Testing general relativity in the strong-field regime with neutron stars and black holes will require advanced observatories that will be able to resolve various phenomena in the characteristic energy and time scales in which they occur. The two parameters used to quantify the strength of a gravitational field in Section 3.1 are also useful in discussing the specifications required for such future observatories.
The potential and the curvature in a gravitational field are directly related, respectively, to the
characteristic energy and time scales that need to be resolved in order for an observation to be able to probe
a particular region of the parameter space. The potential directly gives the gravitational redshift
according to
One of the most promising avenues of testing strong-field general relativity is via the detection of the
gravitational waves emitted during the coalescence of compact objects. In the simple case in which two
compact objects of mass are orbiting each other in circular orbits with separation
, slowly
approaching because of the emission of gravitational waves, the characteristic period
of the
gravitational wave is half of the orbital period and, therefore, is related to the spacetime curvature by
In the near future, a number of observatories will exploit new techniques and open new horizons
in gravitational physics by exploring the strong-field region of the parameter space shown in
Figure 18. Observations with the Square Kilometre Array [151] may lead to the discovery of
the most optimal binary systems for strong-field gravity tests with pulsar timing, in which a
pulsar is orbiting a black hole [78]. High-energy observations of black holes and neutron stars
with IXO [74] and XEUS [185] will detect highly-redshifted atomic lines and measure their
rapid variability properties. Finally, gravitational wave observatories, either from the ground
(such as LIGO [88], GEO600 [62], TAMA300 [163] and VIRGO [175]) or from space (such as
LISA [108]) will directly detect, for the first time, one of the most remarkable predictions of general
relativity, the generation of gravitational waves from orbiting compact objects and black-hole
ringing.
http://www.livingreviews.org/lrr-2008-9 | ![]() This work is licensed under a Creative Commons License. Problems/comments to |