However, in spite of their successes, the Dougan-Mason energy-momenta and the spin-angular momenta
based on Bramson’s superpotential and the holomorphic/anti-holomorphic spinor fields have some
unsatisfactory properties, too (see the lists of our expectations in Section 4.3). First, they are defined only
for topological 2-spheres (but not for other topologies, e.g. for the torus ), and they are not
well-defined even for certain topological 2-spheres either. Such surfaces are, for example, past marginally
trapped surfaces in the anti-holomorphic (and future marginally trapped surfaces in the holomorphic) case.
Although the quasi-local mass associated with a marginally trapped surface
is expected to be its
irreducible mass
, neither of the Dougan-Mason masses is well-defined for the
bifurcation surfaces of the Kerr-Newman (or even Schwarzschild) black hole. Second, the role and the
physical content of the holomorphicity/anti-holomorphicity of the spinor fields is not clear. The use of the
complex structure is justified a posteriori by the nice physical properties of the constructions and the pure
mathematical fact that it is only the holomorphy and anti-holomorphy operators in a large
class of potentially acceptable first order linear differential operators acting on spinor fields
that have a 2-dimensional kernel. Furthermore, since the holomorphic and anti-holomorphic
constructions are not equivalent, we have two constructions instead of one, and it is not clear why we
should prefer for example holomorphicity instead of anti-holomorphicity even at the quasi-local
level.
The angular momentum based on Bramson’s superpotential and the anti-holomorphic spinors together with the anti-holomorphic Dougan-Mason energy-momentum give acceptable Pauli-Lubanski spin for axi-symmetric zero-mass Cauchy developments, for small spheres, and at future null infinity, but the global angular momentum at the future null infinity is finite and well-defined only if the spatial 3-momentum part of the Bondi-Sachs 4-momentum is vanishing, i.e. only in the centre-of-mass frame. (The spatial infinity limit of the spin-angular momenta has not been calculated.)
Thus the Nester-Witten 2-form appears to serve as an appropriate framework for defining the
energy-momentum, and it is the two spinor fields which should probably be changed and a
new choice would be needed. The holomorphic/anti-holomorphic spinor fields appears to be
‘too rigid’. In fact, it is the topology of , namely the zero genus of
, that restricts the
solution space to two complex dimensions, instead of the local properties of the differential
equations. (Thus, the situation is the same as in the twistorial construction of Penrose.) On
the other hand, Bramson’s superpotential is based on the idea of Bergmann and Thomson
that the angular momentum of gravity is analogous to the spin. Thus the question arises as to
whether this picture is correct, or the gravitational angular momentum also has an orbital
part, whenever Bramson’s superpotential describes only (the general form of) its spin part.
The fact that our anti-holomorphic construction gives the correct, expected results for small
spheres but unacceptable ones for large spheres near future null infinity in frames that are not
centre-of-mass frames may indicate the lack of such an orbital term. This term could be neglected
for small spheres, but certainly not for large spheres. For example, in the special quasi-local
angular momentum of Bergqvist and Ludvigsen for the Kerr spacetime (see Section 9.3) it is
the sum of Bramson’s expression and a term that can be interpreted as the orbital angular
momentum.
![]() |
http://www.livingreviews.org/lrr-2004-4 |
© Max Planck Society and the author(s)
Problems/comments to |