1 Abramowicz, M.A., “Centrifugal force: a few surprises”, Mon. Not. R. Astron. Soc., 245, 733-746, (1990).
2 Abramowicz, M.A., “Relativity of inwards and outwards: an example”, Mon. Not. R. Astron. Soc., 256, 710-718, (1992).
3 Abramowicz, M.A., Bengtsson, I., Karas, V., and Rosquist, K., “Poincaré ball embeddings of the optical geometry”, Class. Quantum Grav., 19, 3963-3976, (2002). For a related online version see: M.A. Abramowicz, et al., (June, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0206027.
4 Abramowicz, M.A., Carter, B., and Lasota, J.P., “Optical reference geometry for stationary and static dynamics”, Gen. Relativ. Gravit., 20, 1172-1183, (1988).
5 Abramowicz, M.A., and Lasota, J.P., “A note on a paradoxical property of the Schwarzschild solution”, Acta Phys. Pol., B5, 327-329, (1974).
6 Abramowicz, M.A., and Prasanna, A.R., “Centrifugal force reversal near a Schwarzschild black hole”, Mon. Not. R. Astron. Soc., 245, 720-728, (1990).
7 Alsing, P.M., “The optical-mechanical analogy for stationary metrics in general relativity”, Am. J. Phys., 66, 779-790, (1998).
8 Ames, W.L., and Thorne, K.S., “The optical appearance of a star that is collapsing through its gravitational radius”, Astrophys. J., 151, 659-670, (1968).
9 Anderson, M.R., “Gravitational lensing by curved cosmic strings”, in Kochanek, C.S., and Hewitt, J.N., eds., Astrophysical Applications of Gravitational Lensing: Proceedings of the 173rd Symposium of the International Astronomical Union, held in Melbourne, Australia, 9-14 July 1995, volume 173 of IAU Symposia, 377-378, (Kluwer, Dordrecht, Netherlands, 1996).
10 Ansorg, M., “Timelike geodesic motions within the general relativistic gravitational field of the rigidly rotating disk of dust”, J. Math. Phys., 39, 5984-6000, (1998).
11 Arnold, V.I., Gusein-Zade, S.M., and Varchenko, A.N., Singularities of Differentiable Maps. Vol. 1: The Classification of Critical Points, Caustics and Wave Fronts, volume 82 of Monographs in Mathematics, (Birkhäuser, Boston, U.S.A., 1985).
12 Asaoka, I., “X-ray spectra at infinity from a relativistic accretion disk around a Kerr black hole”, Publ. Astron. Soc. Japan, 41, 763-778, (1989).
13 Atkinson, R.d’E., “On light tracks near a very massive star”, Astron. J., 70, 517-523, (1965).
14 Bao, G., Hadrava, P., and Ostgaard, E., “Emission-line profiles from a relativistic accretion disk and the role of its multiple images”, Astrophys. J., 435, 55-65, (1994).
15 Bao, G., Hadrava, P., and Ostgaard, E., “Multiple images and light curves of an emitting source on a relativistic eccentric orbit around a black hole”, Astrophys. J., 425, 63-71, (1994).
16 Bardeen, J.M., “Timelike and null geodesics in the Kerr metric”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes. Les Astres Occlus. École d’été de Physique Théorique, Les Houches 1972, 215-239, (Gordon and Breach, New York, U.S.A., 1973).
17 Bardeen, J.M., and Cunningham, C.T., “The optical appearance of a star orbiting an extreme Kerr black hole”, Astrophys. J., 183, 237-264, (1973).
18 Bardeen, J.M., and Wagoner, R.V., “Uniformly rotating disks in general relativity”, Astrophys. J. Lett., 158, L65-L69, (1969).
19 Bardeen, J.M., and Wagoner, R.V., “Relativistic disks. I. Uniform rotation”, Astrophys. J., 167, 359-423, (1971).
20 Barraco, D., Kozameh, C.N., Newman, E.T., and Tod, P., “Geodesic Deviation and Minikowski Space”, Gen. Relativ. Gravit., 22, 1009-1019, (1990).
21 Barriola, M., and Vilenkin, A., “Gravitational field of a global monopole”, Phys. Rev. Lett., 63, 341-343, (1989).
22 Bartelmann, M., and Schneider, P., “Weak Gravitational Lensing”, Phys. Rep., 340, 291-472, (2001). For a related online version see: M. Bartelmann, et al., (December, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9912508.
23 Bażański, S.L., “Some properties of light propagation in relativity”, in Rembieliński, J., ed., Particles, Fields, and Gravitation. Proceedings of a conference held in Lodz, Poland, 15-19 April 1998, volume 453 of AIP Conference Proceedings, 421-430, (American Institute of Physics, Woodbury, U.S.A., 1998).
24 Bażański, S.L., and Jaranowski, P., “Geodesic deviation in the Schwarzschild space-time”, J. Math. Phys., 30, 1794-1803, (1989).
25 Beem, J., Ehrlich, P., and Easley, K., Global Lorentzian Geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics, (Dekker, New York, U.S.A., 1996), 2nd edition.
26 Bernal, A.N., and Sánchez, M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, (January, 2004), [Online Los Alamos Archive Preprint]: cited on 30 May 2004,

External Linkhttp://arXiv.org/abs/gr-qc/0401112.
27 Bernal, A.N., and Sánchez, M., “On smooth Cauchy hypersurfaces and Geroch’s splitting theorem”, Commun. Math. Phys., 243, 461-470, (2003). For a related online version see: A.N. Bernal, et al., (June, 2003), [Online Los Alamos Archive Preprint]: cited on 30 May 2004,

External Linkhttp://arXiv.org/abs/gr-qc/0306108.
28 Berry, M.V., and Upstill, C., “Catastrophe optics: Morphologies of caustics and their diffraction patterns”, volume 18 of Progress in Optics, 257-346, (North-Holland, Amsterdam, Netherlands, 1980).
29 Bezerra, V.B., “Gravitational analogue of the Aharonov-Bohm effect in four and three dimensions”, Phys. Rev. D, 35, 2031-2033, (1987).
30 Bilić, N., Nikolić, H., and Viollier, R.D., “Fermion stars as gravitational lenses”, Astrophys. J., 537, 909-915, (2000). For a related online version see: N. Bilić, et al., (December, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9912381.
31 Birch, P., “Is the universe rotating?”, Nature, 298, 451-454, (1982).
32 Blake, C., and Wall, J., “A velocity dipole in the distribution of radio galaxies”, Nature, 416, 150-152, (2002). For a related online version see: C. Blake, et al., “Detection of the velocity dipole in the radio galaxies of the NRAO VLA Sky Survey”, (March, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0203385.
33 Blandford, R., and Narayan, R., “Fermat’s principle, caustics, and the classification of gravitational lens images”, Astrophys. J., 310, 568-582, (1986).
34 Blandford, R.D., “The future of gravitational optics”, Publ. Astron. Soc. Pac., 113, 1309-1311, (2001). For a related online version see: R.D. Blandford, (October, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0110392.
35 Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, Cambridge, U.K., 2002).
36 Boyer, R.H., and Lindquist, R.W., “Maximal analytic extension of the Kerr metric”, J. Math. Phys., 8, 265-281, (1967).
37 Bozza, V., “Gravitational lensing in the strong field limit”, Phys. Rev. D, 66, 103001, (2002). For a related online version see: V. Bozza, (August, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0208075.
38 Bozza, V., “Quasiequatorial gravitational lensing by spinning black holes in the strong field limit”, Phys. Rev. D, 67, 103006, (2003). For a related online version see: V. Bozza, (October, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0210109.
39 Bozza, V., Capozziello, S., Iovane, G., and Scarpetta, G., “Strong field limit of black hole gravitational lensing”, Gen. Relativ. Gravit., 33, 1535-1548, (2001). For a related online version see: V. Bozza, et al., (February, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0102068.
40 Bozza, V., and Mancini, L., “Time delay in black hole gravitational lensing as a distance estimator”, Gen. Relativ. Gravit., 36, 435-450, (2004). For a related online version see: V. Bozza, et al., (May, 2003), [Online Los Alamos Archive Preprint]: cited on 30 May 2004,

External Linkhttp://arXiv.org/abs/gr-qc/0305007.
41 Brill, D., “A simple derivation of the general redshift formula”, in Farnsworth, D., Fink, J., Porter, J., and Thompson, A., eds., Methods of local and global differential geometry in general relativity: Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13-17, 1970, volume 14 of Lecture Notes in Physics, 45-47, (Springer, Berlin, Germany; New York, U.S.A., 1972).
42 Brill, D., “Observational contacts of general relativity”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology: Proceedings of the Summer School held 14-26 August 1972 at the Banff Centre, Banff, Alberta, volume 38 of Astrophysics and space science library, 127-152, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1973).
43 Brinkmann, H.W., “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94, 119-145, (1925).
44 Bromley, B.C., Melia, F., and Liu, S., “Polarimetric Imaging of the Massive Black Hole at the Galactic Center”, Astrophys. J. Lett., 555, L83-L86, (2001). For a related online version see: B.C. Bromley, et al., (June, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0106180.
45 Bruckman, W., and Esteban, E.P., “An alternative calculation of light bending and time delay by a gravitational field”, Am. J. Phys., 61, 750-754, (1993).
46 Budic, R., and Sachs, R.K., “Scalar time functions: differentiability”, in Cahen, M., and Flato, M., eds., Differential Geometry and Relativity: A volume in honour of André Lichnerowicz on his 60th birthday, 215-224, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1976).
47 Calvani, M., and de Felice, F., “Vortical null orbits, repulsive barriers, energy confinement in Kerr metric”, Gen. Relativ. Gravit., 9, 889-902, (1978).
48 Calvani, M., de Felice, F., and Nobili, L., “Photon trajectories in the Kerr-Newman metric”, J. Phys. A, 13, 3213-3219, (1980).
49 Calvani, M., Nobili, L., and de Felice, F., “Are naked singularities really visible?”, Lett. Nuovo Cimento, 23, 539-542, (1978).
50 Calvani, M., and Turolla, R., “Complete description of photon trajectories in the Kerr-Newman space-time”, J. Phys. A, 14, 1931-1942, (1981).
51 Candela, A.M., Flores, J.L., and Sánchez, M., “On general plane fronted waves. Geodesics”, Gen. Relativ. Gravit., 35, 631-649, (2003).
52 Carathéodory, C., Calculus of variations and partial differential equations of the first order, (Chelsea Publishing, New York, U.S.A., 1982), 2nd (rev.) english edition.
53 Carter, B., “Global structure of the Kerr family of gravitational fields”, Phys. Rev., 174, 1559-1571, (1968).
54 Chandrasekhar, S., The Mathematical Theory of Black Holes, volume 69 of The International Series of Monographs on Physics, (Clarendon Press, Oxford, U.K., 1983).
55 Chetouani, L., and Clément, G., “Geometrical optics in the Ellis geometry”, Gen. Relativ. Gravit., 16, 111-119, (1984).
56 Chrobok, T., and Perlick, V., “Classification of image distortions in terms of Petrov types”, Class. Quantum Grav., 18, 3059-3079, (2001). For a related online version see: T. Chrobok, et al., (December, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0012088.
57 Chruściel, P., and Galloway, G., “Horizons non-differentiable on a dense set”, Commun. Math. Phys., 193, 449-470, (1998).
58 Clarke, C.J.S., Ellis, G.F.R., and Vickers, J.A., “The large-scale bending of cosmic strings”, Class. Quantum Grav., 7, 1-14, (1990).
59 Claudel, C.-M., Virbhadra, K.S., and Ellis, G.F.R., “The geometry of photon surfaces”, J. Math. Phys., 42, 818-838, (2001). For a related online version see: C.-M. Claudel, et al., (May, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0005050.
60 Clément, G., “Stationary solutions in three-dimensional general relativity”, Int. J. Theor. Phys., 24, 267-275, (1985).
61 Connors, P.A., and Stark, R.F., “Observable gravitational effects on polarised radiation coming from near a black hole”, Nature, 269, 128-129, (1977).
62 Cowling, S.A., “Triangulation lines in stationary space-times with axial symmetry”, Astrophys. Space Sci., 95, 79-85, (1983).
63 Cowling, S.A., “Gravitational light deflection in the Solar System”, Mon. Not. R. Astron. Soc., 209, 415-427, (1984).
64 Cramer, J.G., Forward, R.L., Morris, M.S., Visser, M., Benford, G., and Landis, G., “Natural wormholes as gravitational lenses”, Phys. Rev. D, 51, 3117-3120, (1996). For a related online version see: J.G. Cramer, et al., (September, 1994), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9409051.
65 Cunningham, C.T., “The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole”, Astrophys. J., 202, 788-802, (1975).
66 Cunningham, C.T., “Optical appearance of distant objects to observers near and inside a Schwarzschild black hole”, Phys. Rev. D, 12, 323-328, (1975).
67 Cunningham, C.T., and Bardeen, J.M., “The optical appearance of a star orbiting an extreme Kerr black hole”, Astrophys. J. Lett., 173, L137-L142, (1972).
68 Dabrowski, M.P., and Osarczuk, J., “Gravitational lensing properties of the Reissner-Nordström type neutron star”, in Kayser, R., Schramm, T., and Nieser, L., eds., Gravitational Lenses: Proceedings of a conference held in Hamburg, Germany, 9-13 September 1991, volume 406 of Lecture Notes in Physics, 366, (Springer, Berlin, Germany; New York, U.S.A., 1992).
69 Dabrowski, M.P., and Osarczuk, J., “Light curves of relativistic charged neutron star”, Astrophys. Space Sci., 229, 139-155, (1995).
70 Dabrowski, M.P., and Schunck, F.E., “Boson stars as gravitational lenses”, Astrophys. J., 535, 316-324, (2000). For a related online version see: M.P. Dabrowski, et al., “Boson stars as gravitational lenses”, (July, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9807039.
71 Dabrowski, M.P., and Stelmach, J., “A redshift-magnitude formula for the universe with cosmological constant and radiation pressure”, Astron. J., 92, 1272-1277, (1986).
72 Darwin, C.G., “The gravity field of a particle”, Proc. R. Soc. London, Ser. A, 249, 180-194, (1958).
73 Darwin, C.G., “The gravity field of a particle. II”, Proc. R. Soc. London, Ser. A, 263, 39-50, (1961).
74 Dautcourt, G., “Spacetimes admitting a universal redshift function”, Astron. Nachr., 308, 293-298, (1987).
75 de Felice, F., Nobili, L., and Calvani, M., “Blackhole physics: some effects of gravity on the radiation emission”, Astron. Astrophys., 30, 111-118, (1974).
76 De Paolis, F., Geralico, A., Ingrosso, G., and Nucita, A.A., “The black hole at the galactic center as a possible retro-lens for the S2 orbiting star”, Astron. Astrophys., 409, 809-812, (2003). For a related online version see: F. De Paolis, et al., (July, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0307493.
77 Deser, S., Jackiw, R., and ’t Hooft, G., “Three-dimensional Einstein gravity: dynamics of flat space”, Ann. Phys. (N.Y.), 152, 220-235, (1984).
78 Dold, A., Lectures on Algebraic Topology, volume 20 of Grundlehren der mathematischen Wissenschaften, (Springer, Berlin, Germany; New York, U.S.A., 1980), 2nd edition.
79 Dowker, J.S., and Kennedy, G., “Finite temperature and boundary effects in static space-times”, J. Phys. A, 11, 895-920, (1978).
80 Droste, J., “The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field”, Proc. K. Ned. Akad. Wetensch., 19, 197, (1916).
81 Dultzin-Hacyan, D., and Hacyan, S., “Comments on the optical appearance of white holes”, Rev. Mex. Astron. Astr., 2, 263-268, (1977).
82 Durrer, R., Gauge invariant cosmological perturbation theory. A general study and its application to the texture scenario of structure formation, (Gordon and Breach, Lausanne, Switzerland, 1994). For a related online version see: R. Durrer, “Gauge invariant cosmological perturbation theory”, (November, 1993), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9311041.
83 Dwivedi, I.H., “Photon redshift and the appearance of a naked singularity”, Phys. Rev. D, 58, 064004, (1998).
84 Dwivedi, I.H., and Kantowski, R., “The luminosity of a collapsing star”, in Farnsworth, D., Fink, J., Porter, J., and Thompson, A., eds., Methods of Local and Global Differential Geometry in General Relativity: Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13-17, 1970, volume 14 of Lecture Notes in Physics, 126-130, (Springer, Berlin, Germany; New York, U.S.A., 1972).
85 Dyer, C.C., “Optical scalars and the spherical gravitational lens”, Mon. Not. R. Astron. Soc., 180, 231-242, (1977).
86 Dyer, C.C., and Roeder, R.C., “The distance-redshift relation for universes with no intergalactic medium”, Astrophys. J. Lett., 174, L115-L117, (1972).
87 Dyer, C.C., and Roeder, R.C., “Distance-redshift relations for universes with some intergalactic medium”, Astrophys. J. Lett., 180, L31-L34, (1973).
88 Ehlers, J., “Zum Übergang von der Wellenoptik zur geometrischen Optik in der allgemeinen Relativitätstheorie”, Z. Naturforsch., 22a, 1328-1323, (1967).
89 Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology: Proceedings of the summer school held 14-26 August 1972 at the Banff Centre, Banff, Alberta, 1-125, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1973).
90 Ehlers, J., “Foundations of gravitational lens theory. (Geometry of light cones)”, Ann. Phys. (Leipzig), 9, 307-320, (2000).
91 Ehlers, J., Frittelli, S., and Newman, E.T., “Gravitational lensing from a spacetime perspective”, in Ashtekar, A., Cohen, R., Howard, D., Renn, J., Sarkar, S., and Shimony, A., eds., Revisiting the foundations of relativistic physics: Festschrift in honor of John Stachel, volume 234 of Boston Studies in the Philosophy of Science, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2003).
92 Ehlers, J., and Kundt, W., “Exact solutions of gravitational field equations”, in Witten, L., ed., Gravitation: an introduction to current research, 49-101, (Wiley, New York, U.S.A., 1962).
93 Ehlers, J., and Newman, E.T., “The theory of caustics and wave front singularities with physical applications”, J. Math. Phys., 41, 3344-3378, (2000). For a related online version see: J. Ehlers, et al., (June, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9906065.
94 Ehrlich, P., and Emch, G., “Gravitational waves and causality”, Rev. Math. Phys., 4, 163-221, (1992).
95 Ehrlich, P., and Emch, G., “Geodesic and causal behavior of gravitational plane waves: astigmatic conjugacy”, in Greene, R., and Yau, S.T., eds., Differential Geometry. Pt. 2: Geometry in Mathematical Physics and Related Topics. Proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 8-28, 1990, volume 54 of Proceedings of Symposia in Pure Mathematics, 203-209, (American Mathematical Society, Providence, U.S.A., 1993).
96 Eiroa, E.F., Romero, G.E., and Torres, D.F., “Reissner-Nordström black hole lensing”, Phys. Rev. D, 66, 024010, (2002). For a related online version see: E.F. Eiroa, et al., (March, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0203049.
97 Ellis, G.F.R., “Relativistic cosmology”, in Sachs, R.K., ed., General Relativity and Cosmology: Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June - 12 July 1969, 104-182, (Academic Press, New York, U.S.A., 1971).
98 Ellis, G.F.R., “Limits to verification in cosmology”, Ann. N.Y. Acad. Sci., 336, 130-160, (1980).
99 Ellis, G.F.R., Bassett, B.A.C.C., and Dunsby, P.K.S., “Lensing and caustic effects on cosmological distances”, Class. Quantum Grav., 15, 2345-2361, (1998). For a related online version see: G.F.R. Ellis, et al., (January, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9801092.
100 Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R., and Whitman, A.P., “Ideal observational cosmology”, Phys. Rep., 124, 315-417, (1985).
101 Ellis, G.F.R., and van Elst, H., “Deviation of geodesics in FLRW spacetime geometries”, in Harvey, A., ed., On Einstein’s path. Essays in honor of Engelbert Schücking, 203, (Springer, New York, U.S.A., 1999). For a related online version see: G.F.R. Ellis, et al., (September, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9709060.
102 Ellis, H.G., “Ether flow through a drainhole: A particle model in general relativity”, J. Math. Phys., 14, 104-118, (1973).
103 Eshleman, R. von, “Gravitational lens of the sun - Its potential for observations and communications over interstellar distances”, Science, 205, 1133-1135, (1979).
104 Etherington, I.M.H., “On the definition of distance in general relativity”, Philos. Mag. and J. of Science, 15, 761-773, (1933).
105 Evans, J., Islam, A., and Nandi, K.K., “The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equation of motion of particles and photons”, Gen. Relativ. Gravit., 28, 413-439, (1996).
106 Evans, J., Nandi, K.K., and Islam, A., “The optical-mechanical analogy in general relativity: New methods for the paths of light and of the planets”, Am. J. Phys., 64, 1404-1415, (1006).
107 Falcke, H., and Hehl, F.W., eds., The galactic black hole, Series in High Energy Physics, Cosmology and Gravitation, (IOP, Bristol, U.K., 2003).
108 Falcke, H., Melia, F., and Agol, E., “Viewing the shadow of the black hole at the galactic center”, Astrophys. J. Lett., 528, L13-L16, (2000). For a related online version see: H. Falcke, et al., (December, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9912263.
109 Fanton, C., Calvani, M., de Felice, F., and Cadez, A., “Detecting accretion disks in active galactic nuclei”, Publ. Astron. Soc. Japan, 49, 159-169, (1997).
110 Faraoni, V., “Nonstationary gravitational lenses and the Fermat principle”, Astrophys. J., 398, 425-428, (1992). For a related online version see: V. Faraoni, (May, 1992), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9205001.
111 Faraoni, V., “Multiple imaging by gravitational waves”, Int. J. Mod. Phys. D, 7, 409-429, (1998). For a related online version see: V. Faraoni, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9707236.
112 Faulkner, J., Hoyle, F., and Narlikar, J.V., “On the behavior of radiation near massive bodies.”, Astrophys. J., 140, 1100-1105, (1964).
113 Federer, H., Geometric measure theory, volume 153 of Grundlehren der mathematischen Wissenschaften, (Springer, Berlin, Germany; New York, U.S.A., 1969).
114 Flamm, L., “Beiträge zur Einsteinschen Gravitationstheorie”, Phys. Z., 17, 448-453, (1916).
115 Ford, L.H., and Vilenkin, A., “A gravitational analogue of the Aharonov-Bohm effect”, J. Phys. A, 14, 2353-2357, (1981).
116 Frankel, T., Gravitational Curvature : An Introduction to Einstein’s Theory, (Freeman, San Francisco, U.S.A., 1979).
117 Frauendiener, J., “Conformal infinity”, Living Rev. Relativity, 3, lrr-2000-4, (2000), [Online article]: cited on 30 October 2003,

http://www.livingreviews.org/lrr-2000-4.
118 Friedrich, H., and Stewart, J., “Characteristic initial data and wavefront singularities in general relativity”, Proc. R. Soc. London, Ser. A, 385, 345-371, (1983).
119 Frittelli, S., Kling, T.P., and Newman, E.T., “Spacetime perspective of Schwarzschild lensing”, Phys. Rev. D, 61, 064021, (2000). For a related online version see: S. Frittelli, et al., (January, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0001037.
120 Frittelli, S., Kling, T.P., and Newman, E.T., “Image distortion from optical scalars in nonperturbative gravitational lensing”, Phys. Rev. D, 63, 023007, (2001). For a related online version see: S. Frittelli, et al., (November, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0011108.
121 Frittelli, S., Kling, T.P., and Newman, E.T., “Image distortion in nonperturbative gravitational lensing”, Phys. Rev. D, 63, 023006, (2001). For a related online version see: S. Frittelli, et al., (November, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0011107.
122 Frittelli, S., Kling, T.P., and Newman, E.T., “Fermat potentials for nonperturbative gravitational lensing”, Phys. Rev. D, 65, 123007, (2002). For a related online version see: S. Frittelli, et al., (May, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0205014.
123 Frittelli, S., and Newman, E.T., “Exact universal gravitational lensing equation”, Phys. Rev. D, 59, 124001, (1999). For a related online version see: S. Frittelli, et al., (October, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9810017.
124 Frittelli, S., and Newman, E.T., “Dynamics of Fermat potentials in nonperturbative gravitational lensing”, Phys. Rev. D, 65, 123006, (2002). For a related online version see: S. Frittelli, et al., (May, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0205014.
125 Frittelli, S., Newman, E.T., and Silva-Ortigoza, G., “The eikonal equation in asymptotically flat space-times”, J. Math. Phys., 40, 1041-1056, (1999).
126 Frittelli, S., Newman, E.T., and Silva-Ortigoza, G., “The eikonal equation in flat space: Null surfaces and their singularities. I”, J. Math. Phys., 40, 383-407, (1999). For a related online version see: S. Frittelli, et al., (September, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9809019.
127 Frittelli, S., and Oberst, T.E., “Image distortion by thick lenses”, Phys. Rev. D, 65, 023005, (2001).
128 Frittelli, S., and Petters, A.O., “Wavefronts, caustic sheets, and caustic surfing in gravitational lensing”, J. Math. Phys., 43, 5578-5611, (2002). For a related online version see: S. Frittelli, et al., (August, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0208135.
129 Ftaclas, C., Kearney, M.W., and Pechenick, K.R., “Hot spots on neutron stars. II. The observer’s sky”, Astrophys. J., 300, 203-208, (1986).
130 Fukue, J., and Yokoyama, T., “Color photographs of an accretion disk around a black hole”, Publ. Astron. Soc. Japan, 40, 15-24, (1988).
131 Gal’tsov, D.V., and Masár, E., “Geodesics in spacetimes containing cosmic strings”, Class. Quantum Grav., 6, 1313-1341, (1989).
132 Garfinkle, D., “Traveling waves in strongly gravitating cosmic strings”, Phys. Rev. D, 41, 1112-1115, (1990).
133 Geroch, R., “Domain of dependence”, J. Math. Phys., 11, 417-449, (1970).
134 Geroch, R., “Space-time structure from a global viewpoint”, in Sachs, R.K., ed., General Relativity and Cosmology: Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June - 12 July 1969, 71-103, (Academic Press, New York, U.S.A., 1971).
135 Geroch, R., and Traschen, J., “Strings and other distributional sources in general relativity”, Phys. Rev. D, 36, 1017-1031, (1987).
136 Giannoni, F., and Masiello, A., “On a Fermat principle in general relativity. A Morse theory for light rays”, Gen. Relativ. Gravit., 28, 855-897, (1996).
137 Giannoni, F., Masiello, A., and Piccione, P., “A variational theory for light rays in stably causal Lorentzian manifolds: Regularity and multiplicity results”, Commun. Math. Phys., 187, 375-415, (1997).
138 Giannoni, F., Masiello, A., and Piccione, P., “A Morse theory for light rays on stably causal Lorentzian manifolds”, Ann. Inst. Henri Poincare A, 69, 359-412, (1998).
139 Giannoni, F., Masiello, A., and Piccione, P., “Convexity and the finiteness of the number of geodesics. Applications to the multiple-image effect”, Class. Quantum Grav., 16, 731-748, (2001).
140 Giannoni, F., Masiello, A., and Piccione, P., “On the finiteness of light rays between a source and an observer on conformally stationary space-times”, Gen. Relativ. Gravit., 33, 491-514, (2001).
141 Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green functions”, Proc. R. Soc. London, Ser. A, 358, 467-494, (1978).
142 Godfrey, B.B., “Mach’s principle, the Kerr metric, and black-hole physics”, Phys. Rev. D, 1, 2721-2725, (1970).
143 Gordon, W., “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Berlin), 72, 421-456, (1923).
144 Gott, J.R., “Gravitational lensing effects of vacuum strings: Exact solutions”, Astrophys. J., 288, 422-427, (1985).
145 Gould, A., “Femtolensing of gamma-ray bursters”, Astrophys. J. Lett., 386, L5-L7, (1992).
146 Hagihara, Y., “Theory of the relativistic trajectories in a gravitational field of Schwarzschild”, Jpn. J. Astron. Geophys., 8, 67-176, (1931).
147 Hanni, R.S., “Wave fronts near a black hole”, Phys. Rev. D, 16, 933-936, (1977).
148 Harris, S., “Conformally stationary spacetimes”, Class. Quantum Grav., 9, 1823-1827, (1992).
149 Hasse, W., “The apparent size of distant objects”, Gen. Relativ. Gravit., 19, 515-524, (1987).
150 Hasse, W., Kriele, M., and Perlick, V., “Caustics of wavefronts in general relativity”, Class. Quantum Grav., 13, 1161-1182, (1996).
151 Hasse, W., and Perlick, V., “Geometrical and kinematical characterization of parallax-free world models”, J. Math. Phys., 29, 2064-2068, (1988).
152 Hasse, W., and Perlick, V., “On spacetime models with an isotropic Hubble law”, Class. Quantum Grav., 16, 2559-2576, (1999).
153 Hasse, W., and Perlick, V., “Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal”, Gen. Relativ. Gravit., 34, 415-433, (2002). For a related online version see: W. Hasse, et al., (August, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0108002.
154 Hawking, S.W., and Ellis, G.F.R., The large scale structure of space-time, (Cambridge University Press, Cambridge, U.K., 1973).
155 Helliwell, T.M., and Konkowski, D.A., “Cosmic strings: Gravitation without local curvature”, Am. J. Phys., 55, 401-407, (1987).
156 Herlt, E., and Stephani, H., “Wave optics of the spherical gravitational lens. I. Diffraction of a plane electromagnetic wave by a large star”, Int. J. Theor. Phys., 15, 45-65, (1976).
157 Herlt, E., and Stephani, H., “Wave optics of the spherical gravitational lens. II. Diffraction of a plane gravitational wave by a black hole”, Int. J. Theor. Phys., 17, 189-199, (1978).
158 Hilbert, D., “Die Grundlagen der Physik”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 53-76, (1917).
159 Hiscock, W.A., “Exact gravitational field of a string”, Phys. Rev. D, 31, 3288-3290, (1985).
160 Hledik, S., “Embedding diagrams of the ordinary and optical reference geometry of black-hole spacetimes and their astrophysical relevance”, in Hledík, S., and Stuchlík, Z., eds., Proceedings of RAGtime 2/3: Workshops on black holes and neutron stars, 25-52, (Silesian University at Opava, Opava, Czech Republic, 2001).
161 Holz, D.E., and Wald, R.M., “New method for determining cumulative gravitational lensing effects in inhomogeneous universes”, Phys. Rev. D, 58, 063501, (1998). For a related online version see: D.E. Holz, et al., (August, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9708036.
162 Holz, D.E., and Wheeler, J.A., “Retro-MACHOs: p in the sky?”, Astrophys. J., 578, 330-334, (2002). For a related online version see: D.E. Holz, et al., (September, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0209039.
163 Hubeny, V.E., and Rangamani, M., “Causal structures of pp-waves”, J. High Energy Phys.(12), 043, (2002). For a related online version see: V.E. Hubeny, et al., (November, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/hep-th/0211195.
164 Huterer, D., and Vachaspati, T., “Gravitational lensing by cosmic strings in the era of wide-field surveys”, Phys. Rev. D, 68, 041301, (2003). For a related online version see: D. Huterer, et al., (May, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0305006.
165 Iriondo, M., Kozameh, C.N., and Rojas, A.T., “Null cones from I+ and Legendre submanifolds”, J. Math. Phys., 40, 2483-2493, (1999). For a related online version see: M. Iriondo, et al., (May, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9805027.
166 Iyer, B.R., Vishveshwara, C.V., and Dhurandhar, S.V., “Ultracompact (R < 3M) objects in general relativity”, Class. Quantum Grav., 2, 219-228, (1985).
167 Jaffe, J., “The escape of light from within a massive object”, Mon. Not. R. Astron. Soc., 149, 395-401, (1970).
168 Janis, A.I., Newman, E.T., and Winicour, J., “Reality of the Schwarzschild singularity”, Phys. Rev. Lett., 20, 878-880, (1968).
169 Jaroszynski, M., and Kurpiewski, A., “Optics near Kerr black holes: spectra of advection dominated accretion flows”, Astron. Astrophys., 326, 419-426, (1997). For a related online version see: M. Jaroszynski, et al., (May, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9705044.
170 Jensen, B., and Soleng, H., “General-relativistic model of a spinning cosmic string”, Phys. Rev. D, 45, 3528-3533, (1992).
171 Jin, K.J., Zhang, Y.Z., and Zhu, Z.H., “Gravitational lensing effects of fermion-fermion stars: strong field case”, Phys. Lett. A, 264, 335-340, (2000). For a related online version see: K.J. Jin, et al., (July, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9907035.
172 Jordan, P., Ehlers, J., and Sachs, R.K., “Beiträge zur Theorie der reinen Gravitationsstrahlung”, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., 1-61, (1961).
173 Kantowski, R., “Another interpretation of the optical scalars”, J. Math. Phys., 9, 336-338, (1968).
174 Kantowski, R., “The effects of inhomogeneities on evaluating the mass parameter _O_m and the cosmological constant /\”, Astrophys. J., 507, 483-496, (1998).
175 Karas, V., and Bao, G., “On the light curve of an orbiting SPOT”, Astron. Astrophys., 257, 531-533, (1992).
176 Karas, V., Vokrouhlicky, D., and Polnarev, A.G., “In the vicinity of a rotating black hole - A fast numerical code for computing observational effects”, Mon. Not. R. Astron. Soc., 257, 569-575, (1992).
177 Karlovini, M., Rosquist, K., and Samuelsson, L., “Ultracompact stars with multiple necks”, Mod. Phys. Lett. A, 17, 197-203, (2002). For a related online version see: M. Karlovini, et al., (September, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0009073.
178 Kaufman, S.E., “A complete redshift-magnitude formula”, Astron. J., 76, 751-755, (1971).
179 Kaup, D.J., “Klein-Gordon geons”, Phys. Rev., 172, 1331-1342, (1968).
180 Kermack, W.O., McCrea, W.H., and Whittaker, E.T., “Properties of null geodesics and their applications to the theory of radiation”, Proc. R. Soc. Edinburgh, 53, 31-47, (1932).
181 Kerr, R.P., “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett., 11, 237-238, (1963).
182 Kim, S.W., and Cho, Y.M., “Gravitational lensing effect of a wormhole”, in Jantzen, R.T., and Mac Keiser, G., eds., The Seventh Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories: Proceedings of the Meeting held at Stanford University, 24-30 July 1994, 1147-1148, (World Scientific, Singapore, 1996).
183 Kling, T.P., and Newman, E.T., “Null cones in Schwarzschild geometry”, Phys. Rev. D, 59, 124002, (1999). For a related online version see: T.P. Kling, et al., (September, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9809037.
184 Kling, T.P., Newman, E.T., and Perez, A., “Comparative studies of lensing methods”, Phys. Rev. D, 62, 024025, (2000). For a related online version see: T.P. Kling, et al., (March, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0003057. Erratum Phys. Rev. D 62 (2000) 109901.
185 Kopeikin, S.M., and Schäfer, G., “Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies”, Phys. Rev. D, 60, 124002, (1999). For a related online version see: S.M. Kopeikin, et al., (February, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9902030.
186 Kottler, F., “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Phys. (Berlin), 56, 401-461, (1918).
187 Kovner, I., “Fermat principle in gravitational fields”, Astrophys. J., 351, 114-120, (1990).
188 Kozameh, C.N., Lamberti, P., and Reula, O., “Global aspects of light cone cuts”, J. Math. Phys., 32, 3423-3426, (1991).
189 Kozameh, C.N., and Newman, E.T., “Theory of light cone cuts of null infinity”, J. Math. Phys., 24, 2481-2489, (1983).
190 Kristian, J., and Sachs, R.K., “Observations in cosmology”, Astrophys. J., 143, 379-399, (1966).
191 Kristiansson, S., Sonego, S., and Abramowicz, M.A., “Optical space of the Reissner-Nordström solutions”, Gen. Relativ. Gravit., 30, 275-288, (1998).
192 Krori, K.D., Goswami, D., and Das, K., “A stationary solution for cosmic strings”, Class. Quantum Grav., 10, 125-129, (1993).
193 Kunzinger, M., and Steinbauer, R., “A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves”, J. Math. Phys., 40, 1479-1489, (1999). For a related online version see: M. Kunzinger, et al., (June, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9806009.
194 Lake, K., “Bending of light and the cosmological constant”, Phys. Rev. D, 65, 087301, (2002). For a related online version see: K. Lake, (March, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0103057.
195 Lake, K., and Roeder, R.C., “Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold”, Phys. Rev. D, 15, 3513-3519, (1977).
196 Lake, K., and Roeder, R.C., “On the optical appearance of white holes”, Astrophys. J., 226, 37-49, (1978).
197 Lake, K., and Roeder, R.C., “The present appearance of white holes”, Nature, 273, 449-450, (1978).
198 Lake, K., and Roeder, R.C., “Note on the optical appearance of a star collapsing through its gravitational radius”, Astrophys. J., 232, 277-281, (1979).
199 Lakshminarayanan, V., Ghatak, A.K., and Thyagarajan, K., Lagrangian Optics, (Kluwer, Boston, U.S.A., 2001).
200 Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon Press; Addison-Wesley, Oxford, U.K.; Reading, U.K., 1962), rev. 2nd edition.
201 Lano, R.P., “The brightness of a black hole due to gravitational lensing”, Astrophys. Space Sci., 159, 125-132, (1989).
202 Laue, H., and Weiss, M., “Maximally extended Reissner-Nordström manifold with cosmological constant”, Phys. Rev. D, 16, 3376-3379, (1977).
203 Lawrence, J.K., “Gravitational deflection of null radiation by relativistic, spherical masses”, Astrophys. J., 230, 249-254, (1979).
204 Lerner, L., “A simple calculation of the deflection of light in a Schwarzschild gravitational field”, Am. J. Phys., 65, 1194-1196, (1997).
205 Letelier, P.S., “Multiple cosmic strings”, Class. Quantum Grav., 4, L75-L77, (1987).
206 Levi-Civita, T., “La teoria di Einstein e il principio di Fermat”, Nuovo Cimento, 16, 105-114, (1918).
207 Linet, B., “The static metrics with cylindrical symmetry describing a model of cosmic strings”, Gen. Relativ. Gravit., 17, 1109-1115, (1985).
208 Low, R., “The geometry of the space of null geodesics”, J. Math. Phys., 30, 809-811, (1989).
209 Low, R., “Celestial spheres, light cones, and cuts”, J. Math. Phys., 34, 315-319, (1993).
210 Low, R., “Stable singularities of wave-fronts in general relativity”, J. Math. Phys., 39, 3332-3335, (1998). For a related online version see: R. Low, (August, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0108012.
211 Luminet, J.-P., “Image of a spherical black hole with thin accretion disk”, Astron. Astrophys., 75, 228-235, (1979).
212 Luneburg, R.K., Mathematical Theory of Optics, (University of California Press, Berkeley, U.S.A., 1964).
213 Marder, L., “Flat space-times with gravitational fields”, Proc. R. Soc. London, Ser. A, 252, 45-50, (1959).
214 Marder, L., “Locally isometric spacetimes”, in Recent Developments in General Relativity, 333-338, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1962).
215 Margerin, C., “General conjugate loci are not closed”, in Greene, R., and Yau, S.T., eds., Differential Geometry. Pt. 3: Riemannian Geometry. Proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 8-28, 1990, volume 54 of Proceedings of Symposia in Pure Mathematics, 465-478, (American Mathematical Society, Providence, U.S.A., 1993).
216 Markov, M., “On possible existence of neutrino superstars”, Phys. Lett., 10, 122-123, (1964).
217 Mashhoon, B., “Wave propagation in a gravitational field”, Phys. Lett. A, 122, 299-304, (1987).
218 Masiello, A., Variational methods in Lorentzian geometry, (Longman; Wiley, Harlow, U.K.; New York, U.S.A., 1994).
219 Mattig, W., “Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit”, Astron. Nachr., 284, 109-111, (1957).
220 McKenzie, R.H., “A gravitational lens produces an odd number of images”, J. Math. Phys., 26, 1592-1596, (1985).
221 Mészáros, P., and Riffert, H., “Gravitational light bending near neutron stars. II. Accreting pulsar spectra as a function of phase”, Astrophys. J., 327, 712-722, (1988).
222 Metzenthen, W.E., “Appearance of distant objects to an observer in a charged-black-hole spacetime”, Phys. Rev. D, 42, 1105-1117, (1990).
223 Metzner, A.W.K., “Observable properties of large relativistic masses”, J. Math. Phys., 4, 1194-1205, (1963).
224 Milnor, J., Morse Theory: Based on Lecture Notes by M. Spivak and R. Wells, volume 51 of Annals of Mathematics Studies, (Princeton University Press, Princeton, U.S.A., 1963).
225 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, New York, U.S.A., 1973).
226 Mollerach, S., and Roulet, E., Gravitational Lensing and Microlensing, (World Scientific, New Jersey, U.S.A., 2002).
227 Morris, M.S., and Thorne, K.S., “Wormholes in spacetime and their use for interstellar travel”, Am. J. Phys., 56, 395-412, (1988).
228 Morris, M.S., Thorne, K.S., and Yurtsever, U., “Wormholes, time machines, and the weak energy condition”, Phys. Rev. Lett., 61, 1446-1449, (1988).
229 Morse, M., The Calculus of Variations in the Large, volume 18 of Colloquium Publications, (American Mathematical Society, Providence, U.S.A., 1934).
230 Mustapha, N., Bassett, B.A.C.C., Hellaby, C., and Ellis, G.F.R., “The distortion of the area distance-redshift relation in inhomogeneous isotropic universes”, Class. Quantum Grav., 15, 2363-2379, (1998). For a related online version see: N. Mustapha, et al., (August, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9708043.
231 Nandi, K.K., and Islam, A., “On the optical-mechanical analogy in general relativity”, Am. J. Phys., 63, 251-256, (1995).
232 Narlikar, J.V., and Apparao, K.M.V., “White holes and high energy astrophysics”, Astrophys. Space Sci., 35, 321-336, (1975).
233 Nemiroff, R.J., “Visual distortions near a neutron star and black hole”, Am. J. Phys., 61, 619-632, (1993). For a related online version see: R.J. Nemiroff, [Online HTML Document]: cited on 30 October 2003,

External Linkhttp://www.phy.mtu.edu/bht/rjn_bht.html.
234 Nemiroff, R.J., and Ftaclas, C., “Our Sun as a gravitational lens”, Bull. Am. Astron. Soc., 29, 827, (1997).
235 Neugebauer, G., Kleinwächter, A., and Meinel, R., “Relativistically rotating dust”, Helv. Phys. Acta, 69, 472, (1996). For a related online version see: G. Neugebauer, et al., (January, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0301107.
236 Neugebauer, G., and Meinel, R., “The Einsteinian gravitational field of the rigidly rotating disk of dust”, Astrophys. J. Lett., 414, L97-L99, (1993).
237 Newman, R.P.C., “The global structure of simple spacetimes”, Commun. Math. Phys., 123, 17-52, (1989).
238 Newman, R.P.C., and Clarke, C.J.S., “An R4 spacetime with a Cauchy surface which is not R3”, Class. Quantum Grav., 4, 53-60, (1987).
239 Nollert, H.-P., Ruder, H., Herold, H., and Kraus, U., “The relativistic ‘looks’ of a neutron star”, Astron. Astrophys., 208, 153-156, (1989).
240 Noonan, T., “Image distortion by gravitational lensing”, Astrophys. J., 270, 245-249, (1983).
241 Nordström, G., “On the energy of the gravitational field in Einstein’s theory”, Proc. K. Ned. Akad. Wetensch., 20, 1238-1245, (1918).
242 Novello, M., Visser, M., and Volovik, G., eds., Artificial Black Holes, (World Scientific, New Jersey, U.S.A., 2002).
243 Nucamendi, U., and Sudarsky, D., “Quasi-asymptotically flat spacetimes and their ADM mass”, Class. Quantum Grav., 14, 1309-1327, (1997). For a related online version see: U. Nucamendi, et al., (November, 1996), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9611043.
244 Observational Astrophysics Group, University of Liège, “Lentilles gravitationelles - Gravitational Lensing”, (2003), [Web interface to database]: cited on 30 October 2003,

External Linkhttp://vela.astro.ulg.ac.be/themes/extragal/gravlens.
245 Ohanian, H., “The caustics of gravitational ‘lenses’ ”, Astrophys. J., 271, 551-555, (1983).
246 Ohanian, H., “The black hole as a gravitational lens”, Am. J. Phys., 55, 428-432, (1987).
247 O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, volume 103 of Pure and Applied Mathematics, (Academic Press, New York, U.S.A., 1983).
248 O’Neill, B., The Geometry of Kerr Black Holes, (A.K. Peters, Wellesley, U.S.A., 1995).
249 Oppenheimer, J.R., and Snyder, H., “On continued gravitational contraction”, Phys. Rev., 56, 455-459, (1939).
250 Padmanabhan, T., and Subramanian, K., “The focusing equation, caustics and the condition of multiple imaging by thick gravitational lenses”, Mon. Not. R. Astron. Soc., 233, 265-284, (1988).
251 Palais, R., “Morse theory on Hilbert manifolds”, Topology, 2, 299-340, (1963).
252 Palais, R., and Smale, S., “A generalized Morse theory”, Bull. Am. Math. Soc., 70, 165-172, (1964).
253 Pande, A.K., and Durgapal, M.C., “Trapping of photons in spherical static configurations”, Class. Quantum Grav., 3, 547-550, (1986).
254 Panov, V.F., and Sbytov, Yu. G., “Accounting for Birch’s observed anisotropy of the universe: cosmological rotation?”, Sov. Phys. JETP, 74, 411-415, (1992).
255 Panov, V.F., and Sbytov, Yu. G., “Behavior of a bundle of rays forming the image of a source in cosmological models with rotation”, Sov. Phys. JETP, 87, 417-420, (1998).
256 Pechenick, K.R., Ftaclas, C., and Cohen, J.M., “Hot spots on neutron stars - The near-field gravitational lens”, Astrophys. J., 274, 846-857, (1983).
257 Penrose, R., “The apparent shape of a relativistically moving sphere”, Proc. Cambridge Philos. Soc., 55, 137-139, (1959).
258 Penrose, R., “Conformal treatment of infinity”, in DeWitt, C.M., and DeWitt, B., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie: Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, 565-587, (Gordon and Breach, New York, U.S.A., 1964).
259 Penrose, R., “A remarkable property of plane waves in general relativity”, Rev. Mod. Phys., 37, 215-220, (1965).
260 Penrose, R., “General-relativistic energy flux and elementary optics”, in Hoffmann, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, 259-274, (Indiana University Press, Bloomington, U.S.A., 1966).
261 Penrose, R., Techniques of Differential Topology in Relativity, (Society for Industrial and Applied Mathematics, Philadelphia, U.S.A., 1972).
262 Penrose, R., and Rindler, W., Spinors and space-time. Vols. 1 and 2, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1986).
263 Perelman, G., “Ricci flow with surgery on three-manifolds”, (March, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/math.DG/0303109.
264 Perlick, V., “On Fermat’s principle in general relativity. I. The general case.”, Class. Quantum Grav., 7, 1319-1331, (1990).
265 Perlick, V., “On Fermat’s principle in general relativity. II. The conformally stationary case.”, Class. Quantum Grav., 7, 1849-1867, (1990).
266 Perlick, V., “Infinite dimensional Morse theory and Fermat’s principle in general relativity. I.”, J. Math. Phys., 36, 6915-6928, (1995).
267 Perlick, V., “Criteria for multiple imaging in Lorentzian manifolds”, Class. Quantum Grav., 13, 529-537, (1996).
268 Perlick, V., “Gravitational lensing from a geometric viewpoint”, in Schmidt, B., ed., Einstein’s Field Equations and their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, volume 540 of Lecture Notes in Physics, 373-425, (Springer, Berlin, Germany, 2000).
269 Perlick, V., Ray Optics, Fermat’s Principle, and Applications to General Relativity, volume m61 of Lecture Notes in Physics. Monographs, (Springer, Berlin, Germany; New York, U.S.A., 2000).
270 Perlick, V., “Global properties of gravitational lens maps in a Lorentzian manifold setting”, Commun. Math. Phys., 220, 403-428, (2001). For a related online version see: V. Perlick, (September, 2000), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0009105.
271 Perlick, V., “On the exact gravitational lens equation in spherically symmetric and static spacetimes”, Phys. Rev. D, 69, 064017, (2004). For a related online version see: V. Perlick, (July, 2003), [Online Los Alamos Archive Preprint]: cited on 30 May 2004,

External Linkhttp://arXiv.org/abs/gr-qc/0307072.
272 Perlick, V., and Piccione, P., “A general-relativistic Fermat principle for extended light sources and extended receivers.”, Gen. Relativ. Gravit., 30, 1461-1476, (1998).
273 Peters, P.C., “Null geodesic deviation. I. Conformally flat space-times”, J. Math. Phys., 16, 1780-1785, (1976).
274 Petters, A.O., “On relativistic corrections to microlensing effects: applications to the Galactic black hole”, Mon. Not. R. Astron. Soc., 338, 457-464, (2003). For a related online version see: A.O. Petters, (August, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0208500.
275 Petters, A.O., Levine, H., and Wambsganss, J., Singularity Theory and Gravitational Lensing, volume 21 of Progress in Mathematical Physics, (Birkhäuser, Boston, U.S.A., 2001).
276 Pineault, S., and Roeder, R.C., “Applications of geometrical optics to the Kerr metric. Analytical results”, Astrophys. J., 212, 541-549, (1977).
277 Pineault, S., and Roeder, R.C., “Applications of geometrical optics to the Kerr metric. II. Numerical results”, Astrophys. J., 213, 548-557, (1977).
278 Podolsky, J., “The structure of the extreme Schwarzschild-de Sitter space-time”, Gen. Relativ. Gravit., 31, 1703-1725, (1999).
279 Podurets, M.A., “Asymptotic behavior of the optical luminosity of a star in gravitational collapse”, Sov. Astron., 8, 868-873, (1965).
280 Poincaré, H., “Sur les lignes géodésiques des surfaces convexes”, Trans. Amer. Math. Soc., 6, 237-274, (1905).
281 Polnarev, A.G., and Turchaninov, V.I., “On light propagation near a rotating black hole. I”, Acta Astron., 29, 81-85, (1979).
282 Pretorius, F., and Israel, W., “Quasi-spherical light cones of the Kerr geometry”, Class. Quantum Grav., 15, 2289-2301, (1998). For a related online version see: F. Pretorius, et al., (March, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9803080.
283 Pyne, T., and Birkinshaw, M., “Beyond the thin lens approximation”, Astrophys. J., 458, 46-56, (1996). For a related online version see: T. Pyne, et al., (April, 1995), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9504060.
284 Quan, Pham Mau, “Inductions électromagnétiques en rélativité général et principe de Fermat”, Arch. Ration. Mech. Anal., 1, 54-80, (1957).
285 Rauch, K.P., and Blandford, R.D., “Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in active galactic nuclei”, Astrophys. J., 421, 46-68, (1994).
286 Reissner, H., “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys. (Berlin), 59, 106-120, (1916).
287 Riffert, H., and Mészáros, P., “Gravitational light bending near neutron stars. I. Emission from columns and hot spots”, Astrophys. J., 325, 207-217, (1988).
288 Rosquist, K., “A moving medium simulation of Schwarzschild black hole optics”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0309104.
289 Rosquist, K., “Trigonometric parallaxes of distant objects: What they could tell about the universe”, Astrophys. J., 331, 648-652, (1988).
290 Rubio, E.A.L., “Time delay in gravitational lensing by a charged black hole of string theory”, (September, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0309108.
291 Ruffini, R., and Bonazzola, S., “Systems of self-gravitating particles in general relativity and the concept of an equation of state”, Phys. Rev., 187, 1767-1783, (1969).
292 Sachs, R.K., “Gravitational waves in general relativity. VI: The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309-338, (1961).
293 Safonova, M., Torres, D.F., and Romero, G.E., “Microlensing by natural wormholes: theory and simulations”, Phys. Rev. D, 65, 023001, (2002). For a related online version see: M. Safonova, et al., (May, 2001), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0105070.
294 Sasaki, M., “Cosmological gravitational lens equation - Its validity and limitation”, Prog. Theor. Phys., 90, 753-781, (1993).
295 Sazhin, M., Longo, G., Capaccioli, M., Alcalá, J.M., Silvotti, R., Covone, G., Khovanskaya, O., Pavlov, M., Pannella, M., Radovich, M., and Testa, V., “CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?”, Mon. Not. R. Astron. Soc., 343, 353-359, (2003). For a related online version see: M. Sazhin, et al., (February, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/0302547.
296 Schastok, J., Soffel, M., Ruder, H., and Schneider, M., “Stellar sky as seen from the vicinity of a black hole”, Am. J. Phys., 55, 336-341, (1987).
297 Schneider, P., “A new formulation of gravitational lens theory, time-delay, and Fermat’s principle”, Astron. Astrophys., 143, 413-420, (1985).
298 Schneider, P., and Bartelmann, M., “Gravitational Lensing Bibliography”, (1999), [Online HTML document]: cited on 28 October 2003,

External Linkhttp://www.mpa-garching.mpg.de/~peter/biblio.html.
299 Schneider, P., Ehlers, J., and Falco, E.E., Gravitational Lenses, (Springer, Berlin, Germany; New York, U.S.A., 1992).
300 Schrödinger, E., Expanding Universes, (Cambridge University Press, Cambridge, U.K., 1956).
301 Schunck, F.E., and Liddle, A.R., “Boson stars in the centre of galaxies?”, in Hehl, F.W., Kiefer, C., and Metzler, R.J.K., eds., Black Holes: Theory and Observation. Proceedings of the 179th W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18-22 August 1997, volume 514 of Lecture Notes in Physics, 285, (Springer, Berlin, Germany, 1997).
302 Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 189-196, (1916).
303 Seitz, S., Schneider, P., and Ehlers, J., “Light propagation in arbitrary spacetimes and the gravitational lens approximation”, Class. Quantum Grav., 11, 2345-2373, (1994). For a related online version see: S. Seitz, et al., (March, 1994), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9403056.
304 Serre, J.P., “Homologie singulière des espaces fibrés. Applications.”, Ann. Math., 54, 425-505, (1951).
305 Shapiro, S.L., “Radiation from stellar collapse to a black hole”, Astrophys. J., 472, 308-326, (1996).
306 Sharp, N.A., “Geodesics in black hole space-times”, Gen. Relativ. Gravit., 10, 659-670, (1979).
307 Sikora, M., “On light propagation near a rotating black hole. II”, Acta Astron., 29, 87-92, (1979).
308 Sokolov, D.D., and Starobinsky, A.A., “The structure of the curvature tensor at conical singularities.”, Sov. Phys. Dokl., 22, 312-313, (1977).
309 Stachel, J., “Globally stationary but locally static spacetimes: A gravitational analog of the Aharonov-Bohm effect”, Phys. Rev. D, 26, 1281-1290, (1982).
310 Steinbauer, R., “Geodesics and geodesic deviation for impulsive gravitational waves”, J. Math. Phys., 39, 2201-2212, (1998). For a related online version see: R. Steinbauer, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9710119.
311 Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of Einstein’s Field Equation, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 2003), 2nd edition.
312 Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin, Germany; New York, U.S.A., 1984).
313 Stuchlik, Z., and Hledik, S., “Embedding diagrams of the optical geometry of Kerr backgrounds”, Acta Phys. Slov., 49, 795-803, (1999).
314 Stuchlik, Z., and Hledik, S., “Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes”, Phys. Rev. D, 60, 044006, (1999).
315 Stuchlik, Z., Hledik, S., Soltés, J., and Ostgaard, E., “Null geodesics and embedding diagrams of the interior Schwarzschild-de Sitter spacetimes with uniform density”, Phys. Rev. D, 64, 044004, (2002).
316 Stuckey, W.M., “The Schwarzschild black hole as a gravitational mirror”, Am. J. Phys., 61, 448-456, (1993).
317 Su, F.S., and Mallet, R.L., “The effect of the Kerr metric on the plane of polarization of an electromagnetic wave”, Astrophys. J., 238, 1111-1125, (1980).
318 Surpi, G. C., and Harari, D. D., “Weak lensing by large-scale structure and the polarization properties of distant radio sources”, Astrophys. J., 515, 455-464, (1999). For a related online version see: G. C. Surpi, et al., (September, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9709087.
319 Synge, J.L., “An alternative treatment of Fermat’s principle for a stationary gravitational field.”, Philos. Mag. and J. of Science, 50, 913-916, (1925).
320 Synge, J.L., “The escape of photons from gravitationally intense stars”, Mon. Not. R. Astron. Soc., 131, 463-466, (1966).
321 Terrell, J., “Invisibility of the Lorentz contraction”, Phys. Rev., 116, 1041-1045, (1959).
322 Thomas, R.C., and Kantowski, R., “Age-redshift relation for standard cosmology”, Phys. Rev. D, 62, 103507, (2000).
323 Tolman, R.C., “On the estimate of distance in a curved universe with a non-static line element”, Proc. Natl. Acad. Sci. USA, 16, 511-520, (1930).
324 Torres, D.F., Capozziello, S., and Liambase, G., “Supermassive boson star at the galactic center?”, Phys. Rev. D, 62, 104012, (2000).
325 Tsiklauri, D., and Viollier, R.D., “Dark matter concentration in the galactic center”, Astrophys. J., 500, 591-595, (1998). For a related online version see: D. Tsiklauri, et al., (May, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9805273.
326 Turyshev, S.G., and Andersson, B.G., “The 550-au mission: a critical discussion”, Mon. Not. R. Astron. Soc., 341, 577-582, (2003). For a related online version see: S.G. Turyshev, et al., (May, 2002), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0205126.
327 Uhlenbeck, K., “A Morse theory for geodesics on a Lorentz manifold”, Topology, 14, 69-90, (1975).
328 Ulmer, A., and Goodman, J., “Femtolensing: Beyond the semiclassical approximation”, Astrophys. J., 442, 67-75, (1995). For a related online version see: A. Ulmer, et al., (June, 1994), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9406042.
329 Vázquez, S.E., and Esteban, E.P., “Strong field gravitational lensing by a Kerr black hole”, (August, 2003), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/0308023.
330 Viergutz, S.U., “Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem”, Astron. Astrophys., 272, 355, (1993).
331 Viergutz, S.U., “Radiation from arbitrarily shaped objects in the vicinity of Kerr black holes”, Astrophys. Space Sci., 205, 155-161, (1993).
332 Vilenkin, A., “Gravitational fields of vacuum domain walls and strings”, Phys. Rev. D, 23, 852-857, (1981).
333 Vilenkin, A., “Cosmic strings as gravitational lenses”, Astrophys. J. Lett., 282, L51-L53, (1984).
334 Vilenkin, A., and Shellard, E.P.S., Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1994).
335 Viollier, R.D., Trautmann, D., and Tupper, G.B., “Supermassive neutrino stars and galactic nuclei”, Phys. Lett. B, 306, 79-85, (1993).
336 Virbhadra, K.S., “Janis-Newman-Winicour and Wyman solutions are the same”, Int. J. Mod. Phys. A, 12, 4831-4836, (1997). For a related online version see: K.S. Virbhadra, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/gr-qc/9701021.
337 Virbhadra, K.S., and Ellis, G.F.R., “Schwarzschild black hole lensing”, Phys. Rev. D, 62, 084003, (2000). For a related online version see: K.S. Virbhadra, et al., (April, 1999), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9904193.
338 Virbhadra, K.S., and Ellis, G.F.R., “Gravitational lensing by naked singularities”, Phys. Rev. D, 65, 103004, (2002).
339 Virbhadra, K.S., Narasimha, D., and Chitre, S.M., “Role of the scalar field in gravitational lensing”, Astron. Astrophys., 337, 1-8, (1998). For a related online version see: K.S. Virbhadra, et al., (January, 1998), [Online Los Alamos Archive Preprint]: cited on 30 October 2003,

External Linkhttp://arXiv.org/abs/astro-ph/9801174.
340 Vollick, D.N., and Unruh, W.G., “Gravitational lensing properties of curved cosmic strings”, Phys. Rev. D, 44, 2388-2396, (1991).
341 Wald, R., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
342 Walker, A.G., “Distance in an expanding universe”, Mon. Not. R. Astron. Soc., 94, 159-167, (1934).
343 Wambsganss, J., “Gravitational lensing in astronomy”, Living Rev. Relativity, 1, lrr-1998-12, (1998), [Online article]: cited on 30 October 2003,

http://www.livingreviews.org/lrr-1998-12.
344 Weinberg, S., “Apparent luminosities in a locally inhomogeneous universe”, Astrophys. J. Lett., 208, L1-L3, (1976).
345 Weiskopf, D., and Ansorg, M., “Visualization of the general relativistic rigidly rotating disk of dust”, Ann. Phys. (Leipzig), 9, SI-179-185, (2000).
346 Weisstein, E., “Poincaré conjecture proved - this time for real”, (April, 2003), [Online Article]: cited on 30 October 2003,

External Linkhttp://mathworld.wolfram.com/news/2003-04-15/poincare/.
347 Weyl, H., “Zur Gravitationstheorie”, Ann. Phys. (Berlin), 54, 117-145, (1917).
348 Weyl, H., “Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen”, Phys. Z., 20, 31-34, (1919).
349 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, Germany, 1923).
350 Whitehead, J.C.H., “On the covering of a complete space by the geodesics through a point”, Ann. Math., 136, 679-704, (1935).
351 Whittaker, E.T., “On the definition of distance in curved space and the displacement of the spectral lines of distant sources”, Proc. R. Soc. London, Ser. A, 133, 93-105, (1931).
352 Winterberg, F., and Phillips, W.G., “Gravitational self-lens effect”, Phys. Rev. D, 8, 3329-3337, (1973).