When the universe has collapsed to a sufficiently small size, repulsion becomes noticeable and bouncing
solutions become possible, as illustrated in Figure 1. Requirements for a bounce are that the conditions
and
can be fulfilled at the same time, where the first can be evaluated with the Friedmann
equation and the second with the Raychaudhuri equation. The first condition can only be fulfilled if there is
a negative contribution to the matter energy, which can come from a positive curvature term
or a
negative matter potential
. In these cases, there are classical solutions with
, but they
generically have
corresponding to a recollapse. This can easily be seen in the flat case with a
negative potential, where Equation (31
) is strictly negative with
at large
scales.
The repulsive nature at small scales now implies a second point where from Equation (30
) at
smaller
since the matter energy now also decreases as
. Moreover, the Raychaudhuri
equation (31
) has an additional positive term at small scales such that
becomes possible.
Matter also behaves differently through the Klein–Gordon equation (33). Classically, with
, the
scalar experiences antifriction and
diverges close to the classical singularity. With the quantum
correction, antifriction turns into friction at small scales, damping the motion of
such that it
remains finite. In the case of a negative potential [98
], this allows the kinetic term to cancel the
potential term in the Friedmann equation. With a positive potential and positive curvature, on
the other hand, the scalar is frozen and the potential is canceled by the curvature term. Since
the scalar is almost constant, the behavior around the turning point is similar to a de Sitter
bounce [279, 303]. Further, more generic possibilities for bounces arise from other correction
terms [147, 142
].
Repulsion can not only prevent collapse but also accelerates an expanding phase. Indeed, using the
behavior (27) at small scales in the Raychaudhuri equation (31
) shows that
is generically positive since
the inner bracket is smaller than
for the allowed values
. Thus, as illustrated by the
numerical solution in the upper left panel of Figure 2
, inflation is realized by quantum gravity effects for
any matter field irrespective of its form, potential or initial values [53
]. The kind of expansion at early
stages is generally super-inflationary, i.e., with equation of state parameter
. For free
massless matter fields,
usually starts very small, depending on the value of
, but with a
non-zero potential just as the mass term for matter inflation
is generally close to exponential:
for small
. This can be shown by a simple and elegant argument independently of the
precise matter dynamics [148]; the equation of state parameter is defined as
where
is the pressure, i.e., the negative change of energy with respect to volume, and
is the energy density. Using the matter Hamiltonian for
and
, we
obtain
and thus, in the classical case,
as usual. In loop cosmology, however, we have
(See [312] for a discussion of energy conditions in this context and [272] for an application to tachyon fields.)
|
Get Flash to see this player.
|
In general we need to know the matter behavior to know and
. But we can get general
qualitative information by treating
and
as unknowns determined by
and
. In the
general case there is no unique solution for
and
since, after all,
and
change with
.
They are now subject to two linear equations in terms of
and
, whose determinant must be zero,
resulting in
Since for small the numerator of the fraction approaches zero faster than the second part of the
denominator,
approaches
at small volume except for the special case where
, which is
realized for
. Note that the argument does not apply to the case of vanishing potential since then
and
presents a unique solution to the linear equations for
and
. In fact,
this case leads in general to a much smaller
[53
]. Also at
intermediate values of
, where the asymptotic argument does not apply, values of
that are smaller
than
are possible.
One can also see from the above formula that , though close to
, is a little smaller than
generally. This is in contrast to single field inflaton models where the equation of state parameter is
a little larger than
. As we will discuss in Section 4.19, this opens the door to possible
characteristic signatures distinguishing different models. However, here we refer to a regime
where other quantum corrections are present and care in the interpretation of results is thus
required.
Again, the matter behavior also changes, now with classical friction being replaced by antifriction [111].
Matter fields thus move away from their minima and become excited, even if they start close
to a minimum (Figure 2
). Since this does not apply only to the homogeneous mode, it can
provide a mechanism for structure formation as discussed in Section 4.19. But modified matter
behavior also leads to improvements in combination with chaotic inflation as the mechanism
to generate structure; if we now view the scalar
as an inflaton field, it will be driven to
large values in order to start a second phase of slow-roll inflation that is long enough. This
“graceful entrance” [244
] is satisfied for a large range of the ambiguity parameters
and
[97]
(see also [195]), is insensitive to non-minimal coupling of the scalar [93], and can even leave
signatures [295] in the cosmic microwave spectrum [194]. The earliest moments during which the inflaton
starts to roll down its potential are not slow roll, as can also be seen in Figures 2
and 3
, where
the initial decrease is steeper. Provided the resulting structure can be seen today, i.e., there
are not too many e-foldings from the second phase, this can lead to visible effects, such as a
suppression of power. Whether or not those effects are to be expected, i.e., which magnitude
of the inflaton is generally reached by the mechanism generating initial conditions, is to be
investigated at the basic level of loop quantum cosmology. All this should be regarded only as initial
suggestions, indicating the potential of quantum cosmological phenomenology, which have to
be substantiated by detailed calculations, including inhomogeneities or at least anisotropic
geometries. In particular, the suppression of power can be obtained by a multitude of other
mechanisms.
It is already clear that there are different inflationary scenarios using effects from loop cosmology. A scenario without inflatons is more attractive since it requires less choices and provides a fundamental explanation for inflation directly from quantum gravity. However, it is also more difficult to analyze structure formation in this context, when there already are well-developed techniques in slow role scenarios.
In these cases, where one couples loop cosmology to an inflaton model, one still requires the same conditions for the potential, but generally gets the required large initial values for the scalar by antifriction. On the other hand, finer details of the results now depend on the ambiguity parameters, which describe aspects of the quantization also arising in the full theory.
It is possible to combine collapsing and expanding phases in cyclic or oscillatory models [215]. One
then has a history of many cycles separated by bounces, whose duration depends on details
of the model such as the potential. Here also, results have to be interpreted carefully since
especially such long-term evolutions are sensitive to all possible quantum corrections, not just those
included here. There can then be many brief cycles until eventually, if the potential is right,
one obtains an inflationary phase, if the scalar has grown high enough. In this way, one can
develop an idea of the history of our universe before the Big Bang. The possibility of using a
bounce to describe the structure in the universe exists. So far this has only been described in
models [200] using brane scenarios [219], in which the classical singularity has been assumed to
be absent by yet-to-be-determined quantum effects. As it turns out, the explicit mechanism
removing singularities in loop cosmology is not compatible with the assumptions made in those
effective pictures. In particular, the scalar was supposed to turn around during the bounce,
which is impossible in loop scenarios unless it encounters a range of positive potential during its
evolution [98]. Then, however, an inflationary phase generally commences, as in [215, 244
],
which is then the relevant regime for structure formation. This shows how model building in
loop cosmology can distinguish scenarios that are more likely to occur from quantum gravity
effects.
Cyclic models can be argued to shift the initial moment of a universe in the infinite past, but they do not explain how the universe started. An attempt to explain this is the emergent universe model [160, 162], in which one starts close to a static solution. This is difficult to achieve classically, however, since the available fixed points of the equations of motion are not stable and thus a universe departs too rapidly. Loop cosmology, on the other hand, implies an additional fixed point of the effective equations, which is stable, and allows the universe to start in an initial phase of oscillations before an inflationary phase is entered [238, 61]. This presents a natural realization of the scenario in which the initial scale factor at a fixed point is automatically small so as to start the universe close to the Planck phase.
Cosmological equations displaying super-inflation or antifriction are often unstable in the sense that matter
can propagate faster than light. This has been voiced as a potential danger for loop cosmology as
well [139, 140
]. An analysis requires inhomogeneous techniques, at least at an effective level, such as those
described in Section 4.16. It has been shown that loop cosmology is free of this problem because the
new behavior of the homogeneous mode of the metric and matter is not relevant for matter
propagation [186
]. The whole cosmological picture that follows from the effective equations is thus
consistent.
http://www.livingreviews.org/lrr-2008-4 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |