Jump To The First Citation Point In The Article 1 Alvi, K., “Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013-1-124013-19, (2000). For a related online version see: K. Alvi, “An approximate binary-black-hole metric”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9912113.
Jump To The First Citation Point In The Article 2 Barack, L., “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories”, Phys. Rev. D, 62, 084027-1-084027-21, (2000). For a related online version see: L. Barack, “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories”, (May, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0005042.
Jump To The First Citation Point In The Article 3 Barack, L., “Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021-1-084021-16, (2001). For a related online version see: L. Barack, “Gravitational self-force by mode sum regularization”, (May, 2001), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0105040.
Jump To The First Citation Point In The Article 4 Barack, L., and Burko, L., “Radiation-reaction force on a particle plunging into a black hole”, Phys. Rev. D, 62, 084040-1-084040-5, (2000). For a related online version see: L. Barack, et al., “Radiation-reaction force on a particle plunging into a black hole”, (July, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0007033.
Jump To The First Citation Point In The Article 5 Barack, L., and Lousto, C.O., “Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502-1-061502-5, (2002). For a related online version see: L. Barack, et al., “Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0205043.
Jump To The First Citation Point In The Article 6 Barack, L., Mino, Y., Nakano, H., Ori, A., and Sasaki, M., “Calculating the Gravitational Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101-1-091101-4, (2002). For a related online version see: L. Barack, et al., “Calculating the gravitational self-force in Schwarzschild spacetime”, (November, 2001), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0111001.
Jump To The First Citation Point In The Article 7 Barack, L., and Ori, A., “Mode sum regularization approach for the self-force in black hole spacetime”, Phys. Rev. D, 61, 061502-1-061502-5, (2000). For a related online version see: L. Barack, et al., “Mode sum regularization approach for the self-force in black hole spacetime”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9912010.
Jump To The First Citation Point In The Article 8 Barack, L., and Ori, A., “Gravitational self-force and gauge transformations”, Phys. Rev. D, 64, 124003-1-124003-13, (2001). For a related online version see: L. Barack, et al., “Gravitational self force and gauge transformations”, (July, 2001), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0107056.
Jump To The First Citation Point In The Article 9 Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case”, Phys. Rev. D, 66, 084022-1-084022-15, (2002). For a related online version see: L. Barack, et al., “Regularization parameters for the self force in Schwarzschild spacetime: I. scalar case”, (April, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0204093.
Jump To The First Citation Point In The Article 10 Barack, L., and Ori, A., “Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”, Phys. Rev. Lett., 90, 111101-1-111101-4, (2003). For a related online version see: L. Barack, et al., “Gravitational self-force on a particle orbiting a Kerr black hole”, (December, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0212103.
Jump To The First Citation Point In The Article 11 Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029-1-024029-11, (2003). For a related online version see: L. Barack, et al., “Regularization parameters for the self-force in Schwarzschild spacetime: II. gravitational and electromagnetic cases”, (September, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0209072.
Jump To The First Citation Point In The Article 12 Burko, L.M., “Self-force approach to synchrotron radiation”, Am. J. Phys., 68, 456-468, (2000). For a related online version see: L.M. Burko, “Self-force approach to synchrotron radiation”, (February, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9902079.
Jump To The First Citation Point In The Article 13 Burko, L.M., “Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84, 4529-4532, (2000). For a related online version see: L.M. Burko, “Self force on particle in orbit around a black hole”, (March, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0003074.
Jump To The First Citation Point In The Article 14 Burko, L.M., “Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav., 17, 227-250, (2000). For a related online version see: L.M. Burko, “Self-force on static charges in Schwarzschild spacetime”, (November, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9911042.
Jump To The First Citation Point In The Article 15 Burko, L.M., Harte, A.I., and Poisson, E., “Mass loss by a scalar charge in an expanding universe”, Phys. Rev. D, 65, 124006-1-124006-11, (2002). For a related online version see: L.M. Burko, et al., “Mass loss by a scalar charge in an expanding universe”, (January, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0201020.
Jump To The First Citation Point In The Article 16 Burko, L.M., and Liu, Y.T., “Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole”, Phys. Rev. D, 64, 024006-1-024006-21, (2001). For a related online version see: L.M. Burko, et al., “Self force on a scalar charge in the spacetime of a stationary, axisymmetric black hole”, (March, 2001), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0103008.
Jump To The First Citation Point In The Article 17 Burko, L.M., Liu, Y.T., and Soen, Y., “Self-force on charges in the spacetime of spherical shells”, Phys. Rev. D, 63, 024015-1-024015-18, (2001). For a related online version see: L.M. Burko, et al., “Self force on charges in the spacetime of spherical shells”, (August, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0008065.
Jump To The First Citation Point In The Article 18 Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042-2062, (1975).
Jump To The First Citation Point In The Article 19 D’Eath, P.D., Black holes: Gravitational interactions, (Clarendon Press, Oxford, U.K., 1996).
Jump To The First Citation Point In The Article 20 Detweiler, S., “Radiation Reaction and the Self-Force for a Point Mass in General Relativity”, Phys. Rev. Lett., 86, 1931-1934, (2001). For a related online version see: S. Detweiler, “Radiation reaction and the self-force for a point mass in general relativity”, (November, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0011039.
Jump To The First Citation Point In The Article 21 Detweiler, S., Messaritaki, E., and Whiting, B.F., “Self-force of a scalar field for circular orbits about a Schwarzschild black hole”, Phys. Rev. D, 67, 104016-1-104016-18, (2003). For a related online version see: S. Detweiler, et al., “Self-force of a scalar field for circular orbits about a Schwarzschild black hole”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0205079.
Jump To The First Citation Point In The Article 22 Detweiler, S., and Poisson, E., “Low multipole contributions to the gravitational self-force”, Phys. Rev. D, 69, (2004). For a related online version see: S. Detweiler, et al., “Low multipole contributions to the gravitational self-force”, (December, 2003), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0312010. In press.
Jump To The First Citation Point In The Article 23 Detweiler, S., and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025-1-024025-5, (2003). For a related online version see: S. Detweiler, et al., “Self-force via a Green’s function decomposition”, (February, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0202086.
Jump To The First Citation Point In The Article 24 DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220-259, (1960).
Jump To The First Citation Point In The Article 25 Dirac, P.A.M., “Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167, 148, (1938).
Jump To The First Citation Point In The Article 26 Flanagan, E.E., and Wald, R.M., “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233-6283, (1996). For a related online version see: E.E. Flanagan, et al., “Does backreaction enforce the averaged null energy condition in semiclassical gravity?”, (February, 1996), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9602052.
Jump To The First Citation Point In The Article 27 Friedlander, F.G., The wave equation on a curved spacetime, (Cambridge University Press, Cambridge, U.K., 1975).
Jump To The First Citation Point In The Article 28 Hadamard, J., Lectures on Cauchy’s problem in linear partial differential equations, (Yale University Press, New Haven, CT, U.S.A., 1923).
Jump To The First Citation Point In The Article 29 Hobbs, J.M., “A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141-165, (1968).
Jump To The First Citation Point In The Article 30 Jackson, J.D., Classical Electrodynamics, Third Edition, (Wiley, New York, NY, U.S.A., 1999).
Jump To The First Citation Point In The Article 31 Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853-1870, (1980).
Jump To The First Citation Point In The Article 32 ESA and NASA, “LISA Home Page”, (2004), [Online HTML Document]: cited on 02 April 2004,

External Linkhttp://lisa.jpl.nasa.gov.
Jump To The First Citation Point In The Article 33 Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes”, Phys. Rev. Lett., 84, 5251-5254, (2000). For a related online version see: C.O. Lousto, “Pragmatic approach to gravitational radiation reaction in binary black holes”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9912017.
Jump To The First Citation Point In The Article 34 Lousto, C.O., and Whiting, B.F., “Reconstruction of black hole metric perturbations from the Weyl curvature”, Phys. Rev. D, 66, 024026-1-024026-7, (2002). For a related online version see: C.O. Lousto, et al., “Reconstruction of Black Hole Metric Perturbations from Weyl Curvature”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0203061.
Jump To The First Citation Point In The Article 35 Manasse, F.K., “Distortion in the metric of a small center of gravitational attraction due to its proximity to a very large mass”, J. Math. Phys., 4, 746-761, (1963).
Jump To The First Citation Point In The Article 36 Manasse, F.K., and Misner, C.W., “Fermi normal coordinates and some basic concepts in differential geometry”, J. Math. Phys., 4, 735-745, (1963).
Jump To The First Citation Point In The Article 37 Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027-1-084027-17, (2003). For a related online version see: Y. Mino, “Perturbative Approach to an orbital evolution around a Supermassive black hole”, (February, 2003), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0302075.
Jump To The First Citation Point In The Article 38 Mino, Y., Nakano, H., and Sasaki, M., “Covariant Self-Force Regularization of a Particle Orbiting a Schwarzschild Black Hole - Mode Decomposition Regularization”, Prog. Theor. Phys., 108, 1039-1064, (2003). For a related online version see: Y. Mino, et al., “Covariant Self-force Regularization of a Particle Orbiting a Schwarzschild Black Hole - Mode Decomposition Regularization -”, (November, 2001), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0111074.
Jump To The First Citation Point In The Article 39 Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457-3476, (1997). For a related online version see: Y. Mino, et al., “Gravitational Radiation Reaction to a Particle Motion”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9606018.
Jump To The First Citation Point In The Article 40 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, San Francisco, CA, U.S.A., 1973).
Jump To The First Citation Point In The Article 41 Morette-DeWitt, C., and DeWitt, B.S., “Falling charges”, Physics (Long Island City, N.Y.), 1, 3, (1964).
Jump To The First Citation Point In The Article 42 Morette-DeWitt, C., and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd. Seanc. Acad. Sci., 251, 1868, (1960).
Jump To The First Citation Point In The Article 43 Nakano, H., Sago, N., and Sasaki, M., “Gauge problem in the gravitational self-force: First post Newtonian force under Regge-Wheeler gauge”, Phys. Rev. D, 68, 124003-1-124003-31, (2003). For a related online version see: H. Nakano, et al., “Gauge Problem in the Gravitational Self-Force II. First Post Newtonian Force under Regge-Wheeler gauge”, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0308027.
Jump To The First Citation Point In The Article 44 Ori, A., “Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010-1-124010-19, (2003). For a related online version see: A. Ori, “Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime”, (July, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0207045.
Jump To The First Citation Point In The Article 45 Ori, A., and Rosenthal, E., “Calculation of the self force using the extended-object approach”, Phys. Rev. D, 68, 041701-1-041701-4, (2003). For a related online version see: A. Ori, et al., “Universal Self Force from an Extended-Object Approach”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0205003.
Jump To The First Citation Point In The Article 46 Pfenning, M.J., and Poisson, E., “Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes”, Phys. Rev. D, 65, 084001-1-084001-30, (2002). For a related online version see: M.J. Pfenning, et al., “Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes”, (December, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0012057.
Jump To The First Citation Point In The Article 47 Poisson, E., “An introduction to the Lorentz-Dirac equation”, (December, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9912045.
Jump To The First Citation Point In The Article 48 Quinn, T.C., “Axiomatic approach to radiation reaction of scalar point particles in curved spacetime”, Phys. Rev. D, 62, 064029-1-064029-9, (2000). For a related online version see: T.C. Quinn, “An axiomatic approach to radiation reaction of scalar point particles in curved spacetime”, (May, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0005030.
Jump To The First Citation Point In The Article 49 Quinn, T.C., and Wald, R.M., “Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381-3394, (1997). For a related online version see: T.C. Quinn, et al., “Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9610053.
Jump To The First Citation Point In The Article 50 Quinn, T.C., and Wald, R.M., “Energy conservation for point particles undergoing radiation reaction”, Phys. Rev. D, 60, 064009-1-064009-20, (1999). For a related online version see: T.C. Quinn, et al., “Energy conservation for point particles undergoing radiation reaction”, (March, 1999), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/9903014.
Jump To The First Citation Point In The Article 51 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063-1069, (1957).
Jump To The First Citation Point In The Article 52 Rohrlich, F., Classical charged particles, (Addison-Wesley, Redwood City, CA, U.S.A., 1990).
Jump To The First Citation Point In The Article 53 Sciama, D.W., Waylen, P.C., and Gilman, R.C., “Generally Covariant Integral Formulation of Einstein’s Field Equations”, Phys. Rev., 187, 1762-1766, (1969).
Jump To The First Citation Point In The Article 54 Smith, A.G., and Will, C.M., “Force on a static charge outside a Schwarzschild black hole”, Phys. Rev. D, 22, 1276-1284, (1980).
Jump To The First Citation Point In The Article 55 Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, The Netherlands, 1960).
Jump To The First Citation Point In The Article 56 Teitelboim, C., Villarroel, D., and van Weert, C.G., “Classical electrodynamics of retarded fields and point particles”, Riv. Nuovo Cimento, 3, 9, (1980).
Jump To The First Citation Point In The Article 57 Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations”, Astrophys. J., 185, 635-647, (1973).
Jump To The First Citation Point In The Article 58 Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815-1837, (1985).
Jump To The First Citation Point In The Article 59 Vishveshwara, C.V., “Stability of the Schwarzschild Metric”, Phys. Rev. D, 1, 2870-2879, (1970).
Jump To The First Citation Point In The Article 60 Wald, R.M., “On perturbations of a Kerr black hole”, J. Math. Phys., 14, 1453-1461, (1973).
Jump To The First Citation Point In The Article 61 Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203-206, (1978).
Jump To The First Citation Point In The Article 62 Wiseman, A.G., “Self-force on a static scalar test charge outside a Schwarzschild black hole”, Phys. Rev. D, 61, 084014-1-084014-14, (2000). For a related online version see: A.G. Wiseman, “The self-force on a static scalar test-charge outside a Schwarzschild black hole”, (January, 2000), [Online Los Alamos Archive Preprint]: cited on 02 April 2004,

External Linkhttp://www.arxiv.org/abs/gr-qc/0001025.
Jump To The First Citation Point In The Article 63 Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2, 2141-2160, (1970).
Jump To The First Citation Point In The Article 64 Zhang, X.-H., “Multipole expansions of the general-relativistic gravitational field of the external universe”, Phys. Rev. D, 34, 991-1004, (1986).