Jump To The First Citation Point In The Article 1 Adler, S.L., Lieberman, J., and Ng, Y.J., “Regularization of the stress energy tensor for vector and scalar particles propagating in a general background metric”, Ann. Phys., 106, 279-321, (1977).
Jump To The First Citation Point In The Article 2 Albrecht, A., and Steinhardt, P.J., “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett., 48, 1220-1223, (1982).
Jump To The First Citation Point In The Article 3 Anderson, P., “Effects of quantum fields on singularities and particle horizons in the early universe”, Phys. Rev. D, 28, 271-285, (1983).
Jump To The First Citation Point In The Article 4 Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe. II”, Phys. Rev. D, 29, 615-627, (1984).
Jump To The First Citation Point In The Article 5 Anderson, P.R., Hiscock, W.A., and Loranz, D.J., “Semiclassical stability of the extreme Reissner-Nordström black hole”, Phys. Rev. Lett., 74, 4365-4368, (1995). For a related online version see: P.R. Anderson, et al., (April, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9504019.
Jump To The First Citation Point In The Article 6 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress energy tensor of quantized scalar fields in static black hole space-times”, Phys. Rev. Lett., 70, 1739-1742, (1993).
Jump To The First Citation Point In The Article 7 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress-energy tensor of quantized scalar fields in static spherically symmetric space-times”, Phys. Rev. D, 51, 4337-4358, (1995).
Jump To The First Citation Point In The Article 8 Anderson, P.R., Hiscock, W.A., Whitesell, J., and York Jr., J.W., “Semiclassical black hole in thermal equilibrium with a nonconformal scalar field”, Phys. Rev. D, 50, 6427-6434, (1994).
Jump To The First Citation Point In The Article 9 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response and the validity of the semi-classical approximation in gravity”, (April, 2004), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0204083.
Jump To The First Citation Point In The Article 10 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response, validity of semiclassical gravity, and the stability of flat space”, Phys. Rev. D, 67, 024026-1-024026-19, (2003). For a related online version see: P.R. Anderson, et al., “Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space”, (September, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0209075.
Jump To The First Citation Point In The Article 11 Bakshi, P.M., and Mahanthappa, K.T., “Expectation value formalism in quantum field theory. 1”, J. Math. Phys., 4, 1-11, (1963).
Jump To The First Citation Point In The Article 12 Bardeen, J.M., “Gauge invariant cosmological perturbations”, Phys. Rev. D, 22, 1882-1905, (1980).
Jump To The First Citation Point In The Article 13 Bardeen, J.M., “Black holes do evaporate thermally”, Phys. Rev. Lett., 46, 382-385, (1981).
Jump To The First Citation Point In The Article 14 Barrabès, C., Frolov, V., and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010-1-124010-14, (1999). For a related online version see: C. Barrabès, et al., (December, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9812076.
Jump To The First Citation Point In The Article 15 Barrabès, C., Frolov, V., and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020-1-044020-19, (2000). For a related online version see: C. Barrabès, et al., (January, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0001102.
Jump To The First Citation Point In The Article 16 Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333-2346, (1973).
Jump To The First Citation Point In The Article 17 Bekenstein, J.D., “Do we understand black hole entropy?”, in Proc. Seventh Marcel Grossmann Meeting, (Stanford University Press, Stanford, CA, U.S.A., 1994). For a related online version see: J.D. Bekenstein, (September, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9409015.
Jump To The First Citation Point In The Article 18 Bekenstein, J.D., and Mukhanov, V. F., “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360, 7-12, (1995). For a related online version see: J.D. Bekenstein, et al., (May, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9505012.
Jump To The First Citation Point In The Article 19 Belinsky, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525-573, (1970).
Jump To The First Citation Point In The Article 20 Belinsky, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a singularity”, Adv. Phys., 31, 639-667, (1982).
Jump To The First Citation Point In The Article 21 Berger, B., “Quantum graviton creation in a model universe”, Ann. Phys. (N. Y.), 83, 458-490, (1974).
Jump To The First Citation Point In The Article 22 Berger, B., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D, 11, 2770-2780, (1975).
Jump To The First Citation Point In The Article 23 Berger, B., “Scalar particle creation in an anisotropic universe”, Phys. Rev. D, 12, 368-375, (1975).
Jump To The First Citation Point In The Article 24 Bernard, W., and Callen, H.B., “Irreversible thermodynamics of nonlinear processes and noise in driven systems”, Rev. Mod. Phys., 31, 1017-1044, (1959).
Jump To The First Citation Point In The Article 25 Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, (Cambridge University Press, Cambridge, U.K., 1982).
Jump To The First Citation Point In The Article 26 Boyanovsky, D., de Vega, H.J., Holman, R., Lee, D.S., and Singh, A., “Dissipation via particle production in scalar field theories”, Phys. Rev. D, 51, 4419-4444, (1995). For a related online version see: D. Boyanovsky, et al., (August, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9408214.
Jump To The First Citation Point In The Article 27 Brandt, F.T., and Frenkel, J., “The structure of the graviton self-energy at finite temperature”, Phys. Rev. D, 58, 085012-1-085012-11, (1998). For a related online version see: F.T. Brandt, et al., (March, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9803155.
Jump To The First Citation Point In The Article 28 Brown, M.R., and Ottewill, A.C., “Effective actions and conformal transformations”, Phys. Rev. D, 31, 2514-2520, (1985).
Jump To The First Citation Point In The Article 29 Brown, M.R., Ottewill, A.C., and Page, D.N., “Conformally invariant quantum field theory in static Einstein space-times”, Phys. Rev. D, 33, 2840-2850, (1986).
Jump To The First Citation Point In The Article 30 Brun, T.A., “Quasiclassical equations of motion for nonlinear Brownian systems”, Phys. Rev. D, 47, 3383-3393, (1993). For a related online version see: T.A. Brun, (June, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9306013.
Jump To The First Citation Point In The Article 31 Bunch, T.S., “On the renormalization of the quantum stress tensor in curved space-time by dimensional regularization”, J. Phys. A, 12, 517-531, (1979).
Jump To The First Citation Point In The Article 32 Caldeira, A.O., and Leggett, A.J., “Path integral approach to quantum Brownian motion”, Physica A, 121, 587-616, (1983).
Jump To The First Citation Point In The Article 33 Caldeira, A.O., and Leggett, A.J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31, 1059-1066, (1985).
Jump To The First Citation Point In The Article 34 Callen, H.B., and Greene, R.F., “On a theorem of irreversible thermodynamics”, Phys. Rev., 86, 702-710, (1952).
Jump To The First Citation Point In The Article 35 Callen, H.B., and Welton, T.A., “Irreversibility and generalized noise”, Phys. Rev., 83, 34-40, (1951).
Jump To The First Citation Point In The Article 36 Calzetta, E., “Memory loss and asymptotic behavior in minisuperspace cosmological models”, Class. Quantum Grav., 6, L227-L231, (1989).
Jump To The First Citation Point In The Article 37 Calzetta, E., “Anisotropy dissipation in quantum cosmology”, Phys. Rev. D, 43, 2498-2509, (1991).
Jump To The First Citation Point In The Article 38 Calzetta, E., Campos, A., and Verdaguer, E., “Stochastic semiclassical cosmological models”, Phys. Rev. D, 56, 2163-2172, (1997). For a related online version see: E. Calzetta, et al., (April, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9704010.
Jump To The First Citation Point In The Article 39 Calzetta, E., and Hu, B.L., “Closed time path functional formalism in curved space-time: application to cosmological backreaction problems”, Phys. Rev. D, 35, 495-509, (1987).
Jump To The First Citation Point In The Article 40 Calzetta, E., and Hu, B.L., “Nonequilibrium quantum fields: closed time path effective action Wigner function and Boltzmann equation”, Phys. Rev. D, 37, 2878-2900, (1988).
Jump To The First Citation Point In The Article 41 Calzetta, E., and Hu, B.L., “Dissipation of quantum fields from particle creation”, Phys. Rev. D, 40, 656-659, (1989).
Jump To The First Citation Point In The Article 42 Calzetta, E., and Hu, B.L., “Decoherence of correlation histories”, in Hu, B.L., and Jacobson, T.A., eds., Direction in general relativity, vol II: Brill Festschrift, (Cambridge University Press, Cambridge, U.K., 1993).
Jump To The First Citation Point In The Article 43 Calzetta, E., and Hu, B.L., “Noise and fluctuations in semiclassical gravity”, Phys. Rev. D, 49, 6636-6655, (1994). For a related online version see: E. Calzetta, et al., (December, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9312036.
Jump To The First Citation Point In The Article 44 Calzetta, E., and Hu, B.L., “Correlations, decoherence, dissipation, and noise in quantum field theory”, in Fulling, S., ed., Heat kernel techniques and quantum gravity, (Texas A&M Press, College Station, TX, U.S.A., 1995).
Jump To The First Citation Point In The Article 45 Calzetta, E., and Hu, B.L., “Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe”, Phys. Rev. D, 52, 6770-6788, (1995). For a related online version see: E. Calzetta, et al., (May, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9505046.
Jump To The First Citation Point In The Article 46 Calzetta, E., and Hu, B.L., “Stochastic dynamics of correlations in quantum field theory: From Schwinger-Dyson to Boltzmann-Langevin equation”, Phys. Rev. D, 61, 025012-1-025012-22, (2000). For a related online version see: E. Calzetta, et al., (March, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9903291.
Jump To The First Citation Point In The Article 47 Calzetta, E., Roura, A., and Verdaguer, E., “Vacuum decay in quantum field theory”, Phys. Rev. D, 64, 105008-1-105008-21, (2001). For a related online version see: E. Calzetta, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/0106091.
Jump To The First Citation Point In The Article 48 Calzetta, E., Roura, A., and Verdaguer, E., “Dissipation, Noise, and Vacuum Decay in Quantum Field Theory”, Phys. Rev. Lett., 88, 010403-1-010403-4, (2002). For a related online version see: E. Calzetta, et al., (January, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/0101052.
Jump To The First Citation Point In The Article 49 Calzetta, E., Roura, A., and Verdaguer, E., “Stochastic description for open quantum systems”, Physica A, 319, 188-212, (2003). For a related online version see: E. Calzetta, et al., (November, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/quant-ph/0011097.
Jump To The First Citation Point In The Article 50 Calzetta, E., and Verdaguer, E., “Noise induced transitions in semiclassical cosmology”, Phys. Rev. D, 59, 083513-1-083513-24, (1999). For a related online version see: E. Calzetta, et al., (July, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9807024.
Jump To The First Citation Point In The Article 51 Calzetta, E.A., and Gonorazky, Sonia, “Primordial fluctuations from nonlinear couplings”, Phys. Rev. D, 55, 1812-1821, (1997). For a related online version see: E.A. Calzetta, et al., (August, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9608057.
Jump To The First Citation Point In The Article 52 Calzetta, E.A., and Kandus, A., “Spherically symmetric nonlinear structures”, Phys. Rev. D, 55, 1795-1811, (1997). For a related online version see: E.A. Calzetta, et al., (March, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/astro-ph/9603125.
Jump To The First Citation Point In The Article 53 Camporesi, R., “Harmonic analysis and propagators on homogeneous spaces”, Phys. Rep., 196, 1-134, (1990).
Jump To The First Citation Point In The Article 54 Campos, A., and Hu, B.L., “Nonequilibrium dynamics of a thermal plasma in a gravitational field”, Phys. Rev. D, 58, 125021-1-125021-15, (1998). For a related online version see: A. Campos, et al., “Non-equilibrium dynamics of a thermal plasma in a gravitational field”, (May, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9805485.
Jump To The First Citation Point In The Article 55 Campos, A., and Hu, B.L., “Fluctuations in a thermal field and dissipation of a black hole spacetime: Far-field limit”, Int. J. Theor. Phys., 38, 1253-1271, (1999). For a related online version see: A. Campos, et al., (December, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9812034.
Jump To The First Citation Point In The Article 56 Campos, A., Martín, R., and Verdaguer, E., “Back reaction in the formation of a straight cosmic string”, Phys. Rev. D, 52, 4319-4336, (1995). For a related online version see: A. Campos, et al., (May, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9505003.
Jump To The First Citation Point In The Article 57 Campos, A., and Verdaguer, E., “Semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 49, 1861-1880, (1994). For a related online version see: A. Campos, et al., (July, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9307027.
Jump To The First Citation Point In The Article 58 Campos, A., and Verdaguer, E., “Stochastic semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 53, 1927-1937, (1996). For a related online version see: A. Campos, et al., (November, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9511078.
Jump To The First Citation Point In The Article 59 Campos, A., and Verdaguer, E., “Back-reaction equations for isotropic cosmologies when nonconformal particles are created”, Int. J. Theor. Phys., 36, 2525-2543, (1997).
Jump To The First Citation Point In The Article 60 Candelas, P., and Sciama, D.W., “Irreversible thermodynamics of black holes”, Phys. Rev. Lett., 38, 1372-1375, (1977).
Jump To The First Citation Point In The Article 61 Capper, D.M., and Duff, M.J., “Trace anomalies in dimensional regularization”, Nuovo Cimento A, 23, 173-183, (1974).
Jump To The First Citation Point In The Article 62 Carlip, S., “Spacetime foam and the cosmological constant”, Phys. Rev. Lett., 79, 4071-4074, (1997). For a related online version see: S. Carlip, (August, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9708026.
Jump To The First Citation Point In The Article 63 Carlip, S., “Dominant topologies in Euclidean quantum gravity”, Class. Quantum Grav., 15, 2629-2638, (1998). For a related online version see: S. Carlip, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9710114.
Jump To The First Citation Point In The Article 64 Casher, A., Englert, F., Itzhaki, N., Massar, S., and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419-434, (1997). For a related online version see: A. Casher, et al., (June, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9606106.
Jump To The First Citation Point In The Article 65 Cespedes, J., and Verdaguer, E., “Particle production in inhomogeneous cosmologies”, Phys. Rev. D, 41, 1022-1033, (1990).
Jump To The First Citation Point In The Article 66 Chou, K., Su, Z., Hao, B., and Yu, L., “Equilibrium and non equilibrium formalisms made unified”, Phys. Rep., 118, 1-131, (1985).
Jump To The First Citation Point In The Article 67 Christensen, S.M., “Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point separation method”, Phys. Rev. D, 14, 2490-2501, (1976).
Jump To The First Citation Point In The Article 68 Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946-963, (1978).
Jump To The First Citation Point In The Article 69 Cognola, G., Elizalde, E., and Zerbini, S., “Fluctuations of quantum fields via zeta function regularization”, Phys. Rev. D, 65, 085031-1-085031-8, (2002). For a related online version see: G. Cognola, et al., (January, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/0201152.
Jump To The First Citation Point In The Article 70 Cooper, F., Habib, S., Kluger, Y., Mottola, E., Paz, J.P., and Anderson, P.R., “Nonequilibrium quantum fields in the large-N expansion”, Phys. Rev. D, 50, 2848-2869, (1994). For a related online version see: F. Cooper, et al., (May, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9405352.
Jump To The First Citation Point In The Article 71 Davies, E.B., The quantum theory of open systems, (Academic Press, London, U.K., 1976).
Jump To The First Citation Point In The Article 72 de Almeida, A.P., Brandt, F.T., and Frenkel, J., “Thermal matter and radiation in a gravitational field”, Phys. Rev. D, 49, 4196-4208, (1994). For a related online version see: A.P. de Almeida, et al., (September, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9309098.
Jump To The First Citation Point In The Article 73 Deser, S., “Plane waves do not polarize the vacuum”, J. Phys. A, 8, 1972-1974, (1975).
Jump To The First Citation Point In The Article 74 DeWitt, B.S., Dynamical theory of groups and fields, (Gordon and Breach, New York, NY, U.S.A., 1965).
Jump To The First Citation Point In The Article 75 DeWitt, B.S., “Quantum field theory in curved space-time”, Phys. Rep., 19, 295-357, (1975).
Jump To The First Citation Point In The Article 76 DeWitt, B.S., “Effective action for expectation values”, in Penrose, R., and Isham, C.J., eds., Quantum concepts in space and time, (Clarendon Press, Oxford, U.K., 1986).
Jump To The First Citation Point In The Article 77 Donoghue, J., “The quantum theory of general relativity at low energies”, Helv. Phys. Acta, 69, 269-275, (1996). For a related online version see: J. Donoghue, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9607039.
Jump To The First Citation Point In The Article 78 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874-3888, (1994). For a related online version see: J.F. Donoghue, (May, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9405057.
Jump To The First Citation Point In The Article 79 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996-2999, (1994). For a related online version see: J.F. Donoghue, (October, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9310024.
Jump To The First Citation Point In The Article 80 Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in Cornet, F., and Herrero, M.J., eds., Advanced school of effective theories, (World Scientific, Singapore, 1996). For a related online version see: J.F. Donoghue, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9512024.
Jump To The First Citation Point In The Article 81 Dowker, F., and Kent, A., “Properties of consistent histories”, Phys. Rev. Lett., 75, 3038-3041, (1995). For a related online version see: F. Dowker, et al., (September, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9409037.
Jump To The First Citation Point In The Article 82 Dowker, F., and Kent, A., “On the consistent histories approach to quantum mechanics”, J. Stat. Phys., 82, 1575-1646, (1996). For a related online version see: F. Dowker, et al., (December, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9412067.
Jump To The First Citation Point In The Article 83 Dowker, H.F., and Halliwell, J.J., “The Quantum mechanics of history: The Decoherence functional in quantum mechanics”, Phys. Rev. D, 46, 1580-1609, (1992).
Jump To The First Citation Point In The Article 84 Duff, M.J., “Covariant Quantization of Gravity”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum gravity: An Oxford symposium, (Oxford University Press, Oxford, U.K., 1975).
Jump To The First Citation Point In The Article 85 Einstein, A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys., 17, 549-560, (1905).
Jump To The First Citation Point In The Article 86 Einstein, A., “Zur Theorie der Brownschen Bewegung”, Ann. Phys., 19, 371-381, (1906).
Jump To The First Citation Point In The Article 87 Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., and Zerbini, S., Zeta regularization techniques with applications, (World Scientific, Singapore, 2001).
Jump To The First Citation Point In The Article 88 Feynman, R.P., and Hibbs, A.R., Quantum mechanics and path integrals, (McGraw-Hill, New York, NY, U.S.A., 1965).
Jump To The First Citation Point In The Article 89 Feynman, R.P., and Vernon Jr., F.L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys., 24, 118-173, (1963).
Jump To The First Citation Point In The Article 90 Fischetti, M.V., Hartle, J.B., and Hu, B.L., “Quantum fields in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries”, Phys. Rev. D, 20, 1757-1771, (1979).
Jump To The First Citation Point In The Article 91 Flanagan, É.É., and Wald, R.M., “Does backreaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233-6283, (1996). For a related online version see: É.É. Flanagan, et al., (February, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9602052.
Jump To The First Citation Point In The Article 92 Ford, L.H., “Gravitational radiation by quantum systems”, Ann. Phys. (N. Y.), 144, 238-248, (1982).
Jump To The First Citation Point In The Article 93 Ford, L.H., “Stress tensor fluctuations and stochastic space-times”, Int. J. Theor. Phys., 39, 1803-1815, (2000).
Jump To The First Citation Point In The Article 94 Ford, L.H., and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226-2235, (1997). For a related online version see: L.H. Ford, et al., (April, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9704050.
Jump To The First Citation Point In The Article 95 Ford, L.H., and Wu, C.-H., “Stress Tensor Fluctuations and Passive Quantum Gravity”, Int. J. Theor. Phys., 42, 15-26, (2003). For a related online version see: L.H. Ford, et al., (February, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0102063.
Jump To The First Citation Point In The Article 96 Frieman, J.A., “Particle creation in inhomogeneous spacetimes”, Phys. Rev. D, 39, 389-398, (1989).
Jump To The First Citation Point In The Article 97 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization by a massive scalar field in Schwarzschild space-time”, Phys. Lett. B, 115, 372-374, (1982).
Jump To The First Citation Point In The Article 98 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization of massive fields near rotating black holes”, Phys. Rev. D, 29, 1057-1066, (1984).
Jump To The First Citation Point In The Article 99 Frolov, V.P., and Zel’nikov, A.I., “Killing approximation for vacuum and thermal stress-energy tensor in static space-times”, Phys. Rev., D35, 3031-3044, (1987).
Jump To The First Citation Point In The Article 100 Fulling, S.A., Aspects of quantum field theory in curved spacetime, (Cambridge University Press, Cambridge, U.K., 1989).
Jump To The First Citation Point In The Article 101 Garay, L.J., “Spacetime foam as a quantum thermal bath”, Phys. Rev. Lett., 80, 2508-2511, (1998). For a related online version see: L.J. Garay, (January, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9801024.
Jump To The First Citation Point In The Article 102 Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015-1-124015-11, (1998). For a related online version see: L.J. Garay, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9806047.
Jump To The First Citation Point In The Article 103 Garay, L.J., “Quantum evolution in spacetime foam”, Int. J. Mod. Phys. A, 14, 4079-4120, (1999). For a related online version see: L.J. Garay, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9911002.
Jump To The First Citation Point In The Article 104 Garriga, J., and Verdaguer, E., “Scattering of quantum particles by gravitational plane waves”, Phys. Rev. D, 43, 391-401, (1991).
Jump To The First Citation Point In The Article 105 Gell-Mann, M., and Hartle, J.B., “Quantum mechanics in the light of quantum cosmology”, in Zurek, W.H., ed., Complexity, entropy and the physics of information, 425-458, (Addison-Wesley, Reading, MA, U.S.A., 1990).
Jump To The First Citation Point In The Article 106 Gell-Mann, M., and Hartle, J.B., “Classical equations for quantum systems”, Phys. Rev. D, 47, 3345-3382, (1993). For a related online version see: M. Gell-Mann, et al., (October, 1992), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9210010.
Jump To The First Citation Point In The Article 107 Gibbons, G.W., “Quantized fields propagating in plane wave spacetimes”, Commun. Math. Phys., 45, 191-202, (1975).
Jump To The First Citation Point In The Article 108 Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green’s functions”, Proc. R. Soc. London, Ser. A, 358, 467-494, (1978).
Jump To The First Citation Point In The Article 109 Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D., Stamatescu, I.-O., and Zeh, H.-D., Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer-Verlag, Berlin, Germany, 1996).
Jump To The First Citation Point In The Article 110 Gleiser, M., and Ramos, R.O., “Microphysical approach to nonequilibrium dynamics of quantum fields”, Phys. Rev. D, 50, 2441-2455, (1994). For a related online version see: M. Gleiser, et al., (November, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9311278.
Jump To The First Citation Point In The Article 111 Grabert, H., Schramm, P., and Ingold, G.L., “Quantum Brownian motion: the functional integral approach”, Phys. Rep., 168, 115-207, (1988).
Jump To The First Citation Point In The Article 112 Greiner, C., and Müller, B., “Classical Fields Near Thermal Equilibrium”, Phys. Rev. D, 55, 1026-1046, (1997). For a related online version see: C. Greiner, et al., (May, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9605048.
Jump To The First Citation Point In The Article 113 Grib, A.A., Mamayev, S.G., and Mostepanenko, V.M., Vacuum quantum effects in strong fields, (Friedmann Laboratory Publishing, St. Petersburg, Russia, 1994).
Jump To The First Citation Point In The Article 114 Griffiths, R.B., “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys., 36, 219-272, (1984).
Jump To The First Citation Point In The Article 115 Grishchuk, L.P., “Graviton creation in the early universe”, Ann. N.Y. Acad. Sci., 302, 439-444, (1976).
Jump To The First Citation Point In The Article 116 Gross, D.J., Perry, M.J., and Yaffe, L.G., “Instability of flat space at finite temperature”, Phys. Rev. D, 25, 330-355, (1982).
Jump To The First Citation Point In The Article 117 Guth, A.H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23, 347-356, (1981).
Jump To The First Citation Point In The Article 118 Hajicek, P., and Israel, W., “What, no black hole evaporation?”, Phys. Lett. A, 80, 9-10, (1980).
Jump To The First Citation Point In The Article 119 Halliwell, J.J., “Decoherence in quantum cosmology”, Phys. Rev. D, 39, 2912-2923, (1989).
Jump To The First Citation Point In The Article 120 Halliwell, J.J., “Quantum mechanical histories and the uncertainty principle. 2. Fluctuations about classical predictability”, Phys. Rev. D, 48, 4785-4799, (1993). For a related online version see: J.J. Halliwell, (July, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9307013.
Jump To The First Citation Point In The Article 121 Halliwell, J.J., “A Review of the decoherent histories approach to quantum mechanics”, Ann. N.Y. Acad. Sci., 755, 726-740, (1995). For a related online version see: J.J. Halliwell, (July, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9407040.
Jump To The First Citation Point In The Article 122 Halliwell, J.J., “Effective theories of coupled classical and quantum variables from decoherent histories: A new approach to the backreaction problem”, Phys. Rev. D, 57, 2337-2348, (1998). For a related online version see: J.J. Halliwell, (May, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/quant-ph/9705005.
Jump To The First Citation Point In The Article 123 Hartle, J.B., “Effective potential approach to graviton production in the early universe”, Phys. Rev. Lett., 39, 1373-1376, (1977).
Jump To The First Citation Point In The Article 124 Hartle, J.B., “Quantum effects in the early universe. 5. Finite particle production without trace anomalies”, Phys. Rev. D, 23, 2121-2128, (1981).
Jump To The First Citation Point In The Article 125 Hartle, J.B., “Quantum mechanics of closed systems”, in Hu, B.L., Ryan, M.P., and Vishveswara, C.V., eds., Direction in general relativity, Vol. 1, (Cambridge University Press, Cambridge, U.K., 1993).
Jump To The First Citation Point In The Article 126 Hartle, J.B., “Spacetime quantum mechanics and the quantum mechanics of spacetime”, in Julia, B., and Zinn-Justin, J., eds., Gravitation and quantizations, (North Holland, Amsterdam, Netherlands, 1995).
Jump To The First Citation Point In The Article 127 Hartle, J.B., and Hawking, S.W., “Path integral derivation of black hole radiance”, Phys. Rev. D, 13, 2188-2203, (1976).
Jump To The First Citation Point In The Article 128 Hartle, J.B., and Horowitz, G.T., “Ground state expectation value of the metric in the 1/N or semiclassical approximation to quantum gravity”, Phys. Rev. D, 24, 257-274, (1981).
Jump To The First Citation Point In The Article 129 Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy”, Phys. Rev. D, 20, 1772-1782, (1979).
Jump To The First Citation Point In The Article 130 Hawking, S.W., “Black hole explosions”, Nature, 248, 30-31, (1974).
Jump To The First Citation Point In The Article 131 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199-220, (1975).
Jump To The First Citation Point In The Article 132 Hawking, S.W., Hertog, T., and Reall, H.S., “Trace anomaly driven inflation”, Phys. Rev. D, 63, 083504-1-083504-23, (2001). For a related online version see: S.W. Hawking, et al., (October, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/0010232.
Jump To The First Citation Point In The Article 133 Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Anti-de Sitter Space”, Commun. Math. Phys., 87, 577-588, (1983).
Jump To The First Citation Point In The Article 134 Hiscock, W.A., Larson, S.L., and Anderson, P.R., “Semiclassical effects in black hole interiors”, Phys. Rev. D, 56, 3571-3581, (1997). For a related online version see: W.A. Hiscock, et al., (January, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9701004.
Jump To The First Citation Point In The Article 135 Hochberg, D., and Kephart, T.W., “Gauge field back reaction on a black hole”, Phys. Rev. D, 47, 1465-1470, (1993). For a related online version see: D. Hochberg, et al., (November, 1992), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9211008.
Jump To The First Citation Point In The Article 136 Hochberg, D., Kephart, T.W., and York Jr., J.W., “Positivity of entropy in the semiclassical theory of black holes and radiation”, Phys. Rev. D, 48, 479-484, (1993). For a related online version see: D. Hochberg, et al., (November, 1992), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9211009.
Jump To The First Citation Point In The Article 137 Horowitz, G.T., “Semiclassical relativity: The weak field limit”, Phys. Rev. D, 21, 1445-1461, (1980).
Jump To The First Citation Point In The Article 138 Horowitz, G.T., “Is flat space-time unstable?”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum gravity 2: A second Oxford symposium, 106-130, (Clarendon Press, Oxford, U.K., 1981).
Jump To The First Citation Point In The Article 139 Horowitz, G.T., “The Origin of Black Hole Entropy in String Theory”, in Cho, Y.M., Kim, S.-W., and Lee, C.H., eds., Gravitation & Cosmology: Proceedings of the Pacific Conference Sheraton Walker Hill, Seoul, Korea, 1-6 February 1996, 46-63, (World Scientific, Singapore, 1999). For a related online version see: G.T. Horowitz, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9604051.
Jump To The First Citation Point In The Article 140 Horowitz, G.T., and Polchinski, J., “A correspondence principle for black holes and strings”, Phys. Rev. D, 55, 6189-6197, (1997). For a related online version see: G.T. Horowitz, et al., (December, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9612146.
Jump To The First Citation Point In The Article 141 Horowitz, G.T., and Wald, R.M., “Dynamics of Einstein’s equations modified by a higher order derivative term”, Phys. Rev. D, 17, 414-416, (1978).
Jump To The First Citation Point In The Article 142 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times”, Phys. Rev. D, 21, 1462-1465, (1980).
Jump To The First Citation Point In The Article 143 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times. II. Correction of formula”, Phys. Rev. D, 25, 3408-3409, (1982).
Jump To The First Citation Point In The Article 144 Howard, K.W., “Vacuum in Schwarzschild space-time”, Phys. Rev. D, 30, 2532-2547, (1984).
Jump To The First Citation Point In The Article 145 Howard, K.W., and Candelas, P., “Quantum stress tensor in Schwarzschild space-time”, Phys. Rev. Lett., 53, 403-406, (1984).
Jump To The First Citation Point In The Article 146 Hu, B.L., “General Relativity as Geometro-Hydrodynamics”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9607070. Invited talk at the Second Sakharov International Symposium, Moscow, May 20-24, 1996.
Jump To The First Citation Point In The Article 147 Hu, B.L., “Scalar waves in the mixmaster universe. II. Particle creation”, Phys. Rev. D, 9, 3263-3281, (1974).
Jump To The First Citation Point In The Article 148 Hu, B.L., “Effect of finite temperature quantum fields on the early universe”, Phys. Lett. B, 103, 331-337, (1981).
Jump To The First Citation Point In The Article 149 Hu, B.L., “Disspation in quantum fields and semiclassical gravity”, Physica A, 158, 399-424, (1989).
Jump To The First Citation Point In The Article 150 Hu, B.L., “Quantum and statistical effects in superspace cosmology”, in Audretsch, J., and De Sabbata, V., eds., Quantum mechanics in curved spacetime, (Plenum, London, U.K., 1990).
Jump To The First Citation Point In The Article 151 Hu, B.L., “Quantum statistical fields in gravitation and cosmology”, in Kobes, R., and Kunstatter, G., eds., Third international workshop on thermal field theory and applications, (World Scientific, Singapore, 1994).
Jump To The First Citation Point In The Article 152 Hu, B.L., “Correlation dynamics of quantum fields and black hole information paradox”, in Sanchez, N., and Zichichi, A., eds., String gravity and physics at the Planck energy scale, (Kluwer, Dortrecht, Netherlands, 1996).
Jump To The First Citation Point In The Article 153 Hu, B.L., “Semiclassical gravity and mesoscopic physics”, in Feng, D.S., and Hu, B.L., eds., Quantum classical correspondence, (International Press, Boston, MA, U.S.A., 1997).
Jump To The First Citation Point In The Article 154 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987-3037, (1999). For a related online version see: B.L. Hu, (February, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9902064.
Jump To The First Citation Point In The Article 155 Hu, B.L., “A kinetic theory approach to quantum gravity”, Int. J. Theor. Phys., 41, 2091-2119, (2002). For a related online version see: B.L. Hu, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0204069.
Jump To The First Citation Point In The Article 156 Hu, B.L., and Matacz, A., “Quantum Brownian motion in a bath of parametric oscillators: A Model for system-field interactions”, Phys. Rev. D, 49, 6612-6635, (1994). For a related online version see: B.L. Hu, et al., (December, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9312035.
Jump To The First Citation Point In The Article 157 Hu, B.L., and Matacz, A., “Back reaction in semiclassical cosmology: The Einstein-Langevin equation”, Phys. Rev. D, 51, 1577-1586, (1995). For a related online version see: B.L. Hu, et al., (March, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9403043.
Jump To The First Citation Point In The Article 158 Hu, B.L., and Parker, L., “Effect of graviton creation in isotropically expanding universes”, Phys. Lett. A, 63, 217-220, (1977).
Jump To The First Citation Point In The Article 159 Hu, B.L., and Parker, L., “Anisotropy damping through quantum effects in the early universe”, Phys. Rev. D, 17, 933-945, (1978).
Jump To The First Citation Point In The Article 160 Hu, B.L., Paz, J.P., and Sinha, S., “Minisuperspace as a quantum open system”, in Hu, B.L., Ryan, M.P., and Vishveswara, C.V., eds., Direction in general relativity Vol. 1, (Cambridge University Press, Cambridge, U.K., 1993).
Jump To The First Citation Point In The Article 161 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment: 1. Exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45, 2843-2861, (1992).
Jump To The First Citation Point In The Article 162 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment. 2: Nonlinear coupling and perturbative approach”, Phys. Rev. D, 47, 1576-1594, (1993).
Jump To The First Citation Point In The Article 163 Hu, B.L., and Phillips, N.G., “Fluctuations of energy density and validity of semiclassical gravity”, Int. J. Theor. Phys., 39, 1817-1830, (2000). For a related online version see: B.L. Hu, et al., (April, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0004006.
Jump To The First Citation Point In The Article 164 Hu, B.L., Raval, A., and Sinha, S., “Notes on black hole fluctuations and backreaction”, in Iyer, B.R., and Bhawal, B., eds., Black holes, gravitational radiation and the universe, (Kluwer Academic, Dordtrecht, Netherlands, 1999).
Jump To The First Citation Point In The Article 165 Hu, B.L., Roura, A., and Verdaguer, E., “Induced quantum metric fluctuations and the validity of semiclassical gravity”, (February, 2004), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0402029.
Jump To The First Citation Point In The Article 166 Hu, B.L., and Shiokawa, K., “Wave propagation in stochastic spacetimes: Localization, amplification and particle creation”, Phys. Rev. D, 57, 3474-3483, (1998). For a related online version see: B.L. Hu, et al., (August, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9708023.
Jump To The First Citation Point In The Article 167 Hu, B.L., and Sinha, S., “A fluctuation-dissipation relation for semiclassical cosmology”, Phys. Rev. D, 51, 1587-1606, (1995). For a related online version see: B.L. Hu, et al., (March, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9403054.
Jump To The First Citation Point In The Article 168 Hu, B.L., and Verdaguer, E., “Recent advances in stochastic gravity: Theory and issues”, in De Sabbata, V., ed., Advances in the interplay between quantum and gravity physics, (Kluwer Academic, Dordrecht, Netherlands, 2001). For a related online version see: B.L. Hu, et al., (October, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0110092.
Jump To The First Citation Point In The Article 169 Hu, B.L., and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1-R42, (2003). For a related online version see: B.L. Hu, et al., (November, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0211090.
Jump To The First Citation Point In The Article 170 Isham, C.J., “Quantum logic and the histories approach to quantum theory”, J. Math. Phys., 35, 2157-2185, (1994). For a related online version see: C.J. Isham, (August, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9308006.
Jump To The First Citation Point In The Article 171 Isham, C.J., and Linden, N., “Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory”, J. Math. Phys., 35, 5452-5476, (1994). For a related online version see: C.J. Isham, et al., (May, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9405029.
Jump To The First Citation Point In The Article 172 Isham, C.J., and Linden, N., “Continuous histories and the history group in generalized quantum theory”, J. Math. Phys., 36, 5392-5408, (1995). For a related online version see: C.J. Isham, et al., (March, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9503063.
Jump To The First Citation Point In The Article 173 Isham, C.J., Linden, N., Savvidou, K., and Schreckenberg, S., “Continuous time and consistent histories”, J. Math. Phys., 39, 1818-1834, (1998). For a related online version see: C.J. Isham, et al., (November, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/quant-ph/9711031.
Jump To The First Citation Point In The Article 174 Israel, W., “Thermo field dynamics of black holes”, Phys. Lett. A, 57, 107-110, (1976).
Jump To The First Citation Point In The Article 175 Jacobson, T., “On the nature of black hole entropy”, in Burgess, C.P., and Myers, R.C., eds., General relativity and relativistic astrophysics: Eight Canadian conference, (Springer-Verlag, Berlin, Germany, 1999).
Jump To The First Citation Point In The Article 176 Jensen, B., and Ottewill, A., “Renormalized electromagnetic stress tensor in Schwarzschild space-time”, Phys. Rev. D, 39, 1130-1138, (1989).
Jump To The First Citation Point In The Article 177 Jensen, B.P., McLaughlin, J.G., and Ottewill, A.C., “One loop quantum gravity in Schwarzschild space-time”, Phys. Rev. D, 51, 5676-5697, (1995). For a related online version see: B.P. Jensen, et al., (December, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9412075.
Jump To The First Citation Point In The Article 178 Johnson, P.R., and Hu, B.L., “Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham-Lorentz-Dirac-Langevin equation, radiation reaction, and vacuum fluctuations”, Phys. Rev. D, 65, 065015-1-065015-24, (2002). For a related online version see: P.R. Johnson, et al., “Stochastic Theory of Relativistic Particles Moving in a Quantum Field: II. Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations”, (January, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/quant-ph/0101001.
Jump To The First Citation Point In The Article 179 Jones, D.S., Generalized functions, (McGraw-Hill, New York, NY, U.S.A., 1966).
Jump To The First Citation Point In The Article 180 Joos, E., and Zeh, H.D., “The Emergence of classical properties through interaction with the environment”, Z. Phys. B, 59, 223-243, (1985).
Jump To The First Citation Point In The Article 181 Jordan, R.D., “Effective field equations for expectation values”, Phys. Rev. D, 33, 444-454, (1986).
Jump To The First Citation Point In The Article 182 Jordan, R.D., “Stability of flat space-time in quantum gravity”, Phys. Rev. D, 36, 3593-3603, (1987).
Jump To The First Citation Point In The Article 183 Kabat, D., Shenker, S.H., and Strassler, M.J., “Black hole entropy in the O(N) model”, Phys. Rev. D, 52, 7027-7036, (1995). For a related online version see: D. Kabat, et al., (June, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9506182.
Jump To The First Citation Point In The Article 184 Keldysh, L. V., “Diagram technique for nonequilibrium processes”, Zh. Eksp. Teor. Fiz., 47, 1515-1527, (1964).
Jump To The First Citation Point In The Article 185 Kent, A., “Quasiclassical Dynamics in a Closed Quantum System”, Phys. Rev. A, 54, 4670-4675, (1996). For a related online version see: A. Kent, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9512023.
Jump To The First Citation Point In The Article 186 Kent, A., “Consistent sets contradict”, Phys. Rev. Lett., 78, 2874-2877, (1997). For a related online version see: A. Kent, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9604012.
Jump To The First Citation Point In The Article 187 Kent, A., “Consistent Sets and Contrary Inferences in Quantum Theory: Reply to Griffiths and Hartle”, Phys. Rev. Lett., 81, 1982, (1998). For a related online version see: A. Kent, (August, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9808016.
Jump To The First Citation Point In The Article 188 Kiefer, C., “Continuous measurement of mini-superspace variables by higher multipoles”, Class. Quantum Grav., 4, 1369-1382, (1987).
Jump To The First Citation Point In The Article 189 Kirsten, K., Spectral functions in mathematics and physics, (Chapman and Hall/CRC, Boca Raton, FL, U.S.A., 2001).
Jump To The First Citation Point In The Article 190 Kolb, E.W., and Turner, M., The early universe, (Addison-Wesley, Reading, MA, U.S.A., 1990).
Jump To The First Citation Point In The Article 191 Kubo, R., “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Jpn., 12, 570-586, (1957).
Jump To The First Citation Point In The Article 192 Kubo, R., “The fluctuation-dissipation theorem”, Rep. Prog. Phys., 29, 255-284, (1966).
Jump To The First Citation Point In The Article 193 Kubo, R., Toda, M., and Hashitsume, N., Statistical physics II, (Springer-Verlag, Berlin, Germany, 1985).
Jump To The First Citation Point In The Article 194 Kuo, C., and Ford, L.H., “Semiclassical gravity theory and quantum fluctuations”, Phys. Rev. D, 47, 4510-4519, (1993). For a related online version see: C. Kuo, et al., (April, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9304008.
Jump To The First Citation Point In The Article 195 Landau, L., Lifshitz, E., and Pitaevsky, L., Statistical physics, (Pergamon Press, London, U.K., 1980).
Jump To The First Citation Point In The Article 196 Lee, D.-S., and Boyanovsky, D., “Dynamics of phase transitions induced by a heat bath”, Nucl. Phys. B, 406, 631-654, (1993). For a related online version see: D.-S. Lee, et al., (April, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9304272.
Jump To The First Citation Point In The Article 197 Linde, A.D., “Coleman-Weinberg theory and a new inflationary universe scenario”, Phys. Lett. B, 114, 431-435, (1982).
Jump To The First Citation Point In The Article 198 Linde, A.D., “Initial conditions for inflation”, Phys. Lett. B, 162, 281-286, (1985).
Jump To The First Citation Point In The Article 199 Linde, A.D., Particle physics and inflationary cosmology, (Harwood Academic Publishers, Chur, Switzerland, 1990).
Jump To The First Citation Point In The Article 200 Lindenberg, K., and West, B.J., The nonequilibrium statistical mechanics, (VCH Press, New York, NY, U.S.A., 1990).
Jump To The First Citation Point In The Article 201 Lombardo, F., and Mazzitelli, F.D., “Coarse graining and decoherence in quantum field theory”, Phys. Rev. D, 53, 2001-2011, (1996). For a related online version see: F. Lombardo, et al., (August, 1995), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9508052.
Jump To The First Citation Point In The Article 202 Lombardo, F.C., and Mazzitelli, F.D., “Einstein-Langevin equations from running coupling constants”, Phys. Rev. D, 55, 3889-3892, (1997). For a related online version see: F.C. Lombardo, et al., (September, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9609073.
Jump To The First Citation Point In The Article 203 Lukash, V.N., and Starobinsky, A.A., “Isotropization of cosmological expansion due to particle creation effect”, Sov. Phys. JETP, 39, 742, (1974).
Jump To The First Citation Point In The Article 204 Maldacena, J.M., “Black holes and D-branes”, Nucl. Phys. A (Proc. Suppl.), 61, 111-123, (1998). For a related online version see: J.M. Maldacena, (May, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9705078.
Jump To The First Citation Point In The Article 205 Maldacena, J.M., Strominger, A., and Witten, E., “Black hole entropy in M-theory”, J. High Energy Phys., 12, 002-1-002-16, (1997). For a related online version see: J.M. Maldacena, et al., (November, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9711053.
Jump To The First Citation Point In The Article 206 Martín, R., and Verdaguer, E., “An effective stochastic semiclassical theory for the gravitational field”, Int. J. Theor. Phys., 38, 3049-3089, (1999). For a related online version see: R. Martín, et al., (December, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9812063.
Jump To The First Citation Point In The Article 207 Martín, R., and Verdaguer, E., “On the semiclassical Einstein-Langevin equation”, Phys. Lett. B, 465, 113-118, (1999). For a related online version see: R. Martín, et al., (November, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9811070.
Jump To The First Citation Point In The Article 208 Martín, R., and Verdaguer, E., “Stochastic semiclassical gravity”, Phys. Rev. D, 60, 084008-1-084008-24, (1999). For a related online version see: R. Martín, et al., (April, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9904021.
Jump To The First Citation Point In The Article 209 Martín, R., and Verdaguer, E., “Stochastic semiclassical fluctuations in Minkowski spacetime”, Phys. Rev. D, 61, 124024-1-124024-26, (2000). For a related online version see: R. Martín, et al., (January, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0001098.
Jump To The First Citation Point In The Article 210 Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857-5864, (1995). For a related online version see: S. Massar, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9411039.
Jump To The First Citation Point In The Article 211 Massar, S., and Parentani, R., “How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333-356, (2000). For a related online version see: S. Massar, et al., (March, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9903027.
Jump To The First Citation Point In The Article 212 Matacz, A., “Inflation and the fine-tuning problem”, Phys. Rev. D, 56, 1836-1840, (1997). For a related online version see: A. Matacz, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9611063.
Jump To The First Citation Point In The Article 213 Matacz, A., “A New Theory of Stochastic Inflation”, Phys. Rev. D, 55, 1860-1874, (1997). For a related online version see: A. Matacz, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9604022.
Jump To The First Citation Point In The Article 214 Misner, C.W., “Mixmaster universe”, Phys. Rev. Lett., 22, 1071-1074, (1969).
Jump To The First Citation Point In The Article 215 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, San Francisco, CA, U.S.A., 1973).
Jump To The First Citation Point In The Article 216 Morikawa, M., “Classical fluctuations in dissipative quantum systems”, Phys. Rev. D, 33, 3607-3612, (1986).
Jump To The First Citation Point In The Article 217 Mottola, E., “Quantum fluctuation-dissipation theorem for general relativity”, Phys. Rev. D, 33, 2136-2146, (1986).
Jump To The First Citation Point In The Article 218 Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions”, Phys. Rep., 215, 203-333, (1992).
Jump To The First Citation Point In The Article 219 Niemeyer, J.C., and Parentani, R., “Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301-1-101301-4, (2001). For a related online version see: J.C. Niemeyer, et al., “Trans-Planckian dispersion and scale-invariance of inflationary perturbations”, (January, 2001), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/astro-ph/0101451.
Jump To The First Citation Point In The Article 220 Nyquist, H., “Thermal agitation of electric charge in conductors”, Phys. Rev., 32, 110-113, (1928).
Jump To The First Citation Point In The Article 221 Omnes, R., “Logical reformulation of quantum mechanics. 1. Foundations”, J. Stat. Phys., 53, 893-932, (1988).
Jump To The First Citation Point In The Article 222 Omnes, R., “Logical reformulation of quantum mechanics. 2. Interferences and the Einstein-Podolsky-Rosen experiment”, J. Stat. Phys., 53, 933-955, (1988).
Jump To The First Citation Point In The Article 223 Omnes, R., “Logical reformulation of quantum mechanics. 3. Classical limit and irreversibility”, J. Stat. Phys., 53, 957-975, (1988).
Jump To The First Citation Point In The Article 224 Omnes, R., “From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics”, Ann. Phys. (N. Y.), 201, 354-447, (1990).
Jump To The First Citation Point In The Article 225 Omnes, R., “Consistent interpretations of quantum mechanics”, Rev. Mod. Phys., 64, 339-382, (1992).
Jump To The First Citation Point In The Article 226 Omnes, R., The interpretation of quantum mechanics, (Princeton University Press, Princeton, CA, U.S.A., 1994).
Jump To The First Citation Point In The Article 227 Osborn, H., and Shore, G.M., “Correlation functions of the energy momentum tensor on spaces of constant curvature”, Nucl. Phys. B, 571, 287-357, (2000). For a related online version see: H. Osborn, et al., (September, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9909043.
Jump To The First Citation Point In The Article 228 Padmanabhan, T., “Decoherence in the density matrix describing quantum three geometries and the emergence of classical space-time”, Phys. Rev. D, 39, 2924-2932, (1989).
Jump To The First Citation Point In The Article 229 Padmanabhan, T., Structure formation, (Cambridge University Press, Cambridge, U.K., 1993).
Jump To The First Citation Point In The Article 230 Page, D.M., “Black hole information”, in Mann, R.B., and McLenhagan, R.G., eds., Fifth Canadian Conference on General Relativity and Relativistic Astrophysics, (World Scientific, Singapore, 1994).
Jump To The First Citation Point In The Article 231 Page, D.N., “Thermal stress tensors in static Einstein spaces”, Phys. Rev. D, 25, 1499-1509, (1982).
Jump To The First Citation Point In The Article 232 Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503-1-041503-4, (2001). For a related online version see: R. Parentani, (September, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0009011.
Jump To The First Citation Point In The Article 233 Parentani, R., and Piran, T., “The internal geometry of an evaporating black hole”, Phys. Rev. Lett., 73, 2805-2808, (1994). For a related online version see: R. Parentani, et al., (May, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9405007.
Jump To The First Citation Point In The Article 234 Parker, L., “Quantized fields and particle creation in expanding universes. 1”, Phys. Rev., 183, 1057-1068, (1969).
Jump To The First Citation Point In The Article 235 Parker, L., “Probability distribution of particles created by a black hole”, Phys. Rev. D, 12, 1519-1525, (1975).
Jump To The First Citation Point In The Article 236 Paz, J.P., “Anisotropy dissipation in the early universe: Finite temperature effects reexamined”, Phys. Rev. D, 41, 1054-1066, (1990).
Jump To The First Citation Point In The Article 237 Paz, J.P., “Decoherence and back reaction: The origin of the semiclassical Einstein equations”, Phys. Rev. D, 44, 1038-1049, (1991).
Jump To The First Citation Point In The Article 238 Paz, J.P., and Sinha, S., “Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples”, Phys. Rev. D, 45, 2823-2842, (1992).
Jump To The First Citation Point In The Article 239 Paz, J.P., and Zurek, W.H., “Environment induced decoherence, classicality and consistency of quantum histories”, Phys. Rev. D, 48, 2728-2738, (1993). For a related online version see: J.P. Paz, et al., (April, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9304031.
Jump To The First Citation Point In The Article 240 Phillips, N.G., “Symbolic computation of higher order correlation functions of quantum fields in curved spacetimes”, in preparation.
Jump To The First Citation Point In The Article 241 Phillips, N.G., and Hu, B.L., “Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Conformally-Optical Metrics: Schwarzschild Black Holes”, (September, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0209055.
Jump To The First Citation Point In The Article 242 Phillips, N.G., and Hu, B.L., “Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions”, Phys. Rev. D, 55, 6123-6134, (1997). For a related online version see: N.G. Phillips, et al., (November, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9611012.
Jump To The First Citation Point In The Article 243 Phillips, N.G., and Hu, B.L., “Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation”, Phys. Rev. D, 62, 084017-1-084017-18, (2000). For a related online version see: N.G. Phillips, et al., (May, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0005133.
Jump To The First Citation Point In The Article 244 Phillips, N.G., and Hu, B.L., “Noise kernel in stochastic gravity and stress energy bitensor of quantum fields in curved spacetimes”, Phys. Rev. D, 63, 104001-1-104001-16, (2001). For a related online version see: N.G. Phillips, et al., “Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes”, (October, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0010019.
Jump To The First Citation Point In The Article 245 Phillips, N.G., and Hu, B.L., “Noise kernel and the stress energy bitensor of quantum fields in hot flat space and the Schwarzschild black hole under the Gaussian approximation”, Phys. Rev. D, 67, 104002-1-104002-26, (2003). For a related online version see: N.G. Phillips, et al., “Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric”, (September, 2002), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/0209056.
Jump To The First Citation Point In The Article 246 Ramsey, S.A., Hu, B.L., and Stylianopoulos, A.M., “Nonequilibrium inflaton dynamics and reheating. II: Fermion production, noise, and stochasticity”, Phys. Rev. D, 57, 6003-6021, (1998). For a related online version see: S.A. Ramsey, et al., (September, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9709267.
Jump To The First Citation Point In The Article 247 Randjbar-Daemi, S., “Stability of the Minskowski vacuum in the renormalized semiclassical theory of gravity”, J. Phys. A, 14, L229-L233, (1981).
Jump To The First Citation Point In The Article 248 Randjbar-Daemi, S., “A recursive formula for the evaluation of the diagonal matrix elements of the stress energy tensor operator and its application in the semiclassical theory of gravity”, J. Phys. A, 15, 2209-2219, (1982).
Jump To The First Citation Point In The Article 249 Rebhan, A., “Collective phenomena and instabilities of perturbative quantum gravity at nonzero temperature”, Nucl. Phys. B, 351, 706-734, (1991).
Jump To The First Citation Point In The Article 250 Rebhan, A., “Analytical solutions for cosmological perturbations with relativistic collisionless matter”, Nucl. Phys. B, 368, 479-508, (1992).
Jump To The First Citation Point In The Article 251 Roura, A., and Verdaguer, E., “Mode decomposition and renormalization in semiclassical gravity”, Phys. Rev. D, 60, 107503-1-107503-4, (1999). For a related online version see: A. Roura, et al., (June, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9906036.
Jump To The First Citation Point In The Article 252 Roura, A., and Verdaguer, E., “Spacelike fluctuations of the stress tensor for de Sitter vacuum”, Int. J. Theor. Phys., 38, 3123-3133, (1999). For a related online version see: A. Roura, et al., (April, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9904039.
Jump To The First Citation Point In The Article 253 Roura, A., and Verdaguer, E., “Semiclassical cosmological perturbations generated during inflation”, Int. J. Theor. Phys., 39, 1831-1839, (2000).
Jump To The First Citation Point In The Article 254 Roura, A., and Verdaguer, E., “Cosmological perturbations from stochastic gravity”, in preparation, (2003).
Jump To The First Citation Point In The Article 255 Roura, A., and Verdaguer, E., “Stochastic gravity as the large N limit for quantum metric fluctuations”, in preparation, (2003).
Jump To The First Citation Point In The Article 256 Schwartz, L., Theorie des distributions, (Hermann, Paris, France, 1957).
Jump To The First Citation Point In The Article 257 Schwinger, Julian S., “Brownian motion of a quantum oscillator”, J. Math. Phys., 2, 407-432, (1961).
Jump To The First Citation Point In The Article 258 Sciama, D.W., in DeFinis, F., ed., Relativity, quanta and cosmology - Centenario di Einstein, (Editrici Giunta Barbera Universitaria, Florence, Italy, 1979).
Jump To The First Citation Point In The Article 259 Sciama, D.W., Candelas, P., and Deutsch, D., “Quantum field theory, horizons and thermodynamics”, Adv. Phys., 30, 327-366, (1981).
Jump To The First Citation Point In The Article 260 Sexl, R.U., and Urbantke, H.K., “Production of particles by gravitational fields”, Phys. Rev., 179, 1247-1250, (1969).
Jump To The First Citation Point In The Article 261 Shiokawa, K., “Mesoscopic fluctuations in stochastic spacetime”, Phys. Rev. D, 62, 024002-1-024002-14, (2000). For a related online version see: K. Shiokawa, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/0001088.
Jump To The First Citation Point In The Article 262 Simon, J.Z., “The stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308-3316, (1991).
Jump To The First Citation Point In The Article 263 Sinha, S., and Hu, B.L., “Validity of the minisuperspace approximation: An Example from interacting quantum field theory”, Phys. Rev. D, 44, 1028-1037, (1991).
Jump To The First Citation Point In The Article 264 Sinha, S., Raval, A., and Hu, B.L., “Black hole fluctuations and backreaction in stochastic gravity”, in Thirty years of black hole physics, (2003). in press.
Jump To The First Citation Point In The Article 265 Smoot, G.F. et al., “Structure in the COBE Differential Microwave Radiometer First-Year Maps”, Astrophys. J., 396, L1-L5, (1992).
Jump To The First Citation Point In The Article 266 Sorkin, R., “The statistical mechanics of black hole thermodynamics”, in Wald, R.M., ed., Black holes and relativistic stars, (The University of Chicago Press, Chicago, IL, U.S.A., 1998).
Jump To The First Citation Point In The Article 267 Sorkin, R.D., “How wrinkled is the surface of a black hole?”, in Wiltshire, D., ed., First Australian conference on general relativity and gravitation, (University of Adelaide, Adelaide, Australia, 1996).
Jump To The First Citation Point In The Article 268 Sorkin, R.D., and Sudarsky, D., “Large fluctuations in the horizon area and what they can tell us about entropy and quantum gravity”, Class. Quantum Grav., 16, 3835-3857, (1999). For a related online version see: R.D. Sorkin, et al., (February, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9902051.
Jump To The First Citation Point In The Article 269 Starobinsky, A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99-102, (1980).
Jump To The First Citation Point In The Article 270 Starobinsky, A.A., “Evolution of small excitation of isotropic cosmological models with one loop quantum gravitational corrections”, Zh. Eksp. Teor. Fiz., 34, 460-463, (1981). English translation: JETP Lett. 34, 438, (1981).
Jump To The First Citation Point In The Article 271 Strominger, A., and Vafa, C., “Microscopic Origin of the Bekenstein-Hawking Entropy”, Phys. Lett., B379, 99-104, (1996). For a related online version see: A. Strominger, et al., (January, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9601029.
Jump To The First Citation Point In The Article 272 Su, Z., Chen, L., Yu, X., and Chou, K., “Influence functional, closed time path Green’s function and quasidistribution function”, Phys. Rev. B, 37, 9810-9812, (1988).
Jump To The First Citation Point In The Article 273 Suen, W.-M., “Minkowski space-time is unstable in semiclassical gravity”, Phys. Rev. Lett., 62, 2217-2220, (1989).
Jump To The First Citation Point In The Article 274 Suen, W.-M., “Stability of the semiclassical Einstein equation”, Phys. Rev. D, 40, 315-326, (1989).
Jump To The First Citation Point In The Article 275 Susskind, L., and Uglum, J., “Black hole entropy in canonical quantum gravity and superstring theory”, Phys. Rev. D, 50, 2700-2711, (1994). For a related online version see: L. Susskind, et al., (January, 1994), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-th/9401070.
Jump To The First Citation Point In The Article 276 Tichy, W., and Flanagan, É.É., “How unique is the expected stress-energy tensor of a massive scalar field?”, Phys. Rev. D, 58, 124007-1-124007-18, (1998). For a related online version see: W. Tichy, et al., (July, 1998), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9807015.
Jump To The First Citation Point In The Article 277 Tomboulis, E., “1/N expansion and renormalization in quantum gravity”, Phys. Lett. B, 70, 361-364, (1977).
Jump To The First Citation Point In The Article 278 Twamley, J., “Phase space decoherence: A comparison between consistent histories and environment induced superselection”, Phys. Rev. D, 48, 5730-5745, (1993). For a related online version see: J. Twamley, (June, 1993), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9306004.
Jump To The First Citation Point In The Article 279 Unruh, W.G., and Zurek, W.H., “Reduction of the wave packet in quantum Brownian motion”, Phys. Rev. D, 40, 1071-1094, (1989).
Jump To The First Citation Point In The Article 280 Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511-2512, (1985).
Jump To The First Citation Point In The Article 281 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001), [Online Journal Article]: cited on 31 March 2003, http://relativity.livingreviews.org/Articles/lrr-2001-6/index.html.
Jump To The First Citation Point In The Article 282 Wald, R.M., “On particle creation by black holes”, Commun. Math. Phys., 45, 9-34, (1975).
Jump To The First Citation Point In The Article 283 Wald, R.M., “The backreaction effect in particle creation in curved spacetime”, Commun. Math. Phys., 54, 1-19, (1977).
Jump To The First Citation Point In The Article 284 Wald, R.M., “Trace anomaly of a conformally invariant quantum field in curved space-time”, Phys. Rev. D, 17, 1477-1484, (1978).
Jump To The First Citation Point In The Article 285 Wald, R.M., General relativity, (The University of Chicago Press, Chicago, IL, U.S.A., 1984).
Jump To The First Citation Point In The Article 286 Wald, R.M., Quantum field theory in curved spacetime and black hole thermodynamics, (The University of Chicago Press, Chicago, IL, U.S.A., 1994).
Jump To The First Citation Point In The Article 287 Wald, R.M., “The thermodynamics of black holes”, in Bergman, P., and De Sabbata, V., eds., Advances in the interplay between quantum and gravity physics, (Kluwer, Dortrecht, Netherlands, 2002).
Jump To The First Citation Point In The Article 288 Weber, J., “Fluctuation dissipation theorem”, Phys. Rev., 101, 1620-1626, (1956).
Jump To The First Citation Point In The Article 289 Weinberg, S., The quantum theory of fields, Vol. 1, (Cambridge University Press, Cambridge, U.K., 1995).
Jump To The First Citation Point In The Article 290 Weinberg, S., The quantum theory of fields, volume 2, (Cambridge University Press, Cambridge, U.K., 1996).
Jump To The First Citation Point In The Article 291 Weiss, U., Quantum dissipative systems, (World Scientific, Singapore, 1993).
Jump To The First Citation Point In The Article 292 Weldon, H.A., “Covariant calculations at finite temperature: The relativistic plasma”, Phys. Rev. D, 26, 1394-1407, (1982).
Jump To The First Citation Point In The Article 293 Whelan, J.T., “Modelling the decoherence of spacetime”, Phys. Rev. D, 57, 768-797, (1998). For a related online version see: J.T. Whelan, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9612028.
Jump To The First Citation Point In The Article 294 Wu, C.-H., and Ford, L.H., “Fluctuations of the Hawking flux”, Phys. Rev. D, 60, 104013-1-104013-14, (1999). For a related online version see: C.-H. Wu, et al., (May, 1999), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/gr-qc/9905012.
Jump To The First Citation Point In The Article 295 Wu, C.-H., and Ford, L.H., “Quantum fluctuations of radiation pressure”, Phys. Rev. D, 64, 045010-1-045010-12, (2001). For a related online version see: C.-H. Wu, et al., (December, 2000), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/quant-ph/0012144.
Jump To The First Citation Point In The Article 296 Yamaguchi, M., and Yokoyama, J., “Numerical approach to the onset of the electroweak phase transition”, Phys. Rev. D, 56, 4544-4561, (1997). For a related online version see: M. Yamaguchi, et al., (July, 1997), [Online Los Alamos Archive Preprint]: cited on 31 March 2003, External Linkhttp://arxiv.org/abs/hep-ph/9707502.
Jump To The First Citation Point In The Article 297 York Jr., J.W., “Dynamical origin of black-hole radiance”, Phys. Rev. D, 28, 2929-2945, (1983).
Jump To The First Citation Point In The Article 298 York Jr., J.W., “Black hole in thermal equilibrium with a scalar field: The back-reaction”, Phys. Rev. D, 31, 775-784, (1985).
Jump To The First Citation Point In The Article 299 York Jr., J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev. D, 33, 2092-2099, (1986).
Jump To The First Citation Point In The Article 300 Zel’dovich, Ya.B., “Particle production in cosmology”, Zh. Eksp. Teor. Fiz. Pis. Red., 12, 443-447, (1970). English translation: JETP Lett. 12, 307-311, (1970).
Jump To The First Citation Point In The Article 301 Zel’dovich, Ya.B., and Starobinsky, A., “Particle production and vacuum polarization in an anisotropic gravitational field”, Zh. Eksp. Teor. Fiz., 61, 2161-2175, (1971). English translation: Sov. Phys. JETP 34, 1159-1166, (1971)].
Jump To The First Citation Point In The Article 302 Zemanian, A.H., Distribution theory and transform analysis, (Dover, New York, NY, U.S.A., 1987).
Jump To The First Citation Point In The Article 303 Zurek, W.H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D, 24, 1516-1525, (1981).
Jump To The First Citation Point In The Article 304 Zurek, W.H., “Environment induced superselection rules”, Phys. Rev. D, 26, 1862-1880, (1982).
Jump To The First Citation Point In The Article 305 Zurek, W.H., “Reduction of the wave packet: How long does it take?”, in Moore, G.T., and Scully, M.O., eds., Frontiers in nonequilibrium statistical physics, 145-149, (Plenum, New York, NY, U.S.A., 1986).
Jump To The First Citation Point In The Article 306 Zurek, W.H., “Decoherence and the transition from quantum to classical”, Phys. Today, 44, 36-44, (1991).
Jump To The First Citation Point In The Article 307 Zurek, W.H., “Preferred states, predictability, classicality and the environment-induced decoherence”, Prog. Theor. Phys., 89, 281-312, (1993).