|
The first kind of irregularity, called timing noise, is random fluctuations of pulse arrival times and is
present mainly in young pulsars, such as the Crab, for which the slow down rate is larger than for older
pulsars. Indeed, correlations have been found between the spin-down rate and the noise amplitude [275].
Timing noise might result from irregular transfers of angular momentum between the crust and the liquid
interior of neutron stars. A second kind of irregularity is the sudden jumps or “glitches” of the rotational
frequency, which have been observed in radio pulsars and more recently in anomalous X-ray
pulsars [234, 232, 106, 233, 296]. An example of a glitch is shown in Figure 74. Evidence of glitches have
also been reported in accreting neutron stars [153]. These glitches, whose amplitude vary from
up to
for PSR J1806–2125 [199
], as shown in Figure 75
, are
followed by a relaxation over days to years and are sometimes accompanied by a sudden change of the
spin-down rate from
to
. By the time of this writing,
171 glitches have been observed in 50 pulsars. Their characteristics and the references can be
found at [24]. The time between two successive glitches is usually a few years. One of the most
active pulsars is PSR J1341–6220, for which 12 glitches have been detected during 8.2 years of
observation [416].
|
Very soon after the observations of the first glitches in the Crab and Vela pulsars, superfluidity in the
interior of neutron stars was invoked to explain the long relaxation times [41]. The possibility that dense
nuclear matter becomes superfluid at low temperatures was suggested theoretically much earlier, even
before the discovery of the first pulsars (see Section 8.2). Following the first observations, several scenarios
were proposed to explain the origin of these glitches, such as magnetospheric instabilities, pulsar
disturbance by a planet, hydrodynamic instabilities or collisions of infalling massive objects
(for a review of these early models, see Ruderman [350]). Most of these models had serious
problems. The most convincing interpretation was that of starquakes, as briefly reviewed in
Section 12.4.1. However, large amplitude glitches remained difficult to explain. The possible role of
superfluidity in pulsar glitches was first envisioned by Packard in 1972 [317]. Soon after, Anderson and
Itoh proposed a model of glitches based on the motion of neutron superfluid vortices in the
crust [10]. Laboratory experiments were carried out to study similar phenomena in superfluid
helium [68, 408, 409]. It is now widely accepted that neutron superfluidity plays a major role in pulsar
glitches. As discussed in Sections 12.4.2 and 12.4.3, the glitch phenomenon seems to involve at
least two components inside neutron stars: the crust and the neutron superfluid. Section 12.4.4
shows how the observations of pulsar glitches can put constraints on the structure of neutron
stars.
Soon after the observations of the first glitches in Vela and in the Crab pulsars, Ruderman [349] suggested
that these events could be the manifestations of starquakes (see also [184] and references therein). As a
result of centrifugal forces, rotating neutron stars are not spherical but are slightly deformed, as can
be seen in Figure 40. If the star were purely fluid, a deceleration of its rotation would entail
a readjustment of the stellar shape to a more spherical configuration. However, a solid crust
prevents such readjustment and consequently the star remains more oblate. The spin-down of
the star thus builds up stress in the crust. When this stress reaches a critical level, the crust
cracks and the star readjusts its shape to reduce its deformation. Assuming that the angular
momentum is conserved during a starquake, the decrease
of the moment of inertia
is
therefore accompanied by an increase
of the rotational frequency
according to
Due to the interior magnetic field, the plasmas of electrically charged particles inside neutron stars are strongly coupled and co-rotate with the crust on very long timescales on the order of the pulsar age [132], thus following the long-term spin-down of the star caused by the electromagnetic radiation. Besides, the crust and charged particles are rotating at the observed angular velocity of the pulsar due to coupling with the magnetosphere. In contrast, neutrons are electrically neutral and superfluid. As a consequence, they can rotate at a different rate by forming quantized vortex lines (Section 8.3.2). This naturally leads to the consideration of the stellar interior as a two-fluid mixture. A model of this kind was first suggested by Baym et al. [40] for interpreting pulsar glitches as a transfer of angular momentum between the two components. Following a sudden spin-up of the star after a glitch event, the plasma of charged particles readjusts to a new rotational frequency within a few seconds [133]. Moreover, as discussed in Section 8.3.7, neutron superfluid vortices carry magnetic flux giving rise to an effective mutual friction force acting on the superfluid. As a result, the neutron superfluid in the core is dynamically coupled to the crust and to the charged particles, on a time scale much shorter than the post-glitch relaxation time of months to years observed in pulsars like Vela, suggesting that glitches are associated with the neutron superfluid in the crust. This conclusion assumes that the distribution of proton flux tubes in the liquid core is uniform. Nevertheless, one model predicts that every neutron vortex line is surrounded by a cluster of proton flux tubes [369, 370]. In this vortex-cluster model, the coupling time between the core superfluid and the crust could be much longer than the previous estimates and could be comparable to the postglitch relaxation times.
The origin of pulsar glitches relies on a sudden release of stresses accumulated in the crust, similar to the
starquake model. However, the transfer of angular momentum from the rapidly-rotating neutron superfluid
to the magnetically-braked solid crust and charged constituents during a glitch allows much larger
spin-up than that due solely to the readjustment of the stellar shape. Neutron superfluid is
weakly coupled to a normal charged component by mutual friction forces and thus follows the
spin-down of the crust via a radial motion of the vortices away from the rotation axis unless the
vortices are pinned to the crust. In the latter case, the lag between the superfluid and the crust
induces a Magnus force, acting on the vortices producing a crustal stress. When the lag exceeds a
critical threshold, the vortices are suddenly unpinned. Vortex motion could also be initiated by a
temperature perturbation, for instance the heat released after a starquake [267]. As a result, the
superfluid spins down and, by the conservation of the total angular momentum, the crust spins up
leading to a glitch [10]. If the pinning is strong enough, the crust could crack before the vortices
become unpinned, as suggested by Ruderman [351, 352
, 356
, 353
]. These two scenarios lead to
different predictions for the internal heat released after a glitch event. It has been argued that
observations of the thermal X-ray emission of glitching pulsars could thus put constraints on the glitch
mechanism [251].
In the vortex creep model [9] a postglitch relaxation is interpreted as a motion of vortices due to thermal fluctuations. Even at zero temperature, vortices can become unpinned by quantum tunneling [268]. The vortex current increases with the growth of temperature and can prevent the accumulation of large crustal stress in young pulsars, thus explaining the low glitch activity of these pulsars. In the model of Alpar et al. [6, 7] a neutron star is analogous to an electric circuit with a capacitor and a resistor, the vortices playing the role of the electric charge carriers. The star is, thus, assumed to be formed of resistive regions, containing a continuous vortex current, and capacitive regions devoid of vortices. A glitch can then be viewed as a vortex “discharge” between resistive regions through capacitive regions. The permanent change in the spin-down rate observed in some pulsars is interpreted as a reduction of the moment of inertia due to the formation of new capacitive regions. A major difficulty of this model is to describe the unpinning and repinning of vortices.
Ruderman developed an alternative view based on the interactions between neutron vortices and proton flux tubes in the core, assuming that the protons form a type II superconductor [354, 355]. Unlike the vortex lines, which are essentially parallel to the rotation axis, the configuration of the flux tubes depends on the magnetic field and may be quite complicated. Recalling that the number of flux tubes per vortex is about 1013 (see Sections 8.3.3 and 8.3.4), it is therefore likely that neutron vortices and flux tubes are strongly entangled. As superfluid spins down, the vortices move radially outward dragging along the flux tubes. The motion of the flux tubes results in the build up of stress in the crust. If vortices are strongly pinned to the crust, the stress is released by starquakes fracturing the crust into plates like the breaking of a concrete slab reinforced by steel rods when pulling on the rods. These plates and the pinned vortices will move toward the equator thus spinning down superfluid and causing a glitch. Since the magnetic flux is frozen into the crust due to very high electrical conductivity, the motion of the plates will affect the configuration of the magnetic field. This mechanism naturally explains the increase of the spin-down rate after a glitch observed in some pulsars like the Crab, by an increase of the electromagnetic torque acting on the pulsar due to the increase of the angle between the magnetic axis and the rotation axis.
Other scenarios have recently been proposed for explaining pulsar glitches, such as transitions from a configuration of straight neutron vortices to a vortex tangle [324], and more exotic mechanisms invoking the possibility of crystalline color superconductivity of quark matter in a neutron star core [4]. These models, and those briefly reviewed in Section 12.4.2, rely on rather poorly known physics. The strength of the vortex pinning forces and the type of superconductivity in the core are controversial issues (for a recent review, see, for instance, [367] and references therein). Besides, it is usually implicitly assumed that superfluid vortices extend throughout the star (or at least throughout the inner crust). However, microscopic calculations show that the superfluidity of nuclear matter strongly depends on density (see Section 8.2). It should be remarked that even in the inner crust, the outermost and innermost layers may be nonsuperfluid, as discussed in Section 8.2.2. It is not clear how superfluid vortices arrange themselves if some regions of the star are nonsuperfluid. The same question also arises for magnetic flux tubes if protons form a type II superconductor.
Andersson and collaborators [16] have suggested that pulsar glitches might be explained by a
Kelvin–Helmholtz instability between neutron superfluid and the conglomeration of charged particles,
provided the coupling through entrainment (see Section 8.3.7) is sufficiently strong. It remains to be
confirmed whether such large entrainment effects can occur. Carter and collaborators [81] pointed out a few
years ago that a mere deviation from the mechanical and chemical equilibrium induced by the lack of
centrifugal buoyancy is a source of crustal stress. This mechanism is always effective, independently of the
vortex motion and proton superconductivity. In particular, even if the neutron vortices are not pinned to
the crust, this model leads to crustal stress of similar magnitudes than those obtained in the pinned
case. Chamel & Carter [94] have recently demonstrated that the magnitude of the stress is
independent of the interactions between neutron superfluid and normal crust giving rise to
entrainment effects. But they have shown that stratification induces additional crustal stress. In this
picture, the stress builds up until the lag between neutron superfluid and the crust reaches a
critical value, at which point the crust cracks, triggering a glitch. The increase of the spin-down
rate observed in some pulsars like the Crab can be explained by the crustal plate tectonics of
Ruderman [351, 352, 356, 353], assuming that neutron superfluid vortices remain pinned to the crust.
Even in the absence of vortex pinning, Franco et al. [149] have shown that, as a result of starquakes,
the star will oscillate and precess before relaxing to a new equilibrium state, followed by an
increase of the angle between the magnetic and rotation axis (thus increasing the spin-down
rate).
Basing their work on the two-component model of pulsar glitches, Link et al. [269] derived a constraint on
the ratio
of the moment of inertia
of the free superfluid neutrons in the crust to the total
moment of inertia
of the Vela pulsar, from which they inferred an inequality involving the mass and
radius of the pulsar. However, they neglected entrainment effects (see Sections 8.3.6 and 8.3.7),
which can be very strong in the crust, as shown by Chamel [90
, 91
]. We will demonstrate here
how the constraint is changed by including these effects, following the analysis of Chamel &
Carter [94
].
The total angular momentum of a rotating neutron star is the sum of the angular momentum
of free superfluid neutrons in the crust and of the angular momentum
of the “crust”
(this includes not only the solid crust but also the liquid core, as discussed in Section 12.4.2).
As reviewed in Sections 10.2 and 10.3, momentum and velocity of each component are not
aligned due to (nondissipative) entrainment effects. Likewise, it can be shown that the angular
momentum of each component is a superposition of both angular velocities
and
[94
];
Let us denote (discontinuous) variations of some quantity during a glitch by
and
(continuous) variations of this quantity during the interglitch period by
, as illustrated in Figure 76
.
The total angular momentum
can be assumed to be conserved during a glitch, therefore,
|
Microscopic calculations [90, 91
] show that the ratio
is smaller than unity [94] (assuming that
only neutron superfluid in the crust participates in the glitch phenomenon). We, thus, have
http://www.livingreviews.org/lrr-2008-10 | ![]() This work is licensed under a Creative Commons License. Problems/comments to |