If the underlying simulation uses spectral methods then the spectral series can be evaluated anywhere, so no actual interpolation need be done, although the term “spectral interpolation” is still often used. See Fornberg [70Jump To The Next Citation Point], Gottlieb and Orszag [75Jump To The Next Citation Point], and Boyd [37Jump To The Next Citation Point] for general discussions of spectral methods, and (for example) Ansorg et al. [12Jump To The Next Citation Point, 11Jump To The Next Citation Point, 10Jump To The Next Citation Point, 13Jump To The Next Citation Point], Bonazzola et al. [35Jump To The Next Citation Point, 33Jump To The Next Citation Point, 34Jump To The Next Citation Point], Grandclément et al. [77Jump To The Next Citation Point], Kidder et al. [95Jump To The Next Citation Point, 96Jump To The Next Citation Point, 97Jump To The Next Citation Point], and Pfeiffer et al. [120Jump To The Next Citation Point, 124Jump To The Next Citation Point, 123Jump To The Next Citation Point, 122Jump To The Next Citation Point] for applications to numerical relativity.