![]() |
1 | Abramovici, A., Althouse, W.E., Drever, R.W.P., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D.H., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333, (1992). |
![]() |
2 | Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “Erratum: A new class of post-Newtonian approximants to the dynamics of inspiralling compact binaries: Test-mass in the Schwarzschild spacetime”, Phys. Rev. D, 72, 049902, (2005). |
![]() |
3 | Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “A new class of
post-Newtonian approximants to the dynamics of inspiralling compact binaries: Test-mass in
the Schwarzschild spacetime”, Phys. Rev. D, 71, 044029, (2005). Related online version (cited
on 7 March 2006):
![]() |
![]() |
4 | Anderson, J.D., and Williams, J.G., “Long-range tests of the equivalence principle”, Class. Quantum Grav., 18, 2447–2456, (2001). |
![]() |
5 | Anderson, J.L., and DeCanio, T.C., “Equations of hydrodynamics in general relativity in the slow motion approximation”, Gen. Relativ. Gravit., 6, 197–237, (1975). |
![]() |
6 | Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling binaries”, Phys. Rev. D, 52, 605–620, (1995). |
![]() |
7 | Apostolatos, T.A., “Construction of a template family for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 54, 2421–2437, (1996). |
![]() |
8 | Apostolatos, T.A., “The Influence of spin spin coupling on inspiraling compact binaries with M1 = M2 and S1 = S2”, Phys. Rev. D, 54, 2438–2441, (1996). |
![]() |
9 | Apostolatos, T.A., Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries”, Phys. Rev. D, 49, 6274–6297, (1994). |
![]() |
10 | Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The
nonspinning case”, Phys. Rev. D, 71, 084008, 1–16, (2005). Related online version (cited on 7
March 2006):
![]() |
![]() |
11 | Asada, H., and Futamase, T., “Post-Newtonian Approximation”, Prog. Theor. Phys. Suppl.,
128, 123–181, (1997). Related online version (cited on 7 March 2006):
![]() |
![]() |
12 | Asada, H., and Futamase, T., “Propagation of gravitational waves from slow motion sources in
a Coulomb type potential”, Phys. Rev. D, 56, 6062–6066, (1997). Related online version (cited
on 7 March 2006):
![]() |
![]() |
13 | Ashby, N., and Bertotti, B., “Relativistic effects in local inertial frames”, Phys. Rev. D, 34, 2246–2259, (1986). |
![]() |
14 | Bel, L., Deruelle, N., Damour, T., Ibañez, J., and Martin, J., “Poincaré-Invariant Gravitational Field and Equations of Motion of two Pointlike Objects: The Postlinear Approximation of General Relativity”, Gen. Relativ. Gravit., 13, 963–1004, (1981). |
![]() |
15 | Bildsten, L., and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180, (1992). |
![]() |
16 | Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.-A., and Lasota,
J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches
School of Physics, held in Les Houches, Haute Savoie, France 26 September – 6 October, 1995,
33–66, (Cambridge University Press, Cambridge, U.K., 1995). Related online version (cited on
7 March 2006):
![]() |
![]() |
17 | Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian
order”, Phys. Rev. D, 55, 714–732, (1997). Related online version (cited on 7 March 2006):
![]() |
![]() |
18 | Blanchet, L., “Post-Newtonian Gravitational Radiation”, in Schmidt, B.G., ed., Einstein’s Field
Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol.
540 of Lecture Notes in Physics, 225–271, (Springer, Berlin, Germany; New York, U.S.A., 2000).
Related online version (cited on 7 March 2006):
![]() |
![]() |
19 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (cited on 3 August 2006):
http://www.livingreviews.org/lrr-2006-4. |
![]() |
20 | Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435, (1988). |
![]() |
21 | Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408, (1989). |
![]() |
22 | Blanchet, L., Damour, T., and Esposito-Farèse, G., “Dimensional regularization of the third
post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69,
124007, 1–51, (2004). Related online version (cited on 7 March 2006):
![]() |
![]() |
23 | Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Gravitational radiation from
inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett.,
93, 091101, (2004). Related online version (cited on 7 March 2006):
![]() |
![]() |
24 | Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional regularization
of the third post-Newtonian gravitational wave generation from two point masses”, Phys. Rev.
D, 71, 124004, 1–36, (2005). Related online version (cited on 7 March 2006):
![]() |
![]() |
25 | Blanchet, L., and Faye, G., “Equations of motion of point-particle binaries at the third
post-Newtonian order”, Phys. Lett. A, 271, 58–64, (2000). Related online version (cited on 7
March 2006):
![]() |
![]() |
26 | Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675–7714, (2000).
Related online version (cited on 7 March 2006):
![]() |
![]() |
27 | Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third
post-Newtonian order”, Phys. Rev. D, 63, 062005, 1–43, (2001). Related online version (cited
on 7 March 2006):
![]() |
![]() |
28 | Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of point-like particles
in general relativity”, J. Math. Phys., 42, 4391–4418, (2001). Related online version (cited on
7 March 2006):
![]() |
![]() |
29 | Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of compact
binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501, 1–5, (2002). Related
online version (cited on 7 March 2006):
![]() |
![]() |
30 | Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact
binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002, 1–20, (1998). Related online
version (cited on 7 March 2006):
![]() |
![]() |
31 | Blanchet, L., and Iyer, B.R., “Hadamard regularization of the third post-Newtonian
gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004, 1–20, (2005).
Related online version (cited on 7 March 2006):
![]() |
![]() |
32 | Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact
binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005, 1–41, (2002).
Related online version (cited on 7 March 2006):
![]() |
![]() |
33 | Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699–2721, (1993). |
![]() |
34 | Blandford, R., and Teukolsky, S.A., “Arrival-time analysis for a pulsar in a binary system”, Astrophys. J., 205, 580–591, (1976). |
![]() |
35 | Bradaschia, C., Del Fabbro, R., Di Virgilio, A., Giazotto, A., Kautzky, H., Montelatici, V., Passuello, D., Brillet, A., Cregut, O., Hello, P., Man, C.N., Manh, P.T., Marraud, A., Shoemaker, D.H., Vinet, J.-Y., Barone, F., di Fiore, L., Milano, L., Russo, G., Aguirregabiria, J.M., Bel, H., Duruisseau, J.P., Le Denmat, G., Tourrenc, P., Capozzi, M., Longo, M., Lops, M., Pinto, I., Rotoli, G., Damour, T., Bonazzola, S., Marck, J.-A., Gourghoulon, Y., Holloway, L.E., Fuligni, F., Iafolla, V., and Natale, G., “The VIRGO Project: A wide band antenna for gravitational wave detection”, Nucl. Instrum. Methods A, 289, 518–525, (1990). |
![]() |
36 | Brumberg, V.A., Essential Relativistic Celestial Mechanics, (Adam Hilger, Bristol, U.K.; Philadelphia, U.S.A., 1991). |
![]() |
37 | Brumberg, V.A., and Kopeikin, S.M., “Relativistic Reference Systems and Motion of Test Bodies in the Vicinity of the Earth”, Nuovo Cimento B, 103, 63–98, (1989). |
![]() |
38 | Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D.R., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533, (2003). |
![]() |
39 | Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). |
![]() |
40 | Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488–1540, (1965). |
![]() |
41 | Chandrasekhar, S., “Conservation Laws in General Relativity and in the Post-Newtonian Approximations”, Astrophys. J., 158, 45, (1969). |
![]() |
42 | Chandrasekhar, S., and Esposito, F.P., “The 2![]() |
![]() |
43 | Chandrasekhar, S., and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55–79, (1969). |
![]() |
44 | Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., Marković, D.M., Ori, A., Poisson, E., and Sussman, G.J., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993). |
![]() |
45 | Cutler, C., and Thorne, K.S., “An Overview of Gravitational-Wave Sources”, in Bishop,
N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th
International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21
July, 2001, 72–111, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online
version (cited on 7 March 2006):
![]() |
![]() |
46 | Damour, T., “Problème des deux corps et freinage de rayonnement en relativité générale”, C. R. Acad. Sci. Ser. II, 294, 1355–1357, (1982). |
![]() |
47 | Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de Physique des Houches, France, 2 – 21 June, 1982, 59–144, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1983). |
![]() |
48 | Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, Cargése, France, 15 – 31 July, 1986, vol. 156 of NATO ASI Series B, 3–62, (Plenum Press, New York, U.S.A., 1987). |
![]() |
49 | Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 128–198, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). |
![]() |
50 | Damour, T., and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540, (1981). |
![]() |
51 | Damour, T., and Deruelle, N., “Lois de conservation d’un système de deux masses ponctuelles en relativité générale”, C. R. Acad. Sci. Ser. II, 293, 877–880, (1981). |
![]() |
52 | Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81–84, (1981). |
![]() |
53 | Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian
approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501, 1–5, (2000).
Related online version (cited on 7 March 2006):
![]() |
![]() |
54 | Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational
interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). Related online version (cited
on 7 March 2006):
![]() |
![]() |
55 | Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADM-Hamiltonian
and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact
binaries”, Phys. Rev. D, 63, 044021, 1–11, (2001). Related online version (cited on 7 March
2006):
![]() |
![]() |
56 | Damour, T., and Schäfer, G., “Lagrangians for n Point Masses at the Second Post-Newtonian Approximation of General Relativity”, Gen. Relativ. Gravit., 17, 879–905, (1985). |
![]() |
57 | Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273–3307, (1991). |
![]() |
58 | Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. II. Translational equations of motion”, Phys. Rev. D, 45, 1017–1044, (1992). |
![]() |
59 | Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. III. Rotational equations of motion”, Phys. Rev. D, 47, 3124–3135, (1993). |
![]() |
60 | Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. IV. Theory of satellite motion”, Phys. Rev. D, 49, 618–635, (1994). |
![]() |
61 | Damour, T., and Taylor, J.H., “On the orbital period change of the binary pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991). |
![]() |
62 | Danzmann, K. et al., “The GEO-Project. A Long-Baseline Laser Interferometer for the Detection of Gravitational Waves”, in Ehlers, J., and Schäfer, G., eds., Relativistic Gravity Research with Emphasis on Experiments and Observations, Proceedings of the 81 WE-Heraeus-Seminar held at the Physikzentrum, Bad Honnef, Germany, 2 – 6 September, 1991, vol. 410 of Lecture Notes in Physics, 184–209, (Springer, Berlin, Germany; New York, U.S.A., 1992). |
![]() |
63 | Dautcourt, G., “Post-Newtonian extension of the Newton-Cartan theory”, Class. Quantum
Grav., 14, A109–A118, (1997). Related online version (cited on 7 March 2006):
![]() |
![]() |
64 | de Andrade, V.C., Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of compact
binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and
ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753–778, (2001). Related online
version (cited on 7 March 2006):
![]() |
![]() |
65 | D’Eath, P.D., “Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11, 1387–1403, (1975). |
![]() |
66 | D’Eath, P.D., “Interaction of two black holes in the slow-motion limit”, Phys. Rev. D, 12, 2183–2199, (1975). |
![]() |
67 | Detweiler, S., and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev.
D, 67, 024025, (2003). Related online version (cited on 23 March 2006):
![]() |
![]() |
68 | DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960). |
![]() |
69 | Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics “Enrico Fermi”, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, 156–219, (North-Holland, Amsterdam, Netherlands; New York, U.S.A., 1979). |
![]() |
70 | Ehlers, J., “Examples of Newtonian limits of relativistic spacetimes”, Class. Quantum Grav., 14, A119–A126, (1997). |
![]() |
71 | Ehlers, J., Rosenblum, A., Goldberg, J.N., and Havas, P., “Comments on gravitational radiation damping and energy loss in binary systems”, Astrophys. J. Lett., 208, L77–L81, (1976). |
![]() |
72 | Einstein, A., “Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity”, Sitzungsber. Preuss. Akad. Wiss., 1915, 831–839, (1915). |
![]() |
73 | Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100, (1938). |
![]() |
74 | Epstein, R., “The binary pulsar: Post-Newtonian timing effects”, Astrophys. J., 216, 92–100,
(1977). Related online version (cited on 3 August 2006):
![]() |
![]() |
75 | Finn, L.S., “Binary inspiral, gravitational radiation, and cosmology”, Phys. Rev. D, 53, 2878–2894, (1996). |
![]() |
76 | Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81–116, (1939). |
![]() |
77 | Fock, V.A., Theory of space, time and gravitation, (Pergamon Press, London, U.K., 1959). |
![]() |
78 | Fukumoto, T., Futamase, T., and Itoh, Y., “On the Equation of Motion for a Fast Moving
Small Object in the Strong Field Point Particle Limit”, Prog. Theor. Phys., 116, 423–428,
(2006). Related online version (cited on 5 July 2006):
![]() |
![]() |
79 | Futamase, T., “Gravitational radiation reaction in the Newtonian limit”, Phys. Rev. D, 28, 2373–2381, (1983). |
![]() |
80 | Futamase, T., “Point particle limit and the far zone quadrupole formula in general relativity”, Phys. Rev. D, 32, 2566–2574, (1985). |
![]() |
81 | Futamase, T., “The strong field point particle limit and the equations of motion in the binary system”, Phys. Rev. D, 36, 321–329, (1987). |
![]() |
82 | Futamase, T., and Schutz, B.F., “Newtonian and post-Newtonian approximation are asymptotic to general relativity”, Phys. Rev. D, 28, 2363–2372, (1983). |
![]() |
83 | MPI for Gravitational Physics (Albert Einstein Institute), “GEO 600: The German-British
Gravitational Wave Detector”, project homepage. URL (cited on 7 March 2006):
![]() |
![]() |
84 | Geroch, R., “Limits of Spacetimes”, Commun. Math. Phys., 13, 180–193, (1969). |
![]() |
85 | Gopakumar, A., Iyer, B.R., and Iyer, S., “Second post-Newtonian gravitational radiation
reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 55, 6030–6053, (1997).
Related online version (cited on 7 March 2006):
![]() |
![]() |
86 | Gopakumar, A., Iyer, B.R., and Iyer, S., “Erratum: Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 57, 6562, (1998). |
![]() |
87 | Grishchuk, L.P., and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230–232, (1983). |
![]() |
88 | Hadamard, J., Le probèm de Cauchy et les équation aux dérivées partielles linéaries hyperboliques, (Hermann, Paris, France, 1932). |
![]() |
89 | Hulse, R.A., and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J. Lett., 195, L51–L53, (1975). |
![]() |
90 | Isaacson, R.A., Welling, J.S., and Winicour, J., “Extension of the Einstein quadrupole formula”, Phys. Rev. Lett., 53, 1870–1872, (1984). |
![]() |
91 | Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point
particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018, 1–43, (2004). Related
online version (cited on 7 March 2006):
![]() |
![]() |
92 | Itoh, Y., “On the equation of motion of compact binaries in Post-Newtonian approximation”,
Class. Quantum Grav., 21, S529–S534, (2004). Related online version (cited on 7 March 2006):
![]() |
![]() |
93 | Itoh, Y., and Futamase, T., “New derivation of a third post-Newtonian equation of motion for
relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003). Related
online version (cited on 7 March 2006):
![]() |
![]() |
94 | Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: Formulation, the first post-Newtonian and multipole
terms”, Phys. Rev. D, 62, 064002, 1–12, (2000). Related online version (cited on 7 March 2006):
![]() |
![]() |
95 | Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: The second and half post-Newtonian order”, Phys.
Rev. D, 63, 064038, 1–21, (2001). Related online version (cited on 7 March 2006):
![]() |
![]() |
96 | Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882–6893, (1995). |
![]() |
97 | Jaranowski, P., and Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems”, Phys. Rev. D, 55, 4712–4722, (1997). |
![]() |
98 | Jaranowski, P., and Schäfer, G., “Non-uniqueness of the third post-Newtonian binary
point-mass dynamics”, Phys. Rev. D, 57, 5948–5949, (1998). Related online version (cited on
7 June 2006):
![]() |
![]() |
99 | Jaranowski, P., and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton
dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291, (1998). Related
online version (cited on 7 March 2006):
![]() |
![]() |
100 | Jaranowski, P., and Schäfer, G., “The binary black-hole problem at the third post-Newtonian
approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999).
Related online version (cited on 7 March 2006):
![]() |
![]() |
101 | Jaranowski, P., and Schäfer, G., “The binary black-hole dynamics at the third post-Newtonian
order in the orbital motion”, Ann. Phys. (Berlin), 9, 378–383, (2000). Related online version
(cited on 12 December 2006):
![]() |
![]() |
102 | Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004). |
![]() |
103 | Kalogera, V., Kim, C., Lorimer, D.R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., and Camilo, F., “Erratum: The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 614, L137–L138, (2004). |
![]() |
104 | Kates, R.E., “Gravitational radiation damping of a binary system containing compact objects calculated using matched asymptotic expansions”, Phys. Rev. D, 22, 1871–1878, (1980). |
![]() |
105 | Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980). |
![]() |
106 | Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467–482, (1980). |
![]() |
107 | Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part II. Radiation reaction and higher-order divergent terms”, Gen. Relativ. Gravit., 12, 521–543, (1980). |
![]() |
108 | Kidder, L.E., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. V.
Spin effects”, Phys. Rev. D, 52, 821–847, (1995). Related online version (cited on 7 March
2006):
![]() |
![]() |
109 | Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact
binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). Related online version (cited on 7 March
2006):
![]() |
![]() |
110 | Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992). |
![]() |
111 | Königsdörffer, C., Faye, G., and Schäfer, G., “Binary black-hole dynamics at the
third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004,
1–19, (2003). Related online version (cited on 12 December 2006):
![]() |
![]() |
112 | Königsdörffer, C., and Gopakumar, A., “Post-Newtonian accurate parametric solution to
the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit
interaction”, Phys. Rev. D, 71, 024039, 1–18, (2005). Related online version (cited on 7 March
2006):
![]() |
![]() |
113 | Kopeikin, S.M., “General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516–524, (1985). |
![]() |
114 | Kuroda, K. et al., “Status of TAMA”, in Ciufolini, I., and Fidecaro, F., eds., Gravitational Waves: Sources and Detectors, Proceedings of the International Conference, Cascina (Pisa), Italy, 19 – 23 March 1996, vol. 2 of Edoardo Amaldi Foundation Series, 100, (World Scientific, Singapore; River Edge, U.S.A., 1997). |
![]() |
115 | Landau, L.D., and Lifshitz, E.M., The Classical Theory of Fields, vol. 2 of Course of Theoretical Physics, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1975), 4th edition. |
![]() |
116 | California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL
(cited on 7 March 2006):
![]() |
![]() |
117 | Lorentz, H.A., and Droste, J., “The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory”, in Zeeman, P., and Fokker, A.D., eds., The Collected Papers of H.A. Lorentz, Vol. 5, 330–355, (Nijhoff, The Hague, Netherlands, 1937). English translation of Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649, (1917). |
![]() |
118 | Maplesoft, “Maple: Math and Engineering Software by Maplesoft”, institutional homepage.
URL (cited on 7 March 2006):
![]() |
![]() |
119 | Marković, D., “Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries”, Phys. Rev. D, 48, 4738–4756, (1993). |
![]() |
120 | MathTensor, Inc., “MathTensor for Mathematica”, institutional homepage. URL (cited on 7
March 2006):
![]() |
![]() |
121 | Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”,
Phys. Rev. D, 55, 3457–3476, (1997). Related online version (cited on 7 March 2006):
![]() |
![]() |
122 | Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973). |
![]() |
123 | Nissanke, S., and Blanchet, L., “Gravitational radiation reaction in the equations of motion of
compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007–1032, (2005).
Related online version (cited on 7 March 2006):
![]() |
![]() |
124 | Ó Murchadha, N., and York Jr, J.W., “Gravitational energy”, Phys. Rev. D, 10, 2345–2357, (1974). |
![]() |
125 | Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Eintein’s equation for many-body system”, Prog. Theor. Phys., 50, 492–514, (1973). |
![]() |
126 | Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate Condition and Higher Order Gravitational Potential in Canocical Formalism”, Prog. Theor. Phys., 51, 1598–1612, (1974). |
![]() |
127 | Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higher-order gravitational potential for many-body system”, Prog. Theor. Phys., 51, 1220–1238, (1974). |
![]() |
128 | Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational
waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57,
6168–6175, (1998). Related online version (cited on 7 March 2006):
![]() |
![]() |
129 | Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015,
1–28, (2000). Related online version (cited on 7 March 2006):
![]() |
![]() |
130 | Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to
second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev.
D, 65, 104008, 1–21, (2002). Related online version (cited on 7 March 2006):
![]() |
![]() |
131 | PlebaÅ„ski, J.F., and BażaÅ„ski, S.L., “The general Fokker action principle and its application in general relativity theory”, Acta Phys. Pol., 18, 307, (1959). |
![]() |
132 | Poisson, E., “Gravitational waves from inspiraling compact binaries: The quadrupole-moment
term”, Phys. Rev. D, 57, 5287–5290, (1998). Related online version (cited on 7 March 2006):
![]() |
![]() |
133 | Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational
radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997).
Related online version (cited on 7 March 2006):
![]() |
![]() |
134 | Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341–360, (1992). |
![]() |
135 | Schäfer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81–100, (1985). |
![]() |
136 | Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255–270, (1986). |
![]() |
137 | Schäfer, G., “Three-body hamiltonian in general relativity”, Phys. Lett. A, 123, 336–339, (1987). |
![]() |
138 | Schutz, B.F., “Statistical formulation of gravitational radiation reaction”, Phys. Rev. D, 22, 249–259, (1980). |
![]() |
139 | Schutz, B.F., “The Use of Perturbation and Approximation Methods in General Relativity”, in Fustero, X., and Verdaguer, E., eds., Relativistic Astrophysics and Cosmology, Proceedings of the XIVth GIFT International Seminar on Theoretical Physics, Sant Feliu de Guixols, Spain, 27 June – 1 July, 1983, 35, (World Scientific, Singapore, 1984). |
![]() |
140 | Schutz, B.F., “Motion and radiation in general relativity”, in Bressan, O., Castagnino, M., and Hamity, V., eds., Relativity, Supersymmetry and Cosmology, Proceedings of the 5th Simposio Latino Americano de Relatividad y Gravitación – SILARG V, 3–80, (World Scientific, Singapore; Philadelphia, U.S.A., 1985). |
![]() |
141 | Schutz, B.F., “Determining the Hubble constant from gravitational wave observations”, Nature, 323, 310–311, (1986). |
![]() |
142 | Schutz, B.F., “Lighthouses of gravitational wave astronomy”, in Gilfanov, M., Sunyaev, R.A.,
and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects
and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy
Conference held in Garching, Germany, 6 – 10 August 2001, (Springer, Berlin, Germany; New
York, U.S.A., 2002). Related online version (cited on 7 March 2006):
![]() |
![]() |
143 | Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1966). |
![]() |
144 | Sobolev, S.L., Partial Differential Equations of Mathematical Physics, (Dover, New York, U.S.A., 1989). Reprint. Originally published in 1964 by Pergamon Press, London. |
![]() |
145 | Soffel, M.H., Relativity in Astrometry, Celestial Mechanics and Geodesy, (Springer, Berlin, Germany; New York, U.S.A., 1989). |
![]() |
146 | Stewart, J.M., and Walker, M., “Perturbations of space-times in general relativity”, Proc. R. Soc. London, Ser. A, 341, 49–74, (1974). |
![]() |
147 | Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016–4022, (1994). |
![]() |
148 | Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of
spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006, 1–14,
(2001). Related online version (cited on 7 March 2006):
![]() |
![]() |
149 | National Astronomical Observatory, “TAMA Project”, project homepage. URL (cited on 7
March 2006):
![]() |
![]() |
150 | Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980). |
![]() |
151 | Thorne, K.S., “LIGO, VIRGO, and the international network of laser-interferometer gravitational-wave detectors”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, October 28 – 29, 1993, vol. 8 of NYMSS, (Universal Academy Press, Tokyo, Japan, 1994). |
![]() |
152 | Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985). |
![]() |
153 | INFN, “The Virgo Project”, project homepage. URL (cited on 7 March 2006):
![]() |
![]() |
154 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984). |
![]() |
155 | Walker, M., “Isolated Systems in Relativistic Gravity”, in de Sabbata, V., and Karade, T.M., eds., Relativistic Astrophysics and Cosmology, Vol. 1, Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur, India, 99–134, (World Scientific, Singapore, 1984). |
![]() |
156 | Walker, M., and Will, C.M., “The approximation of radiative effects in relativistic gravity: Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J., 242, L129–L133, (1980). |
![]() |
157 | Walker, M., and Will, C.M., “Gravitational radiation quadrupole formula is valid for gravitationally interacting systems”, Phys. Rev. Lett., 45, 1741–1744, (1980). |
![]() |
158 | Wang, Y., Stebbins, A., and Turner, E.L., “Gravitational Lensing of Gravitational Waves from Merging Neutron Star Binaries”, Phys. Rev. Lett., 77, 2875–2878, (1996). |
![]() |
159 | Will, C.M., “Experimental gravitation from Newton’s Principia to Einstein’s general relativity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 80–127, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). |
![]() |
160 | Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition. |
![]() |
161 | Will, C.M.,
“Gravitational Waves from Inspiraling Compact Binaries: A Post-Newtonian Approach”, in
Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial
Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, 28 – 29 October, 1993, vol. 8 of
NYMSS, 83–98, (Universal Academy Press, Tokyo, Japan, 1994). Related online version (cited
on 7 March 2006):
![]() |
![]() |
162 | Will, C.M., “Generation of post-Newtonian gravitational radiation via direct integration of the
relaxed Einstein equations”, Prog. Theor. Phys. Suppl., 136, 158–167, (1999). Related online
version (cited on 16 March 2006):
![]() |
![]() |
163 | Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct
integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with
spinning bodies”, Phys. Rev. D, 71, 084027, 1–15, (2005). Related online version (cited on 7
March 2006):
![]() |
![]() |
164 | Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev.
Relativity, 9, lrr-2006-3, (2006). URL (cited on 5 July 2006):
http://www.livingreviews.org/lrr-2006-3. |
![]() |
165 | Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems:
Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54,
4813–4848, (1996). Related online version (cited on 7 March 2006):
![]() |
![]() |
166 | Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram
Research, Inc. URL (cited on 7 March 2006):
![]() |
http://www.livingreviews.org/lrr-2007-2 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |