|
1
|
Andréasson, H., “Controlling the propagation of the
support for the relativistic Vlasov equation with a
selfconsistent Lorentz invariant field”,
Indiana Univ. Math. J.,
45, 617-642, (1996).
|
|
2
|
Andréasson, H., “Regularity of the gain term and strong
L
1
convergence to equilibrium for the relativistic
Boltzmann equation”,
SIAM J. Math. Anal.,
27, 1386-1405, (1996).
|
|
3
|
Andréasson, H., “Global existence of smooth solutions in
three dimensions for the semiconductor
Vlasov-Poisson-Boltzmann equation”,
Nonlinear Anal.,
28, 1193-1211, (1997).
|
|
4
|
Andréasson, H., “Global foliations of matter spacetimes
with Gowdy symmetry”,
Commun.
Math. Phys.,
206, 337-366, (1999).
|
|
5
|
Andréasson, H., Calogero, S., and Illner, R., “On Blowup
for Gain-Term-Only classical and relativistic Boltzmann
equations”, submitted. To appear in Math. Method. Appl.
Sci.
|
|
6
|
Andréasson, H., Calogero, S., and Rein, G., “Global
classical solutions to the spherically symmetric
Nordström-Vlasov system”, submitted. To appear in Math.
Proc. Camb. Phil. Soc.
|
|
7
|
Andréasson, H., Rein, G., and Rendall, A.D., “On the
Einstein-Vlasov system with hyperbolic symmetry”,
Math. Proc. Camb. Phil. Soc.,
134, 529-549, (2003).
|
|
8
|
Andréasson, H., Rendall, A.D., and Weaver, M., “Existence
of CMC and Constant Areal Time Foliations in
T
2
Symmetric Spacetimes with Vlasov Matter”,
Commun. Part. Diff. Eq.,
29, 237-262, (2004).
|
|
9
|
Anguige, K., “Isotropic cosmological singularities 3: The
Cauchy problem for the inhomogeneous conformal
Einstein-Vlasov equations”,
Ann. Phys. (N.Y.),
282, 395-419, (2000).
|
|
10
|
Arkeryd, L., “On the strong
L
1
trend to equilibrium for the Boltzmann equation”,
Stud. Appl.
Math.,
87, 283-288, (1992).
|
|
11
|
Bancel, D., and Choquet-Bruhat, Y., “Existence,
uniqueness and local stability for the
Einstein-Maxwell-Boltzmann system”,
Commun. Math. Phys.,
33, 83-96, (1993).
|
|
12
|
Bardos, C., and Degond, P., “Global existence for the
Vlasov-Poisson equation in three space variables with
small initial data”,
Ann. Inst. Henri Poincare,
2, 101-118, (1985).
|
|
13
|
Bardos, C., Degond, P., and Ha, T.N., “Existence globale
des solutions des équations de Vlasov-Poisson
relativistes en dimension 3”,
C. R. Acad. Sci.,
301, 265-268, (1985).
|
|
14
|
Batt, J., “Global symmetric solutions of the initial
value problem of stellar dynamics”,
J.
Differ. Equations,
25, 342-364, (1977).
|
|
15
|
Batt, J., Faltenbacher, W., and Horst, E., “Stationary
spherically symmetric models in stellar dynamics”,
Arch. Ration. Mech. Anal.,
93, 159-183, (1986).
|
|
16
|
Berger, B.K., Chruściel, P.T., Isenberg, J.A., and
Moncrief, V., “Global foliations of vacuum spacetimes
with
T
2
isometry”,
Ann. Phys. (N.Y.),
260, 117-148, (1997).
|
|
17
|
Bouchut, F., Golse, F., and Pallard, C., “Classical
solutions and the Glassey-Strauss theorem for the 3D
Vlasov-Maxwell system”,
Arch. Ration. Mech. Anal.,
170, 1-15, (2003).
|
|
18
|
Burnett, G.A., and Rendall, A.D., “Existence of maximal
hypersurfaces in some spherically symmetric spacetimes”,
Class. Quantum Grav.,
13, 111-123, (1997).
|
|
19
|
Calogero, S., “Spherically symmetric steady states of
galactic dynamics in scalar gravity”,
Class. Quantum Grav.,
20, 1729-1741, (2003).
|
|
20
|
Calogero, S., “The Newtonian limit of the relativistic
Boltzmann equation”,
J. Math. Phys.,
45, 4042-4052, (2004).
|
|
21
|
Calogero, S., and Lee, H., “The non-relativistic limit of
the Nordström-Vlasov system”,
Commun. Math. Sci.,
2, 19-34, (2004).
|
|
22
|
Calogero, S., and Rein, G., “On classical solutions of
the Nordström-Vlasov system”,
Commun. Part. Diff. Eq.,
28, 1863-1885, (2003).
|
|
23
|
Calogero, S., and Rein, G., “Global weak solutions to the
Nordström-Vlasov system”,
J.
Differ. Equations,
204, 323-338, (2004).
|
|
24
|
Cercignani, C., Illner, R., and Pulvirenti, M.,
The mathematical theory of dilute
gases, vol. 106 of Applied Mathematical Sciences, (Springer,
New York, U.S.A., 1994).
|
|
25
|
Choquet-Bruhat, Y., “Problème de Cauchy pour le système
intégro différentiel d’Einstein-Liouville”,
Ann. Inst. Fourier,
21, 181-201, (1971).
|
|
26
|
Choquet-Bruhat, Y., and Noutchegueme, N., “Systéme de
Yang-Mills-Vlasov en jauge temporelle”,
Ann. Inst. Henri Poincare,
55, 759-787, (1991).
|
|
27
|
Christodoulou, D., “The problem of a self-gravitating
scalar field”,
Commun. Math. Phys.,
105, 337-361, (1986).
|
|
28
|
Christodoulou, D., “The formation of black holes and
singularities in spherically symmetric gravitational
collapse”,
Commun. Pure Appl. Math.,
44, 339-373, (1991).
|
|
29
|
Christodoulou, D., “Examples of naked singularity
formation in the gravitational collapse of a scalar
field”,
Ann. Math.,
140, 607-653, (1994).
|
|
30
|
Christodoulou, D., “Self-gravitating relativistic fluids:
the formation of a free phase boundary in the phase
transition from soft to hard”,
Arch. Ration. Mech. Anal.,
134, 97-154, (1996).
|
|
31
|
Christodoulou, D., “The instability of naked
singularities in the gravitational collapse of a scalar
field”,
Ann. Math.,
149, 183-217, (1999).
|
|
32
|
Dafermos, M., “Spherically symmetric spacetimes with a
trapped surface”, (2004). URL (cited on 22 February
2005):
http://arXiv.org/abs/gr-qc/0403032
.
|
|
33
|
Dafermos, M., and Rendall, A.D., “An extensionprinciple
for the Einstein-Vlasov system in spherical symmetry”,
(2004). URL (cited on 22 February 2005):
http://arXiv.org/abs/gr-qc/0411075
.
|
|
34
|
de Groot, S.R., van Leeuwen, W.A., and van Weert,
C.G.,
Relativistic Kinetic Theory:
Principles and Applications, (North-Holland, Amsterdam, Netherlands; New York,
U.S.A., 1980).
|
|
35
|
DiPerna, R.J., and Lions, P.-L., “Global weak solutions
of Vlasov-Maxwell systems”,
Commun.
Pure Appl. Math.,
42, 729-757, (1989).
|
|
36
|
DiPerna, R.J., and Lions, P.-L., “On the Cauchy problem
for Boltzmann equations: global existence and weak
stability”,
Ann. Math.,
130, 321-366, (1989).
|
|
37
|
Dudyński, M., and Ekiel-Jezewska, M.L., “Global existence
proof for relativistic Boltzmann equation”,
J. Stat. Phys.,
66, 991-1001, (1992).
|
|
38
|
Ehlers, J., “Survey of general relativity theory”, in
Israel, W., ed.,
Relativity, Astrophysics
and Cosmology, Proceedings of the summer school held 14-26 August 1972
at the Banff Centre, Banff, Alberta, vol. 38 of
Atrophysics and Space Science Library, (Reidel,
Dordrecht, Netherlands; Boston, U.S.A., 1973).
|
|
39
|
Fjällborg, M., “On the cylindrically symmetric
Einstein-Vlasov system”, unknown status. Preprint
Karlstad University Studies 2004:19.
|
|
40
|
Ganguly, K., and Victory, H., “On the convergence for
particle methods for multidimensional Vlasov-Poisson
systems”,
SIAM J. Numer. Anal.,
26, 249-288, (1989).
|
|
41
|
Glassey, R.T.,
The Cauchy Problem in Kinetic
Theory, (SIAM, Philadelphia, U.S.A., 1996).
|
|
42
|
Glassey, R.T., and Schaeffer, J., “On symmetric solutions
to the relativistic Vlasov-Poisson system”,
Commun. Math. Phys.,
101, 459-473, (1985).
|
|
43
|
Glassey, R.T., and Schaeffer, J., “The “two and one-half
dimensional” relativistic Vlasov-Maxwell system”,
Commun. Math. Phys.,
185, 257-284, (1997).
|
|
44
|
Glassey, R.T., and Schaeffer, J., “The relativistic
Vlasov Maxwell system in two space dimensions: part II”,
Arch. Ration. Mech. Anal.,
141, 355-374, (1998).
|
|
45
|
Glassey, R.T., and Schaeffer, J., “On global symmetric
solutions to the relativistic Vlasov-Poisson equation in
three space dimensions”,
Math. Method. Appl. Sci.,
24, 143-157, (2001).
|
|
46
|
Glassey, R.T., and Strauss, W., “Singularity formation in
a collisionless plasma could only occur at high
velocities”,
Arch. Ration. Mech. Anal.,
92, 56-90, (1986).
|
|
47
|
Glassey, R.T., and Strauss, W., “Absence of shocks in an
initially dilute collisionless plasma”,
Commun. Math. Phys.,
113, 191-208, (1987).
|
|
48
|
Glassey, R.T., and Strauss, W., “Asymptotic stability of
the relativistic Maxwellian”,
Publ.
Res. Inst. Math. Sci.,
29, 301-347, (1992).
|
|
49
|
Glassey, R.T., and Strauss, W., “Asymptotic stability of
the relativistic Maxwellian”,
Transp.
Theor. Stat. Phys.,
24, 657-678, (1995).
|
|
50
|
Gundlach, C., “Critical phenomena in gravitational
collapse”,
Adv. Theor. Math. Phys.,
2, 1-49, (1998).
|
|
51
|
Guo, Y., and Rein, G., “Isotropic steady states in
stellar dynamics”,
Commun. Math. Phys.,
219, 607-629, (2001).
|
|
52
|
Henkel, O., “Global prescribed mean curvature foliations
in cosmological spacetimes with matter, Part I”,
J. Math. Phys.,
43, 2439-2465, (2002).
|
|
53
|
Henkel, O., “Global prescribed mean curvature foliations
in cosmological spacetimes with matter, Part II”,
J. Math. Phys.,
43, 2466-2485, (2002).
|
|
54
|
Horst, E., “On the classical solutions of the initial
value problem for the unmodified non-linear Vlasov
equation (Parts I and II)”,
Math. Method. Appl. Sci.,
6, 262-279, (1982).
|
|
55
|
Horst, E., “On the asymptotic growth of the solutions of
the Vlasov-Poisson system”,
Math.
Method. Appl. Sci.,
16, 75-86, (1993).
|
|
56
|
Horst, E., and Hunze, R., “Weak solutions of the initial
value problem for the unmodified nonlinear Vlasov
equation”,
Math. Method. Appl. Sci.,
6, 262-279, (1984).
|
|
57
|
Illner, R., and Rein, G., “Time decay of the solutions of
the Vlasov-Poisson system in the plasma physical case”,
Math. Method. Appl. Sci.,
19, 1409-1413, (1996).
|
|
58
|
Illner, R., and Shinbrot, M., “The Boltzmann equation,
global existence for a rare gas in an infinite vacuum”,
Commun. Math. Phys.,
95, 217-226, (1984).
|
|
59
|
Isenberg, J.A., and Rendall, A.D., “Cosmological
spacetimes not covered by a constant mean curvature
slicing”,
Class. Quantum Grav.,
15, 3679-3688, (1998).
|
|
60
|
Klainerman, S., and Staffilani, G., “A new approach to
study the Vlasov-Maxwell system”,
Commun. Pure Appl. Anal.,
1, 103-125, (2002).
|
|
61
|
Kunze, M., and Rendall, A.D., “The Vlasov-Poisson system
with radiation damping”,
Ann.
Inst. Henri Poincare,
2, 857-886, (2001).
|
|
62
|
Lee, H., “Global existence of solutions of the
Nordström-Vlasov system in two space dimensions”, (2003).
URL (cited on 22 February 2005):
http://arXiv.org/abs/math-ph/0312014
.
|
|
63
|
Lee, H., “Asymptotic behaviour of the Einstein-Vlasov
system with a positive cosmological constant”,
Math. Proc. Camb. Phil. Soc.,
137, 495-509, (2004).
|
|
64
|
Lee, H., “The Einstein-Vlasov system with a scalar
field”, (2004). URL (cited on 22 February 2005):
http://arXiv.org/abs/gr-qc/0404007
.
|
|
65
|
Lions, P.-L., “Compactness in Boltzmann’s equation via
Fourier integral operators and applications. I.”,
J. Math. Kyoto Univ.,
34, 391-427, (1994).
|
|
66
|
Lions, P.-L., and Perthame, B., “Propagation of moments
and regularity for the 3-dimensional Vlasov-Poisson
system”,
Invent. Math.,
105, 415-430, (1991).
|
|
67
|
Makino, T., “On spherically symmetric stellar models in
general relativity”,
J. Math. Kyoto
Univ.,
38, 55-69, (1998).
|
|
68
|
Martín-García, J.M., and Gundlach, C., “Self-similar
spherically symmetric solutions of the massless
Einstein-Vlasov system”,
Phys. Rev. D,
65, 084026, (2002).
|
|
69
|
Nishida, T., and Imai, K., “Global solutions to the
initial value problem for the nonlinear Boltzmann
equation”,
Publ. Res. Inst. Math. Sci.,
12, 229-239, (1976).
|
|
70
|
Nordström, G., “Zur Theorie der Gravitation vom
Standpunkt des Relativitätsprinzips”,
Ann. Phys. (Leipzig),
42, 533, (1913).
|
|
71
|
Noundjeu, P., “On a regularity theorem for solutions of
the spherically symmetric Einstein-Vlasov-Maxwell
system”, (2004). URL (cited on 22 February 2005):
http://arXiv.org/abs/gr-qc/0406021
.
|
|
72
|
Noundjeu, P., and Noutchegueme, N., “Local Existence and
Continuation Criterion for Solutions of the Spherically
Symmetric Einstein-Vlasov-Maxwell System”,
Gen. Relativ.
Gravit.,
36, 1572-9532, (2004). Related online version (cited on 22
February 2005):
http://arXiv.org/abs/gr-qc/0311081
.
|
|
73
|
Noundjeu, P., Noutchegueme, N., and Rendall, A.D.,
“Existence of initial data satisfying the constraints for
the spherically symmetric Einstein-Vlasov-Maxwell
system”,
J. Math. Phys.,
45, 668-676, (2004).
|
|
74
|
Noutchegueme, N., and Tetsadjio, M.E., “Global solutions
for the relativistic Boltzmann equation in the
homogeneous case on the Minkowski space-time”, (2003).
URL (cited on 22 February 2005):
http://arXiv.org/abs/gr-qc/0307065
.
|
|
75
|
Olabarrieta, I., and Choptuik, M.W., “Critical phenomena
at the threshold of black hole formation for
collisionless matter in spherical symmetry”,
Phys. Rev. D,
65, 024007, (2002).
|
|
76
|
Pallard, C., “On global smooth solutions to the 3D
Vlasov-Nordström system”, submitted. To appear in Annales
de l’I.H.P. Analyse non linéaire.
|
|
77
|
Pallard, C., “On the boundedness of the momentum support
of solutions to the relativistic Vlasov-Maxwell system”,
submitted. To appear in Indiana Univ. Math. J.
|
|
78
|
Pallard, C., “A pointwise bound on the electromagnetic
field generated by a collisionless plasma”, unknown
status. Preprint.
|
|
79
|
Perthame, B., “Time decay, propagation of low moments and
dispersive effects for kinetic equations”,
Commun. Part. Diff. Eq.,
21, 659-686, (1996).
|
|
80
|
Pfaffelmoser, K., “Global classical solutions of the
Vlasov-Poisson system in three dimensions for general
initial data”,
J. Differ. Equations,
95, 281-303, (1992).
|
|
81
|
Rein, G., “Static solutions of the spherically symmetric
Vlasov-Einstein system”,
Math. Proc.
Camb. Phil. Soc.,
115, 559-570, (1994).
|
|
82
|
Rein, G., “Cosmological solutions of the Vlasov-Einstein
system with spherical, plane, and hyperbolic symmetry”,
Math. Proc. Camb. Phil. Soc.,
119, 739-762, (1996).
|
|
83
|
Rein, G., “Growth estimates for the Vlasov-Poisson system
in the plasma physics case”,
Math.
Nachr.,
191, 269-278, (1998).
|
|
84
|
Rein, G., “Static shells for the Vlasov-Poisson and
Vlasov-Einstein systems”,
Indiana Univ.
Math. J.,
48, 335-346, (1999).
|
|
85
|
Rein, G., “Stationary and static stellar dynamical models
with axial symmetry”,
Nonlinear
Anal.,
41, 313-344, (2000).
|
|
86
|
Rein, G., “Global weak solutions of the relativistic
Vlasov-Maxwell system revisited”,
Commun. Math. Sci.,
2, 145-148, (2004).
|
|
87
|
Rein, G., “On future completeness for the Einstein-Vlasov
system with hyperbolic symmtery”,
Math. Proc. Camb. Phil. Soc.,
137, 237-244, (2004).
|
|
88
|
Rein, G., and Rendall, A.D., “Global existence of
solutions of the spherically symmetric Vlasov-Einstein
system with small initial data”,
Commun. Math. Phys.,
150, 561-583, (1992). Erratum: Commun. Math. Phys. 176,
(1996), 475-478.
|
|
89
|
Rein, G., and Rendall, A.D., “The Newtonian limit of the
spherically symmetric Vlasov-Einstein system”,
Commun. Math. Phys.,
150, 585-591, (1992).
|
|
90
|
Rein, G., and Rendall, A.D., “Smooth static solutions of
the spherically symmetric Vlasov-Einstein system”,
Ann. Inst. Henri Poincare A,
59, 383-397, (1993).
|
|
91
|
Rein, G., and Rendall, A.D., “Compact support of
spherically symmetric equilibria in relativistic and
non-relativistic galactic dynamics”,
Math. Proc. Camb. Phil. Soc.,
128, 363-380, (2000).
|
|
92
|
Rein, G., Rendall, A.D., and Schaeffer, J., “A regularity
theorem for solutions of the spherically symmetric
Vlasov-Einstein system”,
Commun. Math. Phys.,
168, 467-478, (1995).
|
|
93
|
Rein, G., Rendall, A.D., and Schaeffer, J., “Critical
collapse of collisionless matter- a numerical
investigation”,
Phys. Rev. D,
58, 044007, (1998).
|
|
94
|
Rein, G., and Rodewis, T., “Convergence of a
particle-in-cell scheme for the spherically symmetric
Vlasov-Einstein system”,
Indiana Univ. Math. J.,
52, 821-862, (2003).
|
|
95
|
Rendall, A.D., “Cosmic censorship and the Vlasov
equation”,
Class. Quantum Grav.,
9, L99-L104, (1992).
|
|
96
|
Rendall, A.D., “The Newtonian limit for asymptotically
flat solutions of the Einstein-Vlasov system”,
Commun. Math. Phys.,
163, 89-112, (1994).
|
|
97
|
Rendall, A.D., “Crushing singularities in spacetimes with
spherical, plane and hyperbolic symmetry”,
Class. Quantum Grav.,
12, 1517-1533, (1995).
|
|
98
|
Rendall, A.D., “Global properties of locally spatially
homogeneous cosmological models with matter”,
Math. Proc. Camb. Phil. Soc.,
118, 511-526, (1995).
|
|
99
|
Rendall, A.D., “Existence and non-existence results for
global constant mean curvature foliations”,
Nonlinear Anal.,
30, 3589-3598, (1997).
|
|
100
|
Rendall, A.D., “Existence of constant mean curvature
foliations in spacetimes with two-dimensional local
symmetry”,
Commun. Math. Phys.,
189, 145-164, (1997).
|
|
101
|
Rendall, A.D., “An introduction to the Einstein-Vlasov
system”, in Chruściel, P.T., ed.,
Mathematics of Gravitation, Part I:
Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop Mathematical Aspects of
Theories of Gravitation, held in the Banach Center of the
Institute of Mathematics of the Polish Academy of
Sciences, Warsaw, Poland, February 29 - March 30, 1996,
vol. 41(I) of Banach Center Publications, 35-68,
(Polish Academy of Sciences, Institute of Mathematics,
Warsaw, Poland, 1997).
|
|
102
|
Rendall, A.D., “Cosmological models and centre manifold
theory”,
Gen. Relativ. Gravit.,
34, 1277-1294, (2002). Related online version (cited on 22
February 2005):
http://arXiv.org/abs/gr-qc/0112040
.
|
|
103
|
Rendall, A.D., and Tod, K.P., “Dynamics of spatially
homogeneous solutions of the Einstein-Vlasov equations
which are locally rotationally symmetric”,
Class. Quantum Grav.,
16, 1705-1726, (1999).
|
|
104
|
Rendall, A.D., and Uggla, C., “Dynamics of spatially
homogeneous locally rotationally symmetric solutions of
the Einstein-Vlasov equations”,
Class. Quantum Grav.,
17, 4697-4714, (2000).
|
|
105
|
Schaeffer, J., “The classical limit of the relativistic
Vlasov-Maxwell system”,
Commun. Math.
Phys.,
104, 403-421, (1986).
|
|
106
|
Schaeffer, J., “Discrete approximation of the
Poisson-Vlasov system”,
Quart. Appl. Math.,
45, 59-73, (1987).
|
|
107
|
Schaeffer, J., “A class of counterexamples to Jeans’
theorem for the Einstein-Vlasov system”,
Commun. Math. Phys.,
204, 313-327, (1999).
|
|
108
|
Shizuta, Y., “On the classical solutions of the Boltzmann
equation”,
Commun. Pure Appl.
Math.,
36, 705-754, (1983).
|
|
109
|
Stewart, J.M.,
Non-equilibrium relativistic
kinetic theory, vol. 10 of Lecture Notes in Physics, (Springer,
Berlin, Germany; New York, U.S.A., 1971).
|
|
110
|
Synge, J.L.,
The relativistic gas, (North-Holland; Interscience, Amsterdam, Netherlands;
New York, U.S.A., 1957).
|
|
111
|
Tchapnda, S.B., “Structure of solutions near the initial
singularity for the surface-symmetric Einstein-Vlasov
system”,
Class. Quantum Grav.,
21, 5333-5346, (2004). Related online version (cited on 22
February 2005):
http://arXiv.org/abs/gr-qc/0407062
.
|
|
112
|
Tchapnda, S.B., and Noutchegueme, N., “The
surface-symmetric Einstein-Vlasov system with
cosmological constant”, (2003). URL (cited on 22 February
2005):
http://arXiv.org/abs/gr-qc/0304098
.
|
|
113
|
Tchapnda, S.B., and Rendall, A.D., “Global existence and
asymptotic behaviour in the future for the
Einstein-Vlasov system with positive cosmological
constant”,
Class. Quantum Grav.,
20, 3037-3049, (2003).
|
|
114
|
Tegankong, D., Noutchegueme, N., and Rendall, A.D.,
“Local existence and continuation criteria for solutions
of the Einstein-Vlasov-scalar field system with surface
symmetry”,
J.
Hyperbol. Differ. Equations,
1, 691-724, (2004). Related online version (cited on 22
February 2005):
http://arXiv.org/abs/gr-qc/0405039
.
|
|
115
|
Ukai, S., “On the existence of global solutions of a
mixed problem for the nonlinear Boltzmann equation”,
Proc. Japan Acad.,
50, 179-184, (1974).
|
|
116
|
Villani, C., “A review of mathematical topics in
collisional kinetic theory”, in Friedlander, S., and
Serre, D., eds.,
Handbook of Mathematical Fluid
Dynamics, Vol. 1, 71-305, (Elsevier, Amsterdam, Netherlands; Boston,
U.S.A., 2002). Related online version (cited on 22
February 2005):
http://www.umpa.ens-lyon.fr/~cvillani/GZPS/B01.Handbook.ps.gz
.
|
|
117
|
Wald, R.M.,
General Relativity, (University of Chicago Press, Chicago, U.S.A.,
1984).
|
|
118
|
Weaver, M., “On the area of the symmetry orbits in
T
2
symmetric spacetimes with Vlasov matter”,
Class. Quantum Grav.,
21, 1079-1098, (2004).
|
|
119
|
Wennberg, B., “Regularity in the Boltzmann equation and
the Radon transform”,
Commun.
Part. Diff. Eq.,
19, 2057-2074, (1994).
|
|
120
|
Wennberg, B., “The geometry of binary collisions and
generalized Radon transforms”,
Arch.
Ration. Mech. Anal.,
139, 291-302, (1997).
|
|
121
|
Wolansky, G., “Static solutions of the Einstein-Vlasov
system”,
Arch. Ration. Mech. Anal.,
156, 205-230, (2001).
|