The First Citation Point In The Article 236 Newman, M.A.H., “A gauge-invariant tensor calculus”, Proc. R. Soc. London, Ser. A, 116, 603-623, (1927).
Jump To The First Citation Point In The Article 237 Nordström, G., “Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen”, Phys. Z., 15, 504-506, (1914).
Jump To The First Citation Point In The Article 238 Novobatzky, K., “Erweiterung der Feldgleichungen”, Z. Phys., 72, 683-696, (1931).
Jump To The First Citation Point In The Article 239 O’Raifeartaigh, L., and Straumann, N., “Gauge theory: Historical origins and some modern developments”, Rev. Mod. Phys., 72, 1-23, (2000).
Jump To The First Citation Point In The Article 240 Pais, A., ‘Subtle is the Lord’. The science and life of Albert Einstein, (Oxford University Press, Oxford, 1982).
Jump To The First Citation Point In The Article 241 Palatini, A., “Intorno alla nuova teoria di Einstein”, Rend. Lincei, 9, 633-639, (1929).
Jump To The First Citation Point In The Article 242 Pauli, E., “Relativitätstheorie”, in Enzyklopädie der Mathematischen Wissenschaften, volume 219, (Teubner, Leipzig und Berlin, 1921).
Jump To The First Citation Point In The Article 243 Pauli, W., “Mercurperihelbewegung und Strahlenablenkung in Weyls Gravitationstheorie”, Verh. Deutsch. Phys. Gesellsch., 21, 742-750, (1919).
Jump To The First Citation Point In The Article 244 Pauli, W., “Zur Theorie der Gravitation und Elektrizität von Hermann Weyl”, Phys. Z., 20, 457-467, (1919).
Jump To The First Citation Point In The Article 245 Pauli, W., “Remark after Weyl’s lecture in Bad Nauheim (86. Naturforscherversammlung, 19.-25. 9. 1920)”, Phys. Z., 21, 650-651, (1920).
Jump To The First Citation Point In The Article 246 Pauli, W., “Zur Quantenmechanik des magnetischen Elektrons”, Z. Phys., 43, 601-623, (1927).
Jump To The First Citation Point In The Article 247 Pauli, W., “[Besprechung von] Band 10 der Ergebnisse der exakten Naturwissenschaften”, Ergeb. Exakten Naturwiss., 11, 186-187, (1931).
Jump To The First Citation Point In The Article 248 Pauli, W., “Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil I. Klassische Theorie”, Ann. Phys., 18, 305-336, (1933).
Jump To The First Citation Point In The Article 249 Pauli, W., “Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten. Teil II. Die Diracschen Gleichungen für die Materiewellen”, Ann. Phys., 18, 337-372, (1933).
Jump To The First Citation Point In The Article 250 Pauli, W., Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. I: 1919-1929, (Springer, New York, Heidelberg, Berlin, 1979).
Jump To The First Citation Point In The Article 251 Pauli, W., Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. II: 1930-1939, (Springer, Berlin, New York, Heidelberg, 1985).
Jump To The First Citation Point In The Article 252 Pauli, W., and Solomon, J., “La théorie unitaire d’Einstein et Mayer et les équations de Dirac”, J. Phys. Radium, 3, 452-663, (1932).
Jump To The First Citation Point In The Article 253 Pauli, W., and Solomon, J., “La théorie unitaire d’Einstein et Mayer et les équations de Dirac. II”, J. Phys. Radium, 3, 582-589, (1932).
Jump To The First Citation Point In The Article 254 Pauli, W., and Weisskopf, V., “Über die Quantisierung der skalaren relativistischen Wellengleichung”, Helv. Phys. Acta, 7, 709-731, (1934).
Jump To The First Citation Point In The Article 255 Penrose, R., and Rindler, W., Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields, (Cambridge University Press, Cambridge, 1984).
Jump To The First Citation Point In The Article 256 Penrose, R., and Rindler, W., Spinors and Space-Time, (Cambridge University Press, Cambridge, 1984-1986). Vol. 1: Two-Spinor Calculus and Relativistic Fields; Vol. 2: Spinor and Twistor Methods in Space-Time Geometry. (1984-1986).
Jump To The First Citation Point In The Article 257 Piaggio, H.T.M., “Einstein’s and other Unitary Field Theories: An Explanation for the General Reader”, Nature, 123(3109, 3110), 839-841, 877-879, (1929).
Jump To The First Citation Point In The Article 258 Podolsky, B., “A Tensor Form of Dirac’s Equation”, Phys. Rev., 37, 1398-1405, (1931).
Jump To The First Citation Point In The Article 259 Proca, A., “La nouvelle théorie d’Einstein”, Bull. Math. Soc. Roumaine Sci., 1, 170-176, (1929).
Jump To The First Citation Point In The Article 260 Proca, A., “La nouvelle théorie d’Einstein. II”, Bull. Math. Soc. Roumaine Sci., 2, 15-22, (1929).
Jump To The First Citation Point In The Article 261 Pyenson, L., “Physical Sense in Relativity: Max Planck Edits the Annalen der Physik, 1906-1918”, in Pyenson, L., ed., The Young Einstein. The Advent of Relativity, (Adam Hilger, Bristol and Boston, 1985).
Jump To The First Citation Point In The Article 262 Rainich, G.Y., “Electrodynamics in General Relativity Theory”, Proc. Nat. Acad. Sci. U.S.A., 10, 124-127, (1924).
Jump To The First Citation Point In The Article 263 Rainich, G.Y., “Second Note. Electrodynamics in General Relativity Theory”, Proc. Nat. Acad. Sci. U.S.A., 10, 294-298, (1924).
Jump To The First Citation Point In The Article 264 Rainich, G.Y., “Electricity in Curved Space”, Nature, 115, 498, (1925).
Jump To The First Citation Point In The Article 265 Rainich, G.Y., “Electrodynamics in general relativity”, Trans. Am. Math. Soc., 27, 106, (1925).
Jump To The First Citation Point In The Article 266 Reichenbach, H., Philosophie der Raum-Zeit-Lehre, (de Gruyter, Berlin, 1928).
Jump To The First Citation Point In The Article 267 Reichenbach, H., “Zur Einordnung des neuen Einsteinschen Ansatzes über Gravitation und Elektrizität”, Z. Phys., 53, 683-689, (1929).
Jump To The First Citation Point In The Article 268 Reichenbächer, E., “3. Nachtrag zu der Arbeit Grundzüge zu einer Theorie der Elektrizität und der Gravitation”, Ann. Phys., 52, 174-178, (1917).
Jump To The First Citation Point In The Article 269 Reichenbächer, E., “Grundzüge zu einer Theorie der Elektrizität und der Gravitation”, Ann. Phys., 52, 134-173, (1917).
Jump To The First Citation Point In The Article 270 Reichenbächer, E., “Inwiefern lässt sich die moderne Gravitationstheorie ohne die Relativität begründen?”, Die Naturwissenschaften, 8, 1008-1010, (1920).
Jump To The First Citation Point In The Article 271 Reichenbächer, E., “Schwere und Trägheit”, Phys. Z., 22, 234-243, (1921).
Jump To The First Citation Point In The Article 272 Reichenbächer, E., “Eine neue Erklärung des Elektromagnetismus”, Z. Phys., 13, 221-240, (1923).
Jump To The First Citation Point In The Article 273 Reichenbächer, E., “Der Elektromagnetismus in der Weltgeometrie”, Phys. Z., 27, 741-745, (1926).
Jump To The First Citation Point In The Article 274 Reichenbächer, E., “Die Kopplung des Elektromagnetismus mit der Gravitation”, Z. Phys., 44, 517-534, (1927).
Jump To The First Citation Point In The Article 275 Reichenbächer, E., “Die 5-dimensionale Relativitätstheorie und das komplexe Linienelement”, Z. Phys., 50, 425-432, (1928).
Jump To The First Citation Point In The Article 276 Reichenbächer, E., “Eine wellenmechanische Zweikomponententheorie”, Z. Phys., 58, 402-424, (1929).
Jump To The First Citation Point In The Article 277 Reichenbächer, E., “Eine wellenmechanische Zweikomponententheorie.II”, Z. Phys., 61, 490-510, (1930).
Jump To The First Citation Point In The Article 278 Renn, J., and Sauer, T., “Heuristics and Mathematical Representation in Einstein’s Search for a Gravitational Field Equations”, in Goenner, H., Renn, J., Ritter, J., and Sauer, T., eds., The expanding worlds of general relativity, 87-125, (Birkhäuser, Boston/Basel/Zürich, 1999).
Jump To The First Citation Point In The Article 279 Renn, J. et al., The Genesis of General Relativity, (Kluwer Academic Publishers, Dordrecht, 2003). 4 vols., to appear.
Jump To The First Citation Point In The Article 280 Riemann, B., Über die Hypothesen, die der Geometrie zu Grunde liegen, (Wissenschaftliche Buchgesellschaft, Darmstadt, 1959). Reprint.
Jump To The First Citation Point In The Article 281 Robertson, H.P., “Groups of motions in space admitting absolute parallelism”, Ann. Math. (2), 33, 496-520, (1932).
Jump To The First Citation Point In The Article 282 Rosen, N., and Vallarta, M.S., “The spherically symmetrical field in the unified theory”, Phys. Rev., 36, 110-120, (1930).
Jump To The First Citation Point In The Article 283 Rosenfeld, L., “Zur Quantelung der Wellenfelder”, Ann. Phys., 5, 113-152, (1930).
Jump To The First Citation Point In The Article 284 Rumer, G., “Form und Substanz”, Z. Phys., 58, 273-279, (1929).
Jump To The First Citation Point In The Article 285 Rumer, G., “Zur Wellentheorie des Lichtquants”, Z. Phys., 65, 244-252, (1930).
Jump To The First Citation Point In The Article 286 Salkover, M., “The Unified Filed-Theory and Schwarzschild’s solution. I”, Phys. Rev., 35, 209, (1930).
Jump To The First Citation Point In The Article 287 Salkover, M., “The Unified Filed-Theory and Schwarzschild’s solution. II”, Phys. Rev., 35, 214, (1930).
Jump To The First Citation Point In The Article 288 Sauer, T., “Field equations in teleparallel spacetime: Einstein’s Fernparallelismus approach towards unified field theory”, Preprint, Einstein Papers Project, California Institute of Technology, Pasadena, (October, 2003).
Jump To The First Citation Point In The Article 289 Schmutzer, E., Relativistische Physik (Klassische Theorie), (Akademische Verlagsgesellschaft, Leipzig, 1968).
Jump To The First Citation Point In The Article 290 Scholz, E., “Spinor and gauge connections”, paper presented at the Conference on the History and Philosphy of General relativity HRG6, Amsterdam, June 2002, to appear.
Jump To The First Citation Point In The Article 291 Scholz, E., ed., Hermann Weyl’s Raum-Zeit-Materie and a general introduction to his scientific work: Proceedings DMV workshop on Hermann Weyl, Oberwolfach 1993, (Birkhäuser, Boston and Basel, 2000).
Jump To The First Citation Point In The Article 292 Scholz, E., “Weyls Infinitesimalgeometrie, 1917-1925”, in Scholz, E., ed., Proceedings DMV workshop on Hermann Weyl. Oberwolfach 1993, 48-104, (Birkhäuser, Boston and Basel, 2000).
Jump To The First Citation Point In The Article 293 Schouten, J. A., and van Dantzig, D., “Zum Unifizierungsproblem der Physik; Skizze einer generellen Feldtheorie. (GF I)”, Proc. K. Akad. Wetensch., 35, 642-655, (1932).
Jump To The First Citation Point In The Article 294 Schouten, J.A., “Die direkte Analysis zur neueren Relativitätstheorie”, Verh. K. Akad. Wetensch., 12(6), (February, 1918). Printed as Separatum by Johannes Müller, Amsterdam.
Jump To The First Citation Point In The Article 295 Schouten, J.A., Die direkte Analysis zur neueren Relativitätstheorie, (Johannes Müller, Amsterdam, 1919).
Jump To The First Citation Point In The Article 296 Schouten, J.A., “Nachtrag zur Arbeit ‘Über die verschiedenen Arten der Übertragung in einer n-dimensionalen Mannigfaltigkeit, die einer Differentialgeometrie zugrundegelegt werden kann.”’, Math. Z., 15, 168, (1922).
Jump To The First Citation Point In The Article 297 Schouten, J.A., “Über die verschiedenen Arten der Übertragung in einer n-dimensionalen Mannigfaltigkeit, die einer Differentialgeometrie zugrundegelegt werden kann”, Math. Z., 13, 56-81, (1922).
Jump To The First Citation Point In The Article 298 Schouten, J.A., “On a non-symmetrical affine field theory”, Proc. K. Akad. Wetensch., 26, 850-857, (1923).
Jump To The First Citation Point In The Article 299 Schouten, J.A., “Über die Einordnung der Affingeometrie in die Theorie der höheren Übertragungen. I”, Math. Z., 17, 161-182, (1923).
Jump To The First Citation Point In The Article 300 Schouten, J.A., Der Ricci-Kalkül, (Springer, Berlin, 1924).
Jump To The First Citation Point In The Article 301 Schouten, J.A., Raum, Zeit und Relativitätsprinzip, (Teubner, Leipzig und Berlin, 1924).
Jump To The First Citation Point In The Article 302 Schouten, J.A., “Sur les connexions conformes et projectives de M. Cartan et la connexion linéaire générale de M. König”, C. R. Acad. Sci., 178, 2044-2046, (1924).
Jump To The First Citation Point In The Article 303 Schouten, J.A., “On a non-symmetrical affine field theory”, Proc. K. Akad. Wetensch., 32, 105-108, (1929).
Jump To The First Citation Point In The Article 304 Schouten, J.A., “Sur la signification géométrique de la propriété semi-symmétrique d’une connexion intégrale, qui laisse invariant le tenseur fondamental”, C. R. Acad. Sci., 188, 1135-1136, (1929).
Jump To The First Citation Point In The Article 305 Schouten, J.A., “Die Darstellung der Lorentzgruppe in der komplexen E2 abgeleitet aus den Diracschen Zahlen”, Proc. K. Akad. Wetensch., 38, 189-197, (1930).
Jump To The First Citation Point In The Article 306 Schouten, J.A., “Dirac equation in general relativity. 1. Four dimensional theory”, J. Math. Phys. (MIT), 10, 239-283, (1930-1931).
Jump To The First Citation Point In The Article 307 Schouten, J.A., “Dirac Equations in General Relativity. 2. Five Dimensional Theory”, J. Math. Phys. (MIT), 10, 272-283, (1930-1931).
Jump To The First Citation Point In The Article 308 Schouten, J.A., “Zur generellen Feldtheorie; Raumzeit und Spinraum. (GF V)”, Z. Phys., 81, 405-417, (1933).
Jump To The First Citation Point In The Article 309 Schouten, J.A., “Zur generellen Feldtheorie; Semivektoren und Spinraum. (GF VII)”, Z. Phys., 84, 92-111, (1933).
Jump To The First Citation Point In The Article 310 Schouten, J.A., Ricci-Calculus, (Springer, Berlin, 1954), 2nd edition.
Jump To The First Citation Point In The Article 311 Schouten, J.A., and Haantjes, J., “Generelle Feldtheorie VIII. Autogeodätische Linien und Weltlinien”, Z. Phys., 89, 357-369, (1934).
Jump To The First Citation Point In The Article 312 Schouten, J.A., and Hlavaty, V., “Zur Theorie der allgemeinen linearen Übertragung”, Math. Z., 30, 414-432, (1929).
Jump To The First Citation Point In The Article 313 Schouten, J.A., and van Dantzig, D., “Über unitäre Geometrie”, Math. Ann., 103, 319-346, (1930).
Jump To The First Citation Point In The Article 314 Schouten, J.A., and van Dantzig, D., “Über eine vierdimensionale Deutung der neuesten Feldtheorie”, Proc. K. Akad. Wetensch., 34, 1398-1407, (1931).
Jump To The First Citation Point In The Article 315 Schouten, J.A., and van Dantzig, D., “Generelle Feldtheorie. (GF III)”, Z. Phys., 78, 639-667, (1932).
Jump To The First Citation Point In The Article 316 Schouten, J.A., and van Dantzig, D., “Zur generellen Feldtheorie; Diracsche Gleichung und Hamiltonsche Funktion. (GF II)”, Proc. K. Akad. Wetensch., 35, 843-852, (1932).
Jump To The First Citation Point In The Article 317 Schouten, J.A., and van Dantzig, D., “On projective connections and their application to the general field theory. (GF VI)”, Ann. Math., 34, 271-312, (1933).
Jump To The First Citation Point In The Article 318 Schrödinger, E., “Diracsches Elektron im Schwerefeld”, Sitzungsber. Preuss. Akad. Wiss.(XI), 105-128, (1932).
Jump To The First Citation Point In The Article 319 Schrödinger, E., “The final affine law II”, Proc. R. Irish Acad. A, 51, 205-216, (1948).
Jump To The First Citation Point In The Article 320 Schulman, R., Kox, A.J., Janssen, M., and Illy, J., eds., Einstein Collected Papers. Vol. 8A-8B “The Berlin Years: Correspondence, 1914-1918”, (Princeton University Press, Princeton, 1997).
Jump To The First Citation Point In The Article 321 Schweber, S.S., QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, (Princeton University Press, Princeton, 1994).
Jump To The First Citation Point In The Article 322 Sen, N.R., “Der Energieinhalt des elektrischen Teilchens nach den Einsteinschen modifizierten Feldgleichungen”, Z. Phys., 40, 667-674, (1927).
Jump To The First Citation Point In The Article 323 Sen, N.R., “Das Keplerproblem der fünfdimensionalen Wellenmechanik und der Einfluss der Gravitation auf die Balmerformel”, Z. Phys., 66, 689-692, (1930).
Jump To The First Citation Point In The Article 324 Sen, N.R., “Die relativistisch-wellenmechanische Bewegung des materiellen Teilchens im homogenen Magnetfeld”, Z. Phys., 66, 693-696, (1930).
Jump To The First Citation Point In The Article 325 Sigurdsson, S., Hermann Weyl, Mathematics and Physics, 1900-1927, PhD Thesis, (Harvard University, Cambridge, 1991).
Jump To The First Citation Point In The Article 326 Sommerfeld, A., Einstein Collected Papers, volume 8B(Doc. 619, Note 18, 880), (Princeton University Press, Princeton, 1997).
Jump To The First Citation Point In The Article 327 Speziali, P., Albert Einstein - Michele Besso. Correspondance 1903-1955, (Hermann, Paris, 1972).
Jump To The First Citation Point In The Article 328 Stachel, J., “The rise and fall of geometrodynamics”, in Schaffner, K.F., and Cohen, R.S., eds., PSA 1972: Proceedings of the 1972 Biennial Meeting of the Philosophy of Science Association, volume 20 of Boston Studies in the Philosophy of Science, 31-54, (Reidel, Dordrecht, 1974).
Jump To The First Citation Point In The Article 329 Stachel, J., “The other Einstein: Einstein contra Field Theory”, Sci. Context, 6, 275-290, (1993).
Jump To The First Citation Point In The Article 330 Stachel, J., Einstein from ‘B’ to ‘Z’, (Birkhäuser, Boston/Basel/Berlin, 2002).
Jump To The First Citation Point In The Article 331 Straneo, P., “Gleichungen zu einer einheitlichen Feldtheorie”, Sitzungsber. Preuss. Akad. Wiss.(13), 319-325, (1931).
Jump To The First Citation Point In The Article 332 Straneo, P., “Teorie unitarie della gravitazione e dell’electricita”, Nuovo Cimento, 8, 125-145, (1931).
Jump To The First Citation Point In The Article 333 Straneo, P., “I tensori energetici nella teoria unitaria a geometrizzazione assoluta”, Rend. Lincei, 15, 563-568, (1932).
Jump To The First Citation Point In The Article 334 Straumann, N., “Zum Ursprung der Eichtheorien bei Hermann Weyl”, Phys. Blaetter, 43, 414-421, (1987).
Jump To The First Citation Point In The Article 335 Straumann, N., “Ursprünge der Eichtheorien”, in Scholz, E., ed., Hermann Weyl’s Raum-Zeit-Materie and a General Introduction to His Scientific Work, (Birkhäuser, Basel/Boston/Berlin, 2001).
Jump To The First Citation Point In The Article 336 Struik, D., and Wiener, N., “A relativistic theory of Quanta”, J. Math. Phys. (MIT), 7, 1-23, (1927).
Jump To The First Citation Point In The Article 337 Struik, D.J., Grundzüge der mehrdimensionalen Geometrie in direkter Darstellung, (Springer, Berlin, 1922).
Jump To The First Citation Point In The Article 338 Struik, D.J., Theory of Linear Connections, volume 3 of Ergebnisse der Mathematik und ihrer Grenzgebiete, (Springer, Berlin, 1934).
Jump To The First Citation Point In The Article 339 Swann, W.F.G., “Statement in regard to professor Einstein’s publications”, Science, 71, 390-391, (1930).
Jump To The First Citation Point In The Article 340 Tamm, I., “Die Einsteinsche einheitliche Feldtheorie und die Quantentheorie”, Phys. Z., 30, 652-654, (1929).
Jump To The First Citation Point In The Article 341 Tamm, I., “Über den Zusammenhang der Einsteinschen einheitlichen Feldtheorie mit der Quantentheorie”, Proc. R. Acad. Amsterdam, 32, 288-291, (1929).
Jump To The First Citation Point In The Article 342 Tamm, I., and Leontowitsch, M., “Bemerkungen zur Einsteinschen einheitlichen Feldtheorie”, Z. Phys., 57, 354-366, (1929).
Jump To The First Citation Point In The Article 343 Temple, G., “The Tensorial Form of Dirac’s Wave Equation”, Proc. R. Soc. London, A 122, 352-357, (1929).
Jump To The First Citation Point In The Article 344 Tetrode, H., “Allgemein-relativistische Quantentheorie des Elektrons”, Z. Phys., 50, 336-346, (1928).
Jump To The First Citation Point In The Article 345 Tetrode, H., “Allgemein-relativistische Quantentheorie des Elektrons”, Z. Phys., 49, 858-864, (1928).
Jump To The First Citation Point In The Article 346 Thomas, J.M., “On various geometries giving a unified electric and gravitational theory”, Proc. Nat. Acad. Sci. U.S.A., 12, 187-191, (1926).
Jump To The First Citation Point In The Article 347 Thomas, T.Y., “Note on the projective geometry of paths”, Bull. Am. Math. Soc., 27, 318-322, (1925).
Jump To The First Citation Point In The Article 348 Thomas, T.Y., “On the projective and equi-projective geometry of paths”, Proc. Nat. Acad. Sci. U.S.A., 11, 199-203, (1925).
Jump To The First Citation Point In The Article 349 Thomas, T.Y., “On the projective and equi-projective geometry of paths”, Proc. Nat. Acad. Sci. U.S.A., 11, 199-203, (1925).
Jump To The First Citation Point In The Article 350 Thomas, T.Y., “On the unified field theory”, Proc. Nat. Acad. Sci. U.S.A., 16, 761-776, (1930).
Jump To The First Citation Point In The Article 351 Thomas, T.Y., “On the unified field theory. II”, Proc. Nat. Acad. Sci. U.S.A., 16, 830-835, (1930).
Jump To The First Citation Point In The Article 352 Thomas, T.Y., “On the unified field theory. III”, Proc. Nat. Acad. Sci. U.S.A., 17, 48-58, (1931).
Jump To The First Citation Point In The Article 353 Thomas, T.Y., “On the unified field theory. IV”, Proc. Nat. Acad. Sci. U.S.A., 17, 111-119, (1931).
Jump To The First Citation Point In The Article 354 Thomas, T.Y., “On the unified field theory. V”, Proc. Nat. Acad. Sci. U.S.A., 17, 199-210, (1931).
Jump To The First Citation Point In The Article 355 Thomas, T.Y., “On the unified field theory.VI”, Proc. Nat. Acad. Sci. U.S.A., 17, 325-329, (1931).
Jump To The First Citation Point In The Article 356 Tonnelat, M.A., La théorie du champ unifié d’Einstein et quelques-uns de ses développements, (Gauthier-Villars, Paris, 1955).
Jump To The First Citation Point In The Article 357 Treder, H.-J., “Der heutige Stand der Geometrisierung der Physik und der Physikalisierung der Geometrie”, Sitzungsber. Akad. Wiss. DDR, Math.-Nat.-Technik(14/N), 1-33, (1975).
Jump To The First Citation Point In The Article 358 Vallarta, M.S., “On Einstein’s unified field equations and the Schwarzschild solution”, Proc. Nat. Acad. Sci. U.S.A., 15, 784-788, (1929).
Jump To The First Citation Point In The Article 359 van Dantzig, D., “Die Wiederholung des Michelson Versuch’s und die Relativitätstheorie”, Math. Ann., 96, 261-228, (1926).
Jump To The First Citation Point In The Article 360 van Dantzig, D., “Theorie des projektiven Zusammenhangs n-dimensionaler Räume”, Math. Ann., 106, 400-454, (1932).
Jump To The First Citation Point In The Article 361 van Dantzig, D., “Zur allgemeinen projektiven Differentialgeometrie. I. Einordnung der Affingeometrie”, Proc. K. Akad. Wetensch., 35, 524-534, (1932).
Jump To The First Citation Point In The Article 362 van Dantzig, D., “Zur allgemeinen projektiven Differentialgeometrie. II. Xn+1 mit eingliedriger Gruppe”, Proc. K. Akad. Wetensch., 35, 525-542, (1932).
Jump To The First Citation Point In The Article 363 van Dantzig, D., “Electromagnetism, independent of metrical geometry. 1. The foundations”, Proc. K. Akad. Wetensch., 37, 521-525, (1934).
Jump To The First Citation Point In The Article 364 van Dantzig, D., “Electromagnetism, independent of metrical geometry. 2. Variational Principles and further generalization of the theory”, Proc. K. Akad. Wetensch., 37, 526-531, (1934).
Jump To The First Citation Point In The Article 365 van Dantzig, D., “Electromagnetism, independent of metrical geometry. 3. Mass and motion”, Proc. K. Akad. Wetensch., 37, 644-652, (1934).
Jump To The First Citation Point In The Article 366 van Dantzig, D., “Electromagnetism, independent of metrical geometry. 4. Momentum and energy: waves”, Proc. K. Akad. Wetensch., 37, 825-863, (1934).
Jump To The First Citation Point In The Article 367 van Dantzig, D., “The fundamental equations of electromagnetism, independent of metrical geometry”, Proc. Cambridge Philos. Soc., 30, 421-427, (1934).
Jump To The First Citation Point In The Article 368 van der Waerden, B.L., “Spinoranalysis”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 100-106, (1929).
Jump To The First Citation Point In The Article 369 van der Waerden, B.L., Die gruppentheoretische Methode in der Quantenmechanik, (Springer, Berlin, 1932).
Jump To The First Citation Point In The Article 370 van der Waerden, B.L., A History of Algebra, (Springer, Berlin and New York, 1980).
Jump To The First Citation Point In The Article 371 van Dongen, J., Einstein’s Unification: General relativity and the Quest for Mathematical Naturalness, PhD Thesis, (University of Amsterdam, Amsterdam, 2002).
Jump To The First Citation Point In The Article 372 van Dongen, J., “Einstein’s Methodology, Semivectors and the Unification of Electrons and Protons”, to appear in Archive for History of Exact Sciences, (October, 2003).
Jump To The First Citation Point In The Article 373 Veblen, O., “Projective and affine geometry of paths”, Proc. Nat. Acad. Sci. U.S.A., 8, 347-350, (1922).
Jump To The First Citation Point In The Article 374 Veblen, O., “Projective tensors and connections”, Proc. Nat. Acad. Sci. U.S.A., 14, 154-166, (1928).
Jump To The First Citation Point In The Article 375 Veblen, O., “A generalization of the quadratic differential form”, Quart. J. Math., 1, 60, (1929).
Jump To The First Citation Point In The Article 376 Veblen, O., “Projective tensors and connections”, J. London Math. Soc., 4, 140-160, (1929).
Jump To The First Citation Point In The Article 377 Veblen, O., “Geometry of four-component Spinors”, Proc. Nat. Acad. Sci. U.S.A., 19, 503-517, (1933).
Jump To The First Citation Point In The Article 378 Veblen, O., “Geometry of two-component Spinors”, Proc. Nat. Acad. Sci. U.S.A., 19, 462-474, (1933).
Jump To The First Citation Point In The Article 379 Veblen, O., Projektive Relativitätstheorie, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, (Springer, Berlin, 1933).
Jump To The First Citation Point In The Article 380 Veblen, O., “Spinors in Projective Relativity”, Proc. Nat. Acad. Sci. U.S.A., 19, 979-989, (1933).
Jump To The First Citation Point In The Article 381 Veblen, O., and Hoffmann, B., “Projective relativity”, Phys. Rev., 36, 810-822, (1930).
Jump To The First Citation Point In The Article 382 Veblen, O., and Taub, A.H., “Projective differentiation of spinors”, Proc. Nat. Acad. Sci. U.S.A., 20, 85-92, (1933).
Jump To The First Citation Point In The Article 383 Veblen, O., and Thomas, T.Y., “The geometry of paths”, Trans. Am. Math. Soc., 25, 551-608, (1923).
Jump To The First Citation Point In The Article 384 Vizgin, V.P., “The geometrical Unified Field Program”, in Howard, D., and Stachel, J., eds., Einstein and the History of General Relativity, 300-314, (Birkhäuser, Boston, 1989).
Jump To The First Citation Point In The Article 385 Vizgin, V.P., Unified field theories in the first third of the 20th century, (Birkhaeuser, Basel, 1994).
Jump To The First Citation Point In The Article 386 von Laue, M., Die Relativitätstheorie. Band 2: Allgemeine Relativitätstheorie und Einsteinsche Gravitationstheorie, (Vieweg, Braunschweig, 1921).
Jump To The First Citation Point In The Article 387 von Laue, M., Die Relativitätstheorie. Band 2: Die allgemeine Relativitätstheorie. Einstein’s Lehre von der Schwerkraft, (Vieweg, Braunschweig, 1923), 2nd edition.
Jump To The First Citation Point In The Article 388 von Wisniewski, F.J., “Die Diracschen und Maxwellschen Differentialgleichungen”, Z. Phys., 63, 713-717, (1930).
Jump To The First Citation Point In The Article 389 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
Jump To The First Citation Point In The Article 390 Watanabe, S., “Reversibility of Quantum-Electrodynamics”, Phys. Rev., 84, 1008-1025, (1951).
Jump To The First Citation Point In The Article 391 Weitzenböck, R., “Über die Wirkungsfunktion in der Weyl’schen Physik. I., II.”, Sitzungsber. Akad. Wiss. Wien, 129, 638-708, (1920).
Jump To The First Citation Point In The Article 392 Weitzenböck, R., “Neuere Arbeiten der Algebraischen Invariantentheorie. Differentialinvarianten”, in Enzyklopädie der Mathematischen Wissenschaften, volume III D 10, (Teubner, Leipzig und Berlin, 1921).
Jump To The First Citation Point In The Article 393 Weitzenböck, R., “Differentialinvarianten in der Einsteinschen Theorie des Fernparallelismus”, Sitzungsber. Preuss. Akad. Wiss.(26), 466-474, (1928).
Jump To The First Citation Point In The Article 394 Wenzl, A., Das naturwissenschaftliche Weltbild der Gegenwart, (Quelle und Meyer, Leipzig, 1929).
Jump To The First Citation Point In The Article 395 Weyl, H., “Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss.(26), 465-478, (1918). With a “Nachtrag” of Einstein, p. 478, and “Erwiderung des Verfassers”, pp. 478-480.
Jump To The First Citation Point In The Article 396 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1918).
Jump To The First Citation Point In The Article 397 Weyl, H., “Reine Infinitesimalgeometrie”, Math. Z., 2, 384-411, (1918).
Jump To The First Citation Point In The Article 398 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1919), 3rd, ess. rev. edition.
Jump To The First Citation Point In The Article 399 Weyl, H., “Elektrizität und Gravitation”, Phys. Z., 21, 649-650, (1920).
Jump To The First Citation Point In The Article 400 Weyl, H., “Feld und Materie”, Ann. Phys., 65, 541-563, (1921).
Jump To The First Citation Point In The Article 401 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1921), 4th, rev. edition.
Jump To The First Citation Point In The Article 402 Weyl, H., “Über die physikalischen Grundlagen der erweiterten Relativitätstheorie”, Phys. Z., 22, 473-480, (1921).
Jump To The First Citation Point In The Article 403 Weyl, H., “Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 99-112, (1921).
Jump To The First Citation Point In The Article 404 Weyl, H., Mathematische Analyse des Raumproblems, (Springer, Berlin, 1923).
Jump To The First Citation Point In The Article 405 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1923), 5th, rev. edition.
Jump To The First Citation Point In The Article 406 Weyl, H., Gruppentheorie und Quantenmechanik, (Hirzel, Leipzig, 1928).
Jump To The First Citation Point In The Article 407 Weyl, H., “Elektron und Gravitation I”, Z. Phys., 56, 330-352, (1929).
Jump To The First Citation Point In The Article 408 Weyl, H., “Gravitation and the electron”, Proc. Nat. Acad. Sci. U.S.A., 15, 323-334, (1929).
Jump To The First Citation Point In The Article 409 Weyl, H., The Theory of Groups and Quantum Mechanics, (Dover, New York, 1950). Translation of the 2nd German edition of 1931.
Jump To The First Citation Point In The Article 410 Weyl, H., Space, Time, Matter, (Dover, New York, 1952), 4th edition. English translation of of Weyl’s Raum, Zeit, Materie.
Jump To The First Citation Point In The Article 411 Weyl, H., Gesammelte Abhandlungen, (Springer, Berlin/Heidelberg/New York, 1968). 4 vols., K. Chandrasekharan, ed.
Jump To The First Citation Point In The Article 412 Wheeler, J. A., Geometrodynamics, volume 1 of Topics of Modern Physics, (Academic Press, New York, 1962).
Jump To The First Citation Point In The Article 413 Whitehead, J.H.C., “The representation of projective spaces”, Ann. Math., 32, 327-360, (1931).
Jump To The First Citation Point In The Article 414 Whittaker, J.M., “On the principle of least action in wave mechanics”, Proc. R. Soc. London, A 121, 543-557, (1928).
Jump To The First Citation Point In The Article 415 Whittaker, J.M., A History of the Theories of Aether and Electricity 1900-1926, (Nelson & Sons, London, 1953).
Jump To The First Citation Point In The Article 416 Wiener, N., and Vallarta, M. S., “Unified field theory with electricity and gravitation”, Nature, 123, 317, (1929).
Jump To The First Citation Point In The Article 417 Wiener, N., and Vallarta, M.S., “On the spherically symmetric statical field in Einstein’s unified theory of electromagnetism and gravitation”, Proc. Nat. Acad. Sci. U.S.A., 15, 353-356, (1929).
Jump To The First Citation Point In The Article 418 Wiener, N., and Vallarta, M.S., “On the spherically symmetric statical field in Einstein’s unified theory of electromagnetism and gravitation: A correction”, Proc. Nat. Acad. Sci. U.S.A., 15, 802-804, (1929).
Jump To The First Citation Point In The Article 419 Wigner, E., “Eine Bemerkung zu Einsteins neuer Formulierung des allgemeinen Relativitätsprinzips”, Z. Phys., 53, 592-596, (1929).
Jump To The First Citation Point In The Article 420 Wilson, W., “Relativity and Wave Mechanics”, Proc. R. Soc. London, Ser. A, 118, 441-448, (1928).
Jump To The First Citation Point In The Article 421 Wirtinger, W., “On a general infinitesimal geometry in reference to the theory of relativity”, Trans. Cambridge Philos. Soc., 22, 439-448, (1922).
Jump To The First Citation Point In The Article 422 Witten, L., “A geometric theory of electromagnetic and gravitational fields”, in Witten, L., ed., Gravitation: an introduction into current research, (Wiley, New York and London, 1962).
Jump To The First Citation Point In The Article 423 Wünsch, D., Theodor Kaluza (1885-1954). Leben und Werk, Vols. I and II, PhD Thesis, (University of Stuttgart, Stuttgart, Germany, 2000).
Jump To The First Citation Point In The Article 424 Yang, C.N., “Hermann Weyl’s Contribution to Physics”, in Chandrasekharan, K., ed., Hermann Weyl 1885-1985. Centenary lectures, 6-21, (Springer, Berlin/Heidelberg/New York, 1986).
Jump To The First Citation Point In The Article 425 Yano, K., The theory of Lie derivatives and its applications, (North-Holland/Noordhoff, Amsterdam/Groningen, 1955).
Jump To The First Citation Point In The Article 426 Zaycoff, R., “Fernparallelismus und Wellenmechanik”, Z. Phys., 58, 833-840, (1929).
Jump To The First Citation Point In The Article 427 Zaycoff, R., “Fernparallelismus und Wellenmechanik. II”, Z. Phys., 59, 110-113, (1929).
Jump To The First Citation Point In The Article 428 Zaycoff, R., “Zu der neuesten Formulierung der Einsteinschen einheitlichen Feldtheorie”, Z. Phys., 56, 717-726, (1929).
Jump To The First Citation Point In The Article 429 Zaycoff, R., “Zur Begründung einer neuen Feldtheorie von A. Einstein”, Z. Phys., 53, 719-728, (1929).
Jump To The First Citation Point In The Article 430 Zaycoff, R., “Zur Begründung einer neuen Feldtheorie von A. Einstein. II”, Z. Phys., 54, 590-593, (1929).
Jump To The First Citation Point In The Article 431 Zaycoff, R., “Zur Begründung einer neuen Feldtheorie von A. Einstein. III”, Z. Phys., 54, 738-740, (1929).
Jump To The First Citation Point In The Article 432 Zaycoff, R., “Zur neuen Quantentheorie”, Z. Phys., 54, 588-589, (1929).
Jump To The First Citation Point In The Article 433 Zaycoff, R., “Das relativistische Elektron”, Z. Phys., 61, 395-410, (1930).
Jump To The First Citation Point In The Article 434 Zaycoff, R., “Über eine allgemeine Form der Diracschen Gleichung”, Ann. Phys., 7, 650-660, (1930).