 |
1 |
Alvi, K., “Approximate
binary-black-hole metric”, Phys. Rev.
D, 61, 124013-1-124013-19,
(2000). For a related online version see: K. Alvi, “An
approximate binary-black-hole metric”, (December, 1999), [Online
Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9912113. |
 |
2 |
Barack, L., “Self-force on a
scalar particle in spherically symmetric spacetime via mode-sum
regularization: Radial trajectories”, Phys.
Rev. D, 62, 084027-1-084027-21,
(2000). For a related online version see: L. Barack,
“Self-force on a scalar particle in spherically symmetric spacetime
via mode-sum regularization: Radial trajectories”, (May, 2000),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0005042. |
 |
3 |
Barack, L., “Gravitational
self-force by mode sum regularization”, Phys.
Rev. D, 64, 084021-1-084021-16,
(2001). For a related online version see: L. Barack,
“Gravitational self-force by mode sum regularization”, (May, 2001),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0105040. |
 |
4 |
Barack, L., and Burko, L.,
“Radiation-reaction force on a particle plunging into a black
hole”, Phys. Rev. D, 62, 084040-1-084040-5, (2000). For a related
online version see: L. Barack, et al., “Radiation-reaction
force on a particle plunging into a black hole”, (July, 2000),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0007033. |
 |
5 |
Barack, L., and Lousto,
C.O., “Computing the gravitational self-force on a compact object
plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502-1-061502-5, (2002). For a related
online version see: L. Barack, et al., “Computing the
gravitational self-force on a compact object plunging into a
Schwarzschild black hole”, (May, 2002), [Online Los Alamos Archive
Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0205043. |
 |
6 |
Barack, L., Mino, Y.,
Nakano, H., Ori, A., and Sasaki, M., “Calculating the Gravitational
Self-Force in Schwarzschild Spacetime”, Phys.
Rev. Lett., 88,
091101-1-091101-4, (2002). For a related online version see:
L. Barack, et al., “Calculating the gravitational self-force
in Schwarzschild spacetime”, (November, 2001), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0111001. |
 |
7 |
Barack, L., and Ori, A.,
“Mode sum regularization approach for the self-force in black hole
spacetime”, Phys. Rev. D, 61, 061502-1-061502-5, (2000). For a related
online version see: L. Barack, et al., “Mode sum
regularization approach for the self-force in black hole
spacetime”, (December, 1999), [Online Los Alamos Archive Preprint]:
cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9912010. |
 |
8 |
Barack, L., and Ori, A.,
“Gravitational self-force and gauge transformations”, Phys. Rev. D, 64, 124003-1-124003-13, (2001). For a
related online version see: L. Barack, et al., “Gravitational
self force and gauge transformations”, (July, 2001), [Online Los
Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0107056. |
 |
9 |
Barack, L., and Ori, A.,
“Regularization parameters for the self-force in Schwarzschild
spacetime: Scalar case”, Phys. Rev. D,
66, 084022-1-084022-15, (2002). For a
related online version see: L. Barack, et al., “Regularization
parameters for the self force in Schwarzschild spacetime: I. scalar
case”, (April, 2002), [Online Los Alamos Archive Preprint]: cited
on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0204093. |
 |
10 |
Barack, L., and Ori, A.,
“Gravitational Self-Force on a Particle Orbiting a Kerr Black
Hole”, Phys. Rev. Lett., 90, 111101-1-111101-4, (2003). For a related
online version see: L. Barack, et al., “Gravitational
self-force on a particle orbiting a Kerr black hole”, (December,
2002), [Online Los Alamos Archive Preprint]: cited on 02 April
2004,
http://www.arxiv.org/abs/gr-qc/0212103. |
 |
11 |
Barack, L., and Ori, A.,
“Regularization parameters for the self-force in Schwarzschild
spacetime. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029-1-024029-11, (2003). For a
related online version see: L. Barack, et al., “Regularization
parameters for the self-force in Schwarzschild spacetime: II.
gravitational and electromagnetic cases”, (September, 2002),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0209072. |
 |
12 |
Burko, L.M., “Self-force
approach to synchrotron radiation”, Am. J.
Phys., 68, 456-468, (2000). For
a related online version see: L.M. Burko, “Self-force approach to
synchrotron radiation”, (February, 1999), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9902079. |
 |
13 |
Burko, L.M., “Self-Force on
a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84, 4529-4532, (2000). For a related online
version see: L.M. Burko, “Self force on particle in orbit around a
black hole”, (March, 2000), [Online Los Alamos Archive Preprint]:
cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0003074. |
 |
14 |
Burko, L.M., “Self-force on
static charges in Schwarzschild spacetime”, Class. Quantum Grav., 17, 227-250, (2000). For a related online
version see: L.M. Burko, “Self-force on static charges in
Schwarzschild spacetime”, (November, 1999), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9911042. |
 |
15 |
Burko, L.M., Harte, A.I.,
and Poisson, E., “Mass loss by a scalar charge in an expanding
universe”, Phys. Rev. D, 65, 124006-1-124006-11, (2002). For a
related online version see: L.M. Burko, et al., “Mass loss by a
scalar charge in an expanding universe”, (January, 2002), [Online
Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0201020. |
 |
16 |
Burko, L.M., and Liu, Y.T.,
“Self-force on a scalar charge in the spacetime of a stationary,
axisymmetric black hole”, Phys. Rev.
D, 64, 024006-1-024006-21,
(2001). For a related online version see: L.M. Burko, et al., “Self
force on a scalar charge in the spacetime of a stationary,
axisymmetric black hole”, (March, 2001), [Online Los Alamos Archive
Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0103008. |
 |
17 |
Burko, L.M., Liu, Y.T., and
Soen, Y., “Self-force on charges in the spacetime of spherical
shells”, Phys. Rev. D, 63, 024015-1-024015-18, (2001). For a
related online version see: L.M. Burko, et al., “Self force on
charges in the spacetime of spherical shells”, (August, 2000),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0008065. |
 |
18 |
Chrzanowski, P.L., “Vector
potential and metric perturbations of a rotating black hole”, Phys. Rev. D,
11, 2042-2062, (1975). |
 |
19 |
D’Eath, P.D., Black holes: Gravitational interactions,
(Clarendon Press, Oxford, U.K., 1996). |
 |
20 |
Detweiler, S., “Radiation
Reaction and the Self-Force for a Point Mass in General
Relativity”, Phys. Rev. Lett., 86, 1931-1934, (2001). For a related online
version see: S. Detweiler, “Radiation reaction and the
self-force for a point mass in general relativity”, (November,
2000), [Online Los Alamos Archive Preprint]: cited on 02 April
2004,
http://www.arxiv.org/abs/gr-qc/0011039. |
 |
21 |
Detweiler, S., Messaritaki,
E., and Whiting, B.F., “Self-force of a scalar field for circular
orbits about a Schwarzschild black hole”, Phys. Rev. D, 67, 104016-1-104016-18, (2003). For a
related online version see: S. Detweiler, et al., “Self-force
of a scalar field for circular orbits about a Schwarzschild black
hole”, (May, 2002), [Online Los Alamos Archive Preprint]: cited on
02 April 2004,
http://www.arxiv.org/abs/gr-qc/0205079. |
 |
22 |
Detweiler, S., and Poisson,
E., “Low multipole contributions to the gravitational self-force”,
Phys. Rev. D, 69, (2004). For a related online version
see: S. Detweiler, et al., “Low multipole contributions to the
gravitational self-force”, (December, 2003), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0312010.
In press. |
 |
23 |
Detweiler, S., and Whiting,
B.F., “Self-force via a Green’s function decomposition”, Phys. Rev. D,
67, 024025-1-024025-5, (2003). For a
related online version see: S. Detweiler, et al., “Self-force
via a Green’s function decomposition”, (February, 2002), [Online
Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0202086. |
 |
24 |
DeWitt, B.S., and Brehme,
R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9,
220-259, (1960). |
 |
25 |
Dirac, P.A.M., “Classical
theory of radiating electrons”, Proc. R. Soc.
London, Ser. A, 167, 148,
(1938). |
 |
26 |
Flanagan, E.E., and Wald,
R.M., “Does back reaction enforce the averaged null energy
condition in semiclassical gravity?”, Phys.
Rev. D, 54, 6233-6283, (1996).
For a related online version see: E.E. Flanagan, et al., “Does
backreaction enforce the averaged null energy condition in
semiclassical gravity?”, (February, 1996), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9602052. |
 |
27 |
Friedlander, F.G., The wave equation on a curved spacetime,
(Cambridge University Press, Cambridge, U.K., 1975). |
 |
28 |
Hadamard, J., Lectures on Cauchy’s problem in linear partial
differential equations, (Yale University Press, New Haven,
CT, U.S.A., 1923). |
 |
29 |
Hobbs, J.M., “A Vierbein
Formalism for Radiation Damping”, Ann. Phys.
(N.Y.), 47, 141-165,
(1968). |
 |
30 |
Jackson, J.D., Classical Electrodynamics, Third Edition,
(Wiley, New York, NY, U.S.A., 1999). |
 |
31 |
Kates, R.E., “Motion of a
small body through an external field in general relativity
calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853-1870, (1980). |
 |
32 |
ESA and NASA, “LISA Home
Page”, (2004), [Online HTML Document]: cited on 02 April
2004,
http://lisa.jpl.nasa.gov. |
 |
33 |
Lousto, C.O., “Pragmatic
Approach to Gravitational Radiation Reaction in Binary Black
Holes”, Phys. Rev. Lett., 84, 5251-5254, (2000). For a related online
version see: C.O. Lousto, “Pragmatic approach to gravitational
radiation reaction in binary black holes”, (December, 1999),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9912017. |
 |
34 |
Lousto, C.O., and Whiting,
B.F., “Reconstruction of black hole metric perturbations from the
Weyl curvature”, Phys. Rev. D, 66, 024026-1-024026-7, (2002). For a related
online version see: C.O. Lousto, et al., “Reconstruction of Black
Hole Metric Perturbations from Weyl Curvature”, (March, 2002),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0203061. |
 |
35 |
Manasse, F.K., “Distortion
in the metric of a small center of gravitational attraction due to
its proximity to a very large mass”, J. Math.
Phys., 4, 746-761,
(1963). |
 |
36 |
Manasse, F.K., and Misner,
C.W., “Fermi normal coordinates and some basic concepts in
differential geometry”, J. Math.
Phys., 4, 735-745,
(1963). |
 |
37 |
Mino, Y., “Perturbative
approach to an orbital evolution around a supermassive black hole”,
Phys. Rev. D, 67, 084027-1-084027-17, (2003). For a
related online version see: Y. Mino, “Perturbative Approach to
an orbital evolution around a Supermassive black hole”, (February,
2003), [Online Los Alamos Archive Preprint]: cited on 02 April
2004,
http://www.arxiv.org/abs/gr-qc/0302075. |
 |
38 |
Mino, Y., Nakano, H., and
Sasaki, M., “Covariant Self-Force Regularization of a Particle
Orbiting a Schwarzschild Black Hole - Mode Decomposition
Regularization”, Prog. Theor. Phys.,
108, 1039-1064, (2003). For a related
online version see: Y. Mino, et al., “Covariant Self-force
Regularization of a Particle Orbiting a Schwarzschild Black Hole -
Mode Decomposition Regularization -”, (November, 2001), [Online Los
Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0111074. |
 |
39 |
Mino, Y., Sasaki, M., and
Tanaka, T., “Gravitational radiation reaction to a particle
motion”, Phys. Rev. D, 55, 3457-3476, (1997). For a related online
version see: Y. Mino, et al., “Gravitational Radiation
Reaction to a Particle Motion”, (June, 1996), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9606018. |
 |
40 |
Misner, C.W., Thorne, K.S.,
and Wheeler, J.A., Gravitation,
(Freeman, San Francisco, CA, U.S.A., 1973). |
 |
41 |
Morette-DeWitt, C., and
DeWitt, B.S., “Falling charges”, Physics
(Long Island City, N.Y.), 1, 3,
(1964). |
 |
42 |
Morette-DeWitt, C., and
Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd. Seanc.
Acad. Sci., 251, 1868,
(1960). |
 |
43 |
Nakano, H., Sago, N., and
Sasaki, M., “Gauge problem in the gravitational self-force: First
post Newtonian force under Regge-Wheeler gauge”, Phys. Rev. D, 68, 124003-1-124003-31, (2003). For a
related online version see: H. Nakano, et al., “Gauge Problem
in the Gravitational Self-Force II. First Post Newtonian Force
under Regge-Wheeler gauge”, (August, 2003), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0308027. |
 |
44 |
Ori, A., “Reconstruction of
inhomogeneous metric perturbations and electromagnetic
four-potential in Kerr spacetime”, Phys. Rev.
D, 67, 124010-1-124010-19,
(2003). For a related online version see: A. Ori,
“Reconstruction of inhomogeneous metric perturbations and
electromagnetic four-potential in Kerr spacetime”, (July, 2002),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0207045. |
 |
45 |
Ori, A., and Rosenthal, E.,
“Calculation of the self force using the extended-object approach”,
Phys. Rev. D, 68, 041701-1-041701-4, (2003). For a related
online version see: A. Ori, et al., “Universal Self Force from
an Extended-Object Approach”, (May, 2002), [Online Los Alamos
Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0205003. |
 |
46 |
Pfenning, M.J., and Poisson,
E., “Scalar, electromagnetic, and gravitational self-forces in
weakly curved spacetimes”, Phys. Rev.
D, 65, 084001-1-084001-30,
(2002). For a related online version see: M.J. Pfenning, et al.,
“Scalar, electromagnetic, and gravitational self-forces in weakly
curved spacetimes”, (December, 2000), [Online Los Alamos Archive
Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/0012057. |
 |
47 |
Poisson, E., “An
introduction to the Lorentz-Dirac equation”, (December, 1999),
[Online Los Alamos Archive Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9912045. |
 |
48 |
Quinn, T.C., “Axiomatic
approach to radiation reaction of scalar point particles in curved
spacetime”, Phys. Rev. D, 62, 064029-1-064029-9, (2000). For a related
online version see: T.C. Quinn, “An axiomatic approach to radiation
reaction of scalar point particles in curved spacetime”, (May,
2000), [Online Los Alamos Archive Preprint]: cited on 02 April
2004,
http://www.arxiv.org/abs/gr-qc/0005030. |
 |
49 |
Quinn, T.C., and Wald, R.M.,
“Axiomatic approach to electromagnetic and gravitational radiation
reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381-3394, (1997). For a related online
version see: T.C. Quinn, et al., “Axiomatic approach to
electromagnetic and gravitational radiation reaction of particles
in curved spacetime”, (October, 1996), [Online Los Alamos Archive
Preprint]: cited on 02 April 2004,
http://www.arxiv.org/abs/gr-qc/9610053. |
 |
50 |
Quinn, T.C., and Wald, R.M.,
“Energy conservation for point particles undergoing radiation
reaction”, Phys. Rev. D, 60, 064009-1-064009-20, (1999). For a
related online version see: T.C. Quinn, et al., “Energy
conservation for point particles undergoing radiation reaction”,
(March, 1999), [Online Los Alamos Archive Preprint]: cited on 02
April 2004,
http://www.arxiv.org/abs/gr-qc/9903014. |
 |
51 |
Regge, T., and Wheeler,
J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063-1069, (1957). |
 |
52 |
Rohrlich, F., Classical charged particles,
(Addison-Wesley, Redwood City, CA, U.S.A., 1990). |
 |
53 |
Sciama, D.W., Waylen, P.C.,
and Gilman, R.C., “Generally Covariant Integral Formulation of
Einstein’s Field Equations”, Phys.
Rev., 187, 1762-1766,
(1969). |
 |
54 |
Smith, A.G., and Will, C.M.,
“Force on a static charge outside a Schwarzschild black hole”,
Phys. Rev. D, 22, 1276-1284, (1980). |
 |
55 |
Synge, J.L., Relativity: The General Theory,
(North-Holland, Amsterdam, The Netherlands, 1960). |
 |
56 |
Teitelboim, C., Villarroel,
D., and van Weert, C.G., “Classical electrodynamics of retarded
fields and point particles”, Riv. Nuovo
Cimento, 3, 9,
(1980). |
 |
57 |
Teukolsky, S.A.,
“Perturbations of a rotating black hole. I. Fundamental equations
for gravitational, electromagnetic, and neutrino-field
perturbations”, Astrophys. J., 185, 635-647, (1973). |
 |
58 |
Thorne, K.S., and Hartle,
J.B., “Laws of motion and precession for black holes and other
bodies”, Phys. Rev. D, 31, 1815-1837, (1985). |
 |
59 |
Vishveshwara, C.V.,
“Stability of the Schwarzschild Metric”, Phys. Rev. D, 1, 2870-2879, (1970). |
 |
60 |
Wald, R.M., “On
perturbations of a Kerr black hole”, J. Math.
Phys., 14, 1453-1461,
(1973). |
 |
61 |
Wald, R.M., “Construction of
Solutions of Gravitational, Electromagnetic, or Other Perturbation
Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203-206, (1978). |
 |
62 |
Wiseman, A.G., “Self-force
on a static scalar test charge outside a Schwarzschild black hole”,
Phys. Rev. D, 61, 084014-1-084014-14, (2000). For a
related online version see: A.G. Wiseman, “The self-force on a
static scalar test-charge outside a Schwarzschild black hole”,
(January, 2000), [Online Los Alamos Archive Preprint]: cited on 02
April 2004,
http://www.arxiv.org/abs/gr-qc/0001025. |
 |
63 |
Zerilli, F.J.,
“Gravitational field of a particle falling in a Schwarzschild
geometry analyzed in tensor harmonics”, Phys.
Rev. D, 2, 2141-2160,
(1970). |
 |
64 |
Zhang, X.-H., “Multipole
expansions of the general-relativistic gravitational field of the
external universe”, Phys. Rev. D,
34, 991-1004, (1986). |