Jump To The First Citation Point In The Article 1 Abbott, L.F., and Deser, S., “Charge definition in non-abelian gauge theories”, Phys. Lett. B, 116, 259-263, (1982).
Jump To The First Citation Point In The Article 2 Aghababaie, Y., and Burgess, C.P., “Effective Actions, Boundaries and Precision Calculations of Casimir Energies”, (2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0304066.
Jump To The First Citation Point In The Article 3 Aghababaie, Y., Burgess, C.P., Parameswaran, S., and Quevedo, F., “Towards a naturally small cosmological constant from branes in 6D supergravity”, Nucl. Phys. B, 680, 389-414, (2004). For a related online version see: Y. Aghababaie, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0304256.
Jump To The First Citation Point In The Article 4 Aguirre, A., Burgess, C.P., Friedland, A., and Nolte, D., “Astrophysical constraints on modifying gravity at large distances”, Class. Quantum Grav., 18, R223-R232, (2001). For a related online version see: A. Aguirre, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/0105083.
Jump To The First Citation Point In The Article 5 Akhundov, A., Bellucci, S., and Shiekh, A., “Gravitational interaction to one loop in effective quantum gravity”, Phys. Lett. B, 395, 16-23, (1997). For a related online version see: A. Akhundov, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/9611018.
Jump To The First Citation Point In The Article 6 Arnowitt, R.L., and Deser, S., “Quantum Theory of Gravitation: General Formulation and Linearized Theory”, Phys. Rev., 113, 745-750, (1959).
Jump To The First Citation Point In The Article 7 Arnowitt, R.L., Deser, S., and Misner, C.W., “Dynamical Structure and Definition of Energy in General Relativity”, Phys. Rev., 116, 1322-1330, (1959).
Jump To The First Citation Point In The Article 8 Arnowitt, R.L., Deser, S., and Misner, C.W., “Canonical Variables for General Relativity”, Phys. Rev., 117, 1595-1602, (1960).
Jump To The First Citation Point In The Article 9 Arnowitt, R.L., Deser, S., and Misner, C.W., “Consistency of the Canonical Reduction of General Relativity”, J. Math. Phys., 1, 434-439, (1960).
Jump To The First Citation Point In The Article 10 Arnowitt, R.L., Deser, S., and Misner, C.W., “Energy and the Criteria for Radiation in General Relativity”, Phys. Rev., 118, 1100-1104, (1960).
Jump To The First Citation Point In The Article 11 Arnowitt, R.L., Deser, S., and Misner, C.W., “Gravitational-Electromagnetic Coupling and the Classical Self-Energy Problem”, Phys. Rev., 120, 313-320, (1960).
Jump To The First Citation Point In The Article 12 Arnowitt, R.L., Deser, S., and Misner, C.W., “Interior Schwarzschild Solutions and Interpretation of Source Terms”, Phys. Rev., 120, 321-324, (1960).
Jump To The First Citation Point In The Article 13 Arnowitt, R.L., Deser, S., and Misner, C.W., “Note on Positive-Definiteness of the Energy of the Gravitational Field”, Ann. Phys. (N. Y.), 11, 116, (1960).
Jump To The First Citation Point In The Article 14 Arnowitt, R.L., Deser, S., and Misner, C.W., Nuovo Cimento, 19, 668, (1961).
Jump To The First Citation Point In The Article 15 Arnowitt, R.L., Deser, S., and Misner, C.W., “Coordinate Invariance and Energy Expressions in General Relativity”, Phys. Rev., 122, 997-1006, (1961).
Jump To The First Citation Point In The Article 16 Arnowitt, R.L., Deser, S., and Misner, C.W., “Wave Zone in General Relativity”, Phys. Rev., 121, 1556-1566, (1961).
Jump To The First Citation Point In The Article 17 Banks, T., and Mannelli, L., “de Sitter vacua, renormalization and locality”, Phys. Rev. D, 67, 065009-1-065009-6, (2003). For a related online version see: T. Banks, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0209113.
Jump To The First Citation Point In The Article 18 Bern, Z., “Perturbative Quantum Gravity and its Relation to Gauge Theory”, Living Rev. Relativity, 5, lrr-2002-5, (2002), [Online Journal Article]: cited on 07 March 2004,

http://www.livingreviews.org/lrr-2002-5.
Jump To The First Citation Point In The Article 19 Birrell, N.D., and Davies, P.C.W., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1982).
Jump To The First Citation Point In The Article 20 Bjerrum-Bohr, N.E.J., Donoghue, J.F., and Holstein, B.R., “Quantum gravitational corrections to the nonrelativistic scattering potential of two masses”, Phys. Rev. D, 67, 084033-1-084033-12, (2003).
Jump To The First Citation Point In The Article 21 Bjerrum-Borh, N.E.J., Donoghue, J.F., and Holstein, B.R., “Quantum Corrections to the Schwarzschild and Kerr Metrics”, Phys. Rev. D, 68, 084005-1-084005-16, (2003).
Jump To The First Citation Point In The Article 22 Brandenberger, R.H., “Lectures on the Theory of Cosmological Perturbations”, in Bretón, N., Cervantes-Cota, J., and Salgado, M., eds., The Early Universe and Observational Cosmology, volume 646 of Lecture Notes in Physics, (Springer, Berlin; New York, 2004). For a related online version see: R.H. Brandenberger, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0306071. Proceedings of the 5th Mexican School on Gravitation and Mathematical Physics (DGFM 2002), Playa del Carmen, Quintana Roo, Mexico, 24-29 November 2002.
Jump To The First Citation Point In The Article 23 Brandenberger, R.H., and Martin, J., “The Robustness of Inflation to Changes in Super-Planck-Scale Physics”, Mod. Phys. Lett. A, 16, 999-1006, (2001). For a related online version see: R.H. Brandenberger, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/astro-ph/0005432.
Jump To The First Citation Point In The Article 24 Brout, R., Massar, S., Parentani, R., and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559-4568, (1995). For a related online version see: R. Brout, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9506121.
Jump To The First Citation Point In The Article 25 Brown, M.R., and Duff, M.J., “Exact results for effective Lagrangians”, Phys. Rev. D, 11, 2124-2135, (1975).
Jump To The First Citation Point In The Article 26 Bunch, T.S., and Davies, P.C.W., “Quantum Field Theory In De Sitter Space: Renormalization By Point Splitting”, Proc. R. Soc. London, Ser. A, 360, 117-134, (1978).
Jump To The First Citation Point In The Article 27 Burgess, C.P., “Supersymmetric Large Extra Dimensions and the Cosmological Constant: An Update”, (2004), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0402200.
Jump To The First Citation Point In The Article 28 Burgess, C.P., “An Ode to Effective Lagrangians”, in Solà, J., ed., Radiative corrections: Application of quantum field theory to phenomenology. Proceedings of the 4th International Symposium on Radiative Corrections (RADCOR 98), held in Barcelona, September 8-12, 1998, 471-488, (World Scientific, Singapore, 1999). For a related online version see: C.P. Burgess, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9812470.
Jump To The First Citation Point In The Article 29 Burgess, C.P., “Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed-Matter Physics”, Phys. Rep., 330, 193-261, (2000). For a related online version see: C.P. Burgess, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9808176.
Jump To The First Citation Point In The Article 30 Burgess, C.P., Cline, J.M., and Holman, R., “Effective field theories and inflation”, JCAP, 10, 004, (2003). For a related online version see: C.P. Burgess, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0306079.
Jump To The First Citation Point In The Article 31 Burgess, C.P., Cline, J.M., Lemieux, F., and Holman, R., “Are inflationary predictions sensitive to very high energy physics?”, JHEP, 02, 048, (2003). For a related online version see: C.P. Burgess, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0210233.
Jump To The First Citation Point In The Article 32 Callan, C.G., Coleman, S., Wess, J., and Zumino, B., “Structure of Phenomenological Lagrangians. II”, Phys. Rev., 177, 2247-2250, (1969).
Jump To The First Citation Point In The Article 33 Capper, D.M., Duff, M.J., and Halpern, L., “Photon corrections to the graviton propagator”, Phys. Rev. D, 10, 461-467, (1974).
Jump To The First Citation Point In The Article 34 Caswell, W.E., and Lepage, G.P., “Effective lagrangians for bound state problems in QED, QCD, and other field theories”, Phys. Lett. B, 167, 437-442, (1986).
Jump To The First Citation Point In The Article 35 Chen, T., Fröhlich, J., and Seifert, M., “Renormalization Group Methods: Landau-Fermi Liquid and BCS Superconductor”, in David, F., Ginsparg, P., and Zinn-Justin, J., eds., Fluctuating Geometries in Statistical Mechanics and Field Theory: Proceedings of the Les Houches Summer School, Session LXII, 2 August-9 September 1994, volume 62 of Les Houches Summer School Proceedings, 913-970, (North-Holland, Amsterdam, 1996). For a related online version see: T. Chen, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/cond-mat/9508063.
Jump To The First Citation Point In The Article 36 Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946-963, (1978).
Jump To The First Citation Point In The Article 37 Christensen, S.M., and Duff, M.J., “New gravitational index theorems and super theorems”, Nucl. Phys. B, 154, 301-342, (1979).
Jump To The First Citation Point In The Article 38 Christensen, S.M., and Duff, M.J., “Quantizing gravity with a cosmological constant”, Nucl. Phys. B, 170, 480-506, (1980).
Jump To The First Citation Point In The Article 39 Collins, H., Holman, R., and Martin, M.R., “The fate of the a-vacuum”, Phys. Rev. D, 68, 1240121-1-124012-15, (2003). For a related online version see: H. Collins, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0306028.
Jump To The First Citation Point In The Article 40 Collins, H., and Martin, M.R., “The enhancement of inflaton loops in an a-vacuum”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/0309265.
Jump To The First Citation Point In The Article 41 Collins, J., Renormalization : An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge; New York, 1984).
Jump To The First Citation Point In The Article 42 Corley, S., and Jacobson, T., “Hawking spectrum and high frequency dispersion”, Phys. Rev. D, 54, 1568-1586, (1996). For a related online version see: S. Corley, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9601073.
Jump To The First Citation Point In The Article 43 Dalvit, D.A.R., and Mazzitelli, F.D., “Running coupling constants, Newtonian potential, and nonlocalities in the effective action”, Phys. Rev. D, 50, 1001-1009, (1994). For a related online version see: D.A.R. Dalvit, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/9402003.
Jump To The First Citation Point In The Article 44 Damour, T., and Ruffini, R., “Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism”, Phys. Rev. D, 14, 332-334, (1976).
Jump To The First Citation Point In The Article 45 Danielsson, U.H., “Inflation, holography, and the choice of vacuum in de Sitter space”, JHEP, 07, 040, (2002). For a related online version see: U.H. Danielsson, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0205227.
Jump To The First Citation Point In The Article 46 Danielsson, U.H., “On the consistency of de Sitter vacua”, JHEP, 12, 025, (2002). For a related online version see: U.H. Danielsson, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0210058.
Jump To The First Citation Point In The Article 47 Deruelle, N., and Ruffini, R., “Klein paradox in a kerr geometry”, Phys. Lett. B, 57, 248-252, (1975).
Jump To The First Citation Point In The Article 48 Deser, S., and Jackiw, R., “Three-Dimensional Cosmological Gravity: Dynamics Of Constant Curvature”, Ann. Phys., 153, 405-416, (1984).
Jump To The First Citation Point In The Article 49 Deser, S., Jackiw, R., and ’t Hooft, G., “Three-Dimensional Einstein Gravity: Dynamics Of Flat Space”, Ann. Phys. (N. Y.), 152, 220-235, (1984).
Jump To The First Citation Point In The Article 50 DeWitt, B.S., “Quantum Theory of Gravity. II. The Manifestly Covariant Theory”, Phys. Rev., 162, 1195-1239, (1967).
Jump To The First Citation Point In The Article 51 DeWitt, B.S., “Quantum Theory of Gravity. III. Applications of the Covariant Theory”, Phys. Rev., 162, 1239-1256, (1967).
Jump To The First Citation Point In The Article 52 DeWitt, B.S., “Quantum Theory of Gravity. III. Applications of the Covariant Theory”, Phys. Rev., 162, 1239-1256, (1967).
Jump To The First Citation Point In The Article 53 DeWitt, B.S., “Errata: Quantum Theory of Gravity”, Phys. Rev., 171, 1834, (1968).
Jump To The First Citation Point In The Article 54 DeWitt, B.S., “The spacetime approach to quantum field theory”, in DeWitt, B.S., and Stora, R., eds., Relativity, Groups and Topology II: Proceedings of the 40th Summer School of Theoretical Physics, NATO Advanced Study Institute, Les Houches, France, June 27-August 4, 1983, Les Houches Summer School Proceedings, 381-738, (North-Holland, Amsterdam, 1984).
Jump To The First Citation Point In The Article 55 Dirac, P.A.M., “Fixation of Coordinates in the Hamiltonian Theory of Gravitation”, Phys. Rev., 114, 924-930, (1959).
Jump To The First Citation Point In The Article 56 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874-3888, (1994). For a related online version see: J.F. Donoghue, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/9405057.
Jump To The First Citation Point In The Article 57 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996-2999, (1994). For a related online version see: J.F. Donoghue, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/9310024.
Jump To The First Citation Point In The Article 58 Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in Cornet, F., and Herrero, M.J., eds., Advanced School on Effective Theories: Almunecar, Granada, Spain 26 June-1 July 1995, 217-240, (World Scientific, Singapore, 1997). For a related online version see: J.F. Donoghue, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/9512024.
Jump To The First Citation Point In The Article 59 Donoghue, J.F., Golowich, E., and Holstein, B.R., Dynamics of the Standard Model, (Cambridge University Press, Cambridge; New York, 1992).
Jump To The First Citation Point In The Article 60 Donoghue, J.F., Holstein, B.R., Garbrecht, B., and Konstandin, T., “Quantum corrections to the Reissner-Nordström and Kerr-Newman metrics”, Phys. Lett. B, 529, 132-142, (2002). For a related online version see: J.F. Donoghue, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0112237.
Jump To The First Citation Point In The Article 61 Donoghue, J.F., and Torma, T., “Power counting of loop diagrams in general relativity”, Phys. Rev. D, 54, 4963-4972, (1996). For a related online version see: J.F. Donoghue, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9602121.
Jump To The First Citation Point In The Article 62 Donoghue, J.F., and Torma, T., “Infrared behavior of graviton-graviton scattering”, Phys. Rev. D, 60, 024003-1-024003, (1999). For a related online version see: J.F. Donoghue, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9901156.
Jump To The First Citation Point In The Article 63 Duff, M.J., “Quantum corrections to the Schwarzschild solution”, Phys. Rev. D, 9, 1837-1839, (1974).
Jump To The First Citation Point In The Article 64 Dunbar, D.C., and Norridge, P.S., “Calculation of graviton scattering amplitudes using string-based methods”, Nucl. Phys. B, 433, 181-206, (1995).
Jump To The First Citation Point In The Article 65 Einhorn, M., and Larsen, F., “Interacting quantum field theory in de Sitter vacua”, Phys. Rev. D, 67, 024001-1-024001-13, (2003). For a related online version see: M. Einhorn, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0209159.
Jump To The First Citation Point In The Article 66 Einhorn, M., and Larsen, F., “Squeezed states in the de Sitter vacuum”, Phys. Rev. D, 68, 064002-1-064002-7, (2003). For a related online version see: M. Einhorn, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0305056.
Jump To The First Citation Point In The Article 67 Einstein, A., and Infeld, L., “The Gravitational Equations and the Problem of Motion. II”, Ann. Math., 41, 455-464, (1940).
Jump To The First Citation Point In The Article 68 Einstein, A., and Infeld, L., Can. J. Math., 1, 209, (1949).
Jump To The First Citation Point In The Article 69 Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65-100, (1938).
Jump To The First Citation Point In The Article 70 Fadeev, L.D., and Popov, V.N., “Feynman diagrams for the Yang-Mills field”, Phys. Lett. B, 25, 29-30, (1967).
Jump To The First Citation Point In The Article 71 Feynman, R.P., “Quantum theory of gravitation”, Acta Phys. Pol., 24, 697-722, (1963).
Jump To The First Citation Point In The Article 72 Fredenhagen, K., and Haag, R., “On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole”, Commun. Math. Phys., 127, 273-284, (1990).
Jump To The First Citation Point In The Article 73 Gasser, J., and Leutwyler, H., “Chiral Perturbation Theory to One Loop”, Ann. Phys. (N. Y.), 158, 142-210, (1984).
Jump To The First Citation Point In The Article 74 Georgi, H., Weak Interactions and Modern Particle Theory, (Benjamin/Cummings, Menlo Park, CA, USA, 1984).
Jump To The First Citation Point In The Article 75 Georgi, H., “Effective Field Theory”, Annu. Rev. Nucl. Part. Sci., 43, 209-252, (1995).
Jump To The First Citation Point In The Article 76 Gilkey, P.B., “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10, 601-618, (1975).
Jump To The First Citation Point In The Article 77 Goldstein, K., and Lowe, D.A., “A note on a-vacua and interacting field theory in de Sitter space”, Nucl. Phys. B, 669, 325-340, (2003). For a related online version see: K. Goldstein, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0302050.
Jump To The First Citation Point In The Article 78 Goldstein, K., and Lowe, D.A., “Real-time perturbation theory in de Sitter space”, Phys. Rev. D, 69, 023507-1-023507-8, (2004). For a related online version see: K. Goldstein, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0308135.
Jump To The First Citation Point In The Article 79 Gomis, J., and Weinberg, S., “Are nonrenormalizable gauge theories renormalizable?”, Nucl. Phys. B, 469, 473-487, (1996). For a related online version see: J. Gomis, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9510087.
Jump To The First Citation Point In The Article 80 Grisaru, M.T., and Zak, J., “One-loop scalar field contributions to graviton-graviton scattering and helicity non-conservation in quantum gravity”, Phys. Lett. B, 90, 237-240, (1980).
Jump To The First Citation Point In The Article 81 Gupta, S.N., “Quantization of Einstein’s Gravitational Field: General Treatment”, Proc. Phys. Soc. London, Sect. A, 65, 608-619, (1952).
Jump To The First Citation Point In The Article 82 Gupta, S.N., “Quantization of Einstein’s Gravitational Field: General Treatment”, Proc. Phys. Soc. London, Sect. B, 65, 608-619, (1952).
Jump To The First Citation Point In The Article 83 Gupta, S.N., and Radford, S.F., “Quantum field-theoretical electromagnetic and gravitational two-particle potentials”, Phys. Rev. D, 21, 2213-2225, (1980).
Jump To The First Citation Point In The Article 84 Guralnik, G.S., Hagen, C.R., and Kibble, T.W.B., in Cool, R.L., and Marshak, R.E., eds., Advances in Particle Physics, volume 2, (Wiley, New York, 1968).
Jump To The First Citation Point In The Article 85 Hahn, Y., and Zimmermann, W., “An elementary proof of Dyson’s power counting theorem”, Commun. Math. Phys., 10, 330-342, (1968).
Jump To The First Citation Point In The Article 86 Hamber, H.W., and Liu, S., “On the quantum corrections to the newtonian potential”, Phys. Lett. B, 357, 51-56, (1995). For a related online version see: H.W. Hamber, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9505182.
Jump To The First Citation Point In The Article 87 Hambli, N., and Burgess, C.P., “Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717-5722, (1996). For a related online version see: N. Hambli, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9510159.
Jump To The First Citation Point In The Article 88 Hawking, S.W., “Black Hole Explosions”, Nature, 248, 30-31, (1974).
Jump To The First Citation Point In The Article 89 Hawking, S.W., “Particle Creation by Black Holes”, Commun. Math. Phys., 43, 199-220, (1975).
Jump To The First Citation Point In The Article 90 Hiida, K., and Okamura, H., “Gauge Transformation and Gravitational Potentials”, Prog. Theor. Phys., 47, 1743, (1972).
Jump To The First Citation Point In The Article 91 Isgur, N., and Wise, M.B., “Weak decays of heavy mesons in the static quark approximation”, Phys. Lett. B, 232, 113-117, (1989).
Jump To The First Citation Point In The Article 92 Isgur, N., and Wise, M.B., “Weak transition form factors between heavy mesons”, Phys. Lett. B, 237, 527-530, (1990).
Jump To The First Citation Point In The Article 93 Iwasaki, Y., “Quantum Theory of Gravitation vs. Classical Theory: Fourth-Order Potential”, Prog. Theor. Phys., 46, 1587, (1971).
Jump To The First Citation Point In The Article 94 Jacobson, T., “Black-hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731-1739, (1991).
Jump To The First Citation Point In The Article 95 Jacobson, T., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728-741, (1993). For a related online version see: T. Jacobson, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9303103.
Jump To The First Citation Point In The Article 96 Jacobson, T., “Introduction to quantum fields in curved space-time and the Hawking effect”, Prog. Theor. Phys. Suppl., 136, 1-17, (1999). For a related online version see: T. Jacobson, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/gr-qc/0308048.
Jump To The First Citation Point In The Article 97 Jones, A., and Lasenby, A., “The Cosmic Microwave Background”, Living Rev. Relativity, 1, lrr-1998-11, (1998), [Online Journal Article]: cited on 07 March 2004,

http://www.livingreviews.org/lrr-1998-11.
Jump To The First Citation Point In The Article 98 Kaloper, N., Kleban, M., Lawrence, A., Shenker, S.,, and Susskind, L., “Initial Conditions for Inflation”, JHEP, 11, 037, (2002). For a related online version see: N. Kaloper, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0209231.
Jump To The First Citation Point In The Article 99 Kaloper, N., Kleban, M., Lawrence, A., and Shenker, S., “Signatures of short distance physics in the cosmic microwave background”, Phys. Rev. D, 66, 123510-1-123510-21, (2002). For a related online version see: N. Kaloper, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0201158.
Jump To The First Citation Point In The Article 100 Kaplan, D., “Effective Field Theories”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/nucl-th/9506035. Three lectures on effective field theory given at the Seventh Summer School in Nuclear Physics, Seattle June 19-30 1995.
Jump To The First Citation Point In The Article 101 Kaplan, D.B., Savage, M.J., and Wise, M.B., “Nucleon-nucleon scattering from effective field theory”, Nucl. Phys. B, 478, 629-659, (1996). For a related online version see: D.B. Kaplan, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/nucl-th/9605002.
Jump To The First Citation Point In The Article 102 Kazakov, K.A., “Notion of potential in quantum gravity”, Phys. Rev. D, 63, 044004-1-044004-10, (2001). For a related online version see: K.A. Kazakov, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0009220.
Jump To The First Citation Point In The Article 103 Kirilin, G.G., and Khriplovich, I.B., “Quantum Power Correction to the Newton Law”, JETP, 95, 981-986, (2002).
Jump To The First Citation Point In The Article 104 Labelle, P., “Effective field theories for QED bound states: Extending nonrelativistic QED to study retardation effects”, Phys. Rev. D, 58, 093013-1-093013-15, (1998). For a related online version see: P. Labelle, “Effective Field Theories for QED Bound States: Extending NRQED to Study Retardation Effects”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9608491.
Jump To The First Citation Point In The Article 105 Labelle, P., Zebarjad, S.M., and Burgess, C.P., “Nonrelativistic QED and next-to-leading hyperfine splitting in positronium”, Phys. Rev. D, 56, 8053-8061, (1997). For a related online version see: P. Labelle, et al., “NRQED and Next-to-Leading Hyperfine Splitting in Positronium”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9706449.
Jump To The First Citation Point In The Article 106 Langacker, P., “Electroweak Physics”, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/0308145. Invited talk presented at the Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2003), New York, May 2003.
Jump To The First Citation Point In The Article 107 Leutwyler, H., “Goldstone Bosons”, (September, 1994), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9409422. Talk given at the Bose Conference, Jan.94, Calcutta, BUTP 94/17.
Jump To The First Citation Point In The Article 108 Leutwyler, H., “Principles of Chiral Perturbation Theory”, in Herscovitz, V.E., Vasconcellos, C.A., and Ferreira, E., eds., Hadron Physics 94: Topics on the Structure and Interaction of Hadronic Systems, Rio Grande Do Sul, Brazil 10-14 April 1994, 1-46, (World Scientific, Singapore, 1995). For a related online version see: H. Leutwyler, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9406283.
Jump To The First Citation Point In The Article 109 Luke, M.E., “Effects of subleading operators in the heavy quark effective theory”, Phys. Lett. B, 252, 447-455, (1990).
Jump To The First Citation Point In The Article 110 Luke, M.E., and Manohar, A.V., “Bound states and power counting in effective field theories”, Phys. Rev. D, 55, 4129-4140, (1997). For a related online version see: M.E. Luke, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9610534.
Jump To The First Citation Point In The Article 111 Luke, M.E., Manohar, A.V., and Rothstein, I.Z., “Renormalization group scaling in nonrelativistic QCD”, Phys. Rev. D, 61, 074025-1-074025-14, (2000). For a related online version see: M.E. Luke, et al., (October, 1999), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9910209.
Jump To The First Citation Point In The Article 112 Luke, M.E., and Savage, M.J., “Power counting in dimensionally regularized nonrelativistic QCD”, Phys. Rev. D, 57, 413-423, (1998). For a related online version see: M.E. Luke, et al., “Power Counting in Dimensionally Regularized NRQCD”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9707313.
Jump To The First Citation Point In The Article 113 Mandelstam, S., “Feynman Rules for the Gravitational Field from the Coordinate-Independent Field-Theoretic Formalism”, Phys. Rev., 175, 1604-1623, (1968).
Jump To The First Citation Point In The Article 114 Manohar, A., “Effective Field Theories”, in Latal, H., and Schweiger, W., eds., Perturbative and nonperturbative aspects of quantum field theory: Proceedings of the 35. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, March 2-9, 1996, volume 479 of Lecture Notes in Physics, 311-362, (Springer, Berlin; New York, 1997). For a related online version see: A. Manohar, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9606222.
Jump To The First Citation Point In The Article 115 Martin, J., and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501-1-123501-16, (2001). For a related online version see: J. Martin, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0005209.
Jump To The First Citation Point In The Article 116 McAvity, D.M., and Osborn, H., “A DeWitt expansion of the heat kernel for manifolds with a boundary”, Class. Quantum Grav., 8, 603-638, (1991).
Jump To The First Citation Point In The Article 117 Meissner, U.G., “Recent Developments in Chiral Perturbation Theory”, Rep. Prog. Phys., 56, 903-996, (1993). For a related online version see: U.G. Meissner, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9302247.
Jump To The First Citation Point In The Article 118 Melnikov, K., and Weinstein, M., “A Canonical Hamiltonian Derivation of Hawking Radiation”, (September, 2001), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0109201.
Jump To The First Citation Point In The Article 119 Melnikov, K., and Weinstein, M., “On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0205223.
Jump To The First Citation Point In The Article 120 Milgrom, M., “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis”, Astrophys. J., 270, 365-370, (1983).
Jump To The First Citation Point In The Article 121 Milgrom, M., and Sanders, R.H., “MOND and the ”Dearth of Dark Matter in Ordinary Elliptical Galaxies””, Astrophys. J., 599, L25-L28, (2003). For a related online version see: M. Milgrom, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/astro-ph/0309617.
Jump To The First Citation Point In The Article 122 Misner, C.W., Thorne, K.P., and Wheeler, J.A., Gravitation, (Freeman, W.H., San Francisco, CA, USA, 1973).
Jump To The First Citation Point In The Article 123 Modanese, G., “Potential energy in quantum gravity”, Nucl. Phys. B, 434, 697-708, (1995). For a related online version see: G. Modanese, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9408103.
Jump To The First Citation Point In The Article 124 Ovrut, B.A., and Schnitzer, H.J., “The decoupling theorem and minimal subtraction”, Phys. Lett. B, 100, 403-406, (1981).
Jump To The First Citation Point In The Article 125 Ovrut, B.A., and Schnitzer, H.J., “Gauge theories with minimal subtraction and the decoupling theorem”, Nucl. Phys. B, 179, 381-416, (1981).
Jump To The First Citation Point In The Article 126 Parikh, M.K., and Wilczek, F., “Hawking Radiation As Tunneling”, Phys. Rev. Lett., 85, 5042-5045, (2000). For a related online version see: M.K. Parikh, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9907001.
Jump To The First Citation Point In The Article 127 Pich, A., “Effective Field Theory”, in Gupta, R., De Rafael, E., David, F., and Morel, A., eds., Probing the Standard Model of Particle Interactions: Proceedings of the Les Houches Summer School, 28 July-5 September 1997, volume 68 of Les Houches Summer School Proceedings, 949-1049, (North-Holland, Amsterdam, 1999). For a related online version see: A. Pich, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9806303.
Jump To The First Citation Point In The Article 128 Pineda, A., and Soto, J., “Potential NRQED: The positronium case”, Phys. Rev. D, 59, 016005-1-016005-10, (1999). For a related online version see: A. Pineda, et al., (1998), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-ph/9805424.
Jump To The First Citation Point In The Article 129 Polchinski, J., “Renormalization and effective lagrangians”, Nucl. Phys. B, 231, 269-295, (1984).
Jump To The First Citation Point In The Article 130 Polchinski, J., “Effective Field Theory of the Fermi Surface”, in Harvey, J.and Polchinski, J., ed., Recent Directions in Particle Theory: From Superstrings and Black Holes to the Standard Model. Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, 1-26 June 1992 (TASI-92), quantum field theory, (World Scientific, Singapore, 1993). For a related online version see: J. Polchinski, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9210046.
Jump To The First Citation Point In The Article 131 Polchinski, J., “String Theory and Black Hole Complementarity”, in Bars, I., Bouwknegt, P., Minahan, J., Nemeschensky, D., and Pilch, K., eds., Future Perspectives in String Theory: Strings ’95, University of Southern California, Los Angeles, 13-18 March 1995, 417-426, (World Scientific, Singapore, 1996). For a related online version see: J. Polchinski, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/9507094.
Jump To The First Citation Point In The Article 132 Redin, S.I., et al., “Recent results and current status of the muon g - 2 experiment at BNL”, Can. J. Phys., 80, 1355-1364, (2002).
Jump To The First Citation Point In The Article 133 Rho, M., “Effective Field Theory for Nuclei and Dense Matter”, Acta Phys. Pol. B, 29, 2297-2308, (1998). For a related online version see: M. Rho, [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/nucl-th/9806029.
Jump To The First Citation Point In The Article 134 Schwinger, J.S., “On Gauge Invariance and Vacuum Polarization”, Phys. Rev., 82, 664-679, (1951).
Jump To The First Citation Point In The Article 135 Shankar, R., “Effective Field Theory in Condensed Matter Physics”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/cond-mat/9703210. Lecture given at Boston Colloquium for the Philosophy of Science, Boston, Mass., 1996.
Jump To The First Citation Point In The Article 136 Shankar, R., “Renormalization-group approach to interacting fermions”, Rev. Mod. Phys., 66, 129-192, (1994). For a related online version see: R. Shankar, (July, 1993), [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/cond-mat/9307009.
Jump To The First Citation Point In The Article 137 Simon, J., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308-3316, (1991).
Jump To The First Citation Point In The Article 138 ’t Hooft, G., and Veltman, M.J.G., “One loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincare, A, 20, 69-94, (1974).
Jump To The First Citation Point In The Article 139 Tinkham, M., Introduction to Superconductivity, (McGraw Hill, New York, USA, 1996), 2nd edition.
Jump To The First Citation Point In The Article 140 Unruh, W.G., “Origin of the particles in black-hole evaporation”, Phys. Rev. D, 15, 365-369, (1977).
Jump To The First Citation Point In The Article 141 Unruh, W.G., “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett., 46, 1351-1353, (1981).
Jump To The First Citation Point In The Article 142 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001), [Online Journal Article]: cited on 07 March 2004,

http://www.livingreviews.org/lrr-2001-6.
Jump To The First Citation Point In The Article 143 Weinberg, S., “High-Energy Behavior in Quantum Field Theory”, Phys. Rev., 118, 838-849, (1960).
Jump To The First Citation Point In The Article 144 Weinberg, S., “Infrared Photons and Gravitons”, Phys. Rev., 140(2), B516-B524, (1965).
Jump To The First Citation Point In The Article 145 Weinberg, S., “Dynamical Approach to Current Algebra”, Phys. Rev. Lett., 18, 188-191, (1967).
Jump To The First Citation Point In The Article 146 Weinberg, S., “Nonlinear Realizations of Chiral Symmetry”, Phys. Rev., 166, 1568-1577, (1968).
Jump To The First Citation Point In The Article 147 Weinberg, S., Gravitation and Cosmology: Principles and applications of the general theory of relativity, (Wiley, New York, 1972).
Jump To The First Citation Point In The Article 148 Weinberg, S., “Phenomenological Lagrangians”, Physica, 96A, 327-340, (1979).
Jump To The First Citation Point In The Article 149 Weinberg, S., “Effective gauge theories”, Phys. Lett. B, 91, 51-55, (1980).
Jump To The First Citation Point In The Article 150 Weinberg, S., “Why the Renormalization Group is a Good Thing”, in Guth, A.H., Huang, K., and Jaffe, R.L., eds., Asymptotic Realms of Physics: Essays in Honor of Francis E. Low, 1-19, (MIT Press, Cambridge, MA, USA, 1981).
Jump To The First Citation Point In The Article 151 Weinberg, S., “Superconductivity for Particular Theorists”, Prog. Theor. Phys. Suppl., 86, 43-53, (1986). Festschrift honoring Yoichiro Nambu on his 65th birthday.
Jump To The First Citation Point In The Article 152 Weinberg, S., “The cosmological constant problem”, Rev. Mod. Phys., 61, 1-23, (1989).
Jump To The First Citation Point In The Article 153 Weinberg, S., “Nuclear forces from chiral lagrangians”, Phys. Lett. B, 251, 288-292, (1990).
Jump To The First Citation Point In The Article 154 Weinberg, S., “Effective chiral lagrangians for nucleon-pion interactions and nuclear forces”, Nucl. Phys. B, 363, 3-18, (1991).
Jump To The First Citation Point In The Article 155 Wessling, M.E., and Wise, M.B., “The long range gravitational potential energy between strings”, Phys. Lett. B, 523, 331-337, (2001). For a related online version see: M.E. Wessling, et al., [Online Los Alamos Archive Preprint]: cited on 07 March 2004,

External Linkhttp://arxiv.org/abs/hep-th/0110091.
Jump To The First Citation Point In The Article 156 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 4, lrr-2001-4, (2001), [Online Journal Article]: cited on 07 March 2004,

http://www.livingreviews.org/lrr-2001-4.
Jump To The First Citation Point In The Article 157 Wilson, K.G., “Non-Lagrangian Models of Current Algebra”, Phys. Rev., 179, 1499-1512, (1969).