Je abstrakter die Wahrheit ist, die du lehren willst, um so mehr mußt du noch die Sinne zu ihr verführen.
(The more abstract the truth you want to teach is, the more you have to seduce to it the senses.)
Friedrich Nietzsche
Beyond Good and Evil
The gravitational field equations, for instance in the case of cosmology where one can assume homogeneity and isotropy, involve components of curvature as well as the inverse metric. (Computational methods to derive information from these equations are described in [5].) Since singularities occur, these curvature components become large in certain regimes, but the equations have been tested only in small curvature regimes. On small length scales, such as close to the Big Bang, modifications to the classical equations are not ruled out by observations and can be expected from candidates of quantum gravity. Quantum cosmology describes the evolution of a universe by a constraint equation for a wave function, but some effects can be included already at the level of effective classical equations. In loop quantum gravity one characteristic quantum correction occurs through inverse metric components, which, e.g., appear in the kinematic term of matter Hamiltonians; see Section 4.4. In addition, holonomies provide higher powers of connection components and thus additional effects in the dynamics as described in Section 4.7. While the latter dominate in many homogeneous models, which have been analyzed in detail, this is a consequence of the homogeneity assumption. More generally, effects from inverse metric components play equally important roles and are currently under better control, e.g., regarding the anomaly issue (see Section 6.5.4).
http://www.livingreviews.org/lrr-2008-4 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |