A binary star system can also be treated as a “centrifuge”. Two stars of the same mass in a circular
orbit of radius
have all their mass in nonspherical motion, so that
where is the orbital angular velocity. The gravitational wave amplitude can then be written
The gravitational wave luminosity of such a system is, by a calculation analogous to that for bumps on
neutron stars (assuming that four components of to be significant),
The radiation of energy by the orbital motion causes the orbit to shrink. The shrinking will make any observed gravitational waves increase in frequency with time. This is called a chirp. The timescale2 for this in a binary system with equal masses is
As the binary evolves, the frequency and amplitude of the wave grow and this drives the binary to evolve even more rapidly. The signal’s frequency, however, will not increase indefinitely; the slow inspiral phase ends either when the stars begin to interact and merge or (if they are very compact) when the distance between the stars is roughly at the last stable orbit (LSO) A compact-object binary that coalesces after passing through the last stable orbit is a powerful source of
gravitational waves, with a luminosity that approaches the limiting luminosity . This is called a
coalescing binary in gravitational wave searches. Since a typical search might last on the order of one year, a
coalescing binary can be defined as a system that has a chirp time smaller than one year. In Figure 2
the
coalescence line is shown as a straight line with slope 3/4 (set
to a constant in Equation (28
)).
Binary systems below this line have a chirp time smaller than one year. It is evident from the
figure that all binary systems observable by ground-based detectors will coalesce in less than a
year.
As mentioned for gravitational wave pulsars, the raw amplitude of the radiation from a long-lived system
is not by itself a good guide to its detectability, if the waveform can be predicted. Data analysis techniques
like matched filtering are able to eliminate most of the detector noise and allow the recognition of weaker
signals. The improvement in amplitude sensitivity is roughly proportional to the square root of the number
of cycles of the waveform that one observes. For neutron stars that are observed from a frequency of 10 Hz
until they coalesce, there could be on the order of 104 cycles, meaning that the sensitivity of a
second-generation interferometric detector would effectively be 100 times better than its broadband
(prefiltering) sensitivity. Such detectors could see typical coalescences at 200 Mpc. The event rate for
second-generation detectors is estimated at around 40 events per year, with rather large error
bars [103
, 212, 244
].
When we consider real binaries we must do the calculation for systems that have unequal masses. Still assuming for the moment that the binary orbit is circular, the quadrupole amplitude turns out to be
where we define the chirp mass Remarkably, the other observable, namely the shrinking of the orbit as measured by the rate
of change of the orbital frequency also depends on the masses just through
[291
]:
If one observes and
, one can infer
from Equation (32
). Then, from the observed
amplitude in Equation (30
), the only remaining unknown is the distance
to the source.
Gravitational wave observations of orbits that shrink because of gravitational energy losses can
therefore directly determine the distance to the source [332
]. By analogy with the “standard
candles” of electromagnetic astronomy, these systems are now being called “standard sirens”.
Although our calculation here assumed an equal-mass circular system, the conclusion is robust: any
binary, even with ellipticity and extreme mass ratio, encodes its distance in its gravitational wave
signal.
This is another way in which gravitational wave observations are complementary to electromagnetic
ones, providing information that is hard to obtain electromagnetically. One consequence is the possibility
that observations of coalescing compact object binaries could allow one to measure the Hubble
constant [332] or other cosmological parameters. This will be particularly interesting for the LISA project,
whose observations of black hole binaries could contribute an independent measurement of the acceleration
of the universe [197
, 132
, 50
].
Because chirping systems are so interesting we have also drawn, in Figure 2, a line where
the chirp time can be measured in one year. This means that the change in frequency due to
the chirp must be larger than the frequency resolution 1 yr–1. A little algebra shows that the
condition for the chirp to be resolved in an observation time
in a binary with period
is
The most famous example of the effects of gravitational radiation on an orbiting system is
the Hulse–Taylor Binary Pulsar, PSR B1913+16. In this system, two neutron stars orbit in
a close eccentric orbit. The pulsar provides a regular clock that allows one to deduce, from
post-Newtonian effects, all the relevant orbital parameters and the masses of the stars. The key to the
importance of this binary system is that all of the important parameters of the system can be
measured before one takes account of the orbital shrinking due to gravitational radiation reaction.
This is because a number of post-Newtonian effects on the arrival time of pulses at the Earth,
such as the precession of the position of the periastron and the time-dependent gravitational
redshift of the pulsar period as it approaches and recedes from its companion, can be measured
accurately, and they fully determine the masses, the semi-major axis and the eccentricity of their
orbit [394, 347
].
Equation (28) for the chirp time predicts that this system would change its orbital period
on the timescale (taking
and
)
From this one can infer that . But this has to be corrected for our oversimplification of
the orbit as circular: an eccentric orbit evolves much faster because, during the phase of closest approach,
the velocities are much higher, and the emitted luminosity is a very strong function of the velocity. Using
equations first computed by Peters and Mathews [291
], for the actual eccentricity of 0.62, one finds
(see Equation (109
) below)
. Observations [394
, 388]
currently give
. There is a significant discrepancy between
these, but it can be removed by realizing that the binary system is accelerating toward the
center of our galaxy, which produces a small period change. Taking this into account gives a
corrected prediction of
, and this agrees with the observation within
the uncertainties [394
, 358
]. This is the most sensitive test that we have of the correctness
of Einstein’s equations with respect to gravitational radiation, and it leaves little room for
doubt in the validity of the quadrupole formula for other systems that may generate detectable
radiation.
A number of other binary systems are now known in which such tests are possible [347]. The most
important of the other systems is the “double pulsar” in which both neutron stars are seen as pulsars [248
].
This system will soon overtake the Hulse–Taylor binary as the most accurate test of gravitational
radiation.
Binary systems at lower frequencies are much more abundant than coalescing binaries, and they have much longer lifetimes. LISA will look for close white-dwarf binaries in our galaxy, and will probably see thousands of them. White dwarfs are not as compact as black holes or neutron stars. Although their masses can be similar to that of a neutron star their sizes are much larger, typically 3,000 km in radius. As a result, white-dwarf binaries never reach the last stable orbit, which would occur at roughly 1.5 kHz for these masses. We will discuss the implications of multi-messenger astronomy for white-dwarf binaries in Section 7.4.
The maximum amplitude of the radiation from a white-dwarf binary will be several orders
of magnitude smaller than that of a neutron star or black hole binary at the same distance
but close to coalescence. However, a binary system with a short period is long lived, so the
effective amplitude (after matched filtering) improves as the square root of the observing time.
Besides that, these sources are nearer: there are many thousands of such systems in our galaxy
radiating in the LISA frequency window above about 1 mHz, and LISA should be able to see all of
them. Below 1 mHz there are even more sources, so many that LISA will not resolve them
individually, but will see them blended together in a stochastic background of radiation, as shown in
Figure 5.
Observations indicate that the center of every galaxy probably hosts a black hole whose mass is in the
range of [307
], with the black holes mass correlating well with the mass of the
galactic bulge. A black hole whose mass is in the above range is called a supermassive black
hole (SMBH). There is now abundant observational evidence that galaxies often collide and
merge, and there are good reasons to believe that when that happens, friction between the
SMBHs and the stars and gas of the irregular merged galaxy will lead the SMBHs to spiral into
a common nucleus and (on a timescale of some 108 yr) even get close enough to be driven
into complete orbital decay by gravitational radiation reaction. In many systems this should
lead to a black hole merger within a Hubble time [222
]. For a binary with two nonspinning
black holes, the frequency of emitted gravitational waves at the last stable orbit is, from
Equation (29
),
; during and after the merger the frequency rises from 4 mHz to the
quasi-normal-mode frequency of 24 mHz (if the spin of the final black hole is negligible). (Naturally, all
these frequencies simply scale inversely with the mass for other mass ranges.) This is in the
frequency range of LISA, and observing these mergers is one of the central purposes of the
mission.
SMBH mergers are so spectacularly strong that they will be visible in LISA’s data stream even before
applying any matched filter, although good models of the inspiral and particularly the merger radiation will
be needed to extract source parameters. Because the masses of such black holes are so large, LISA can see
essentially any merger that happens in its frequency band anywhere in the universe, even out to extremely
high redshifts. It can thereby address astrophysical questions about the origin, growth and population
of SMBHs. The recent discovery of an SMBH binary [222] and the association of X-shaped
radio lobes with the merger of SMBH binaries [256] has further raised the optimism concerning
SMBH merger rates, as has the suggestion that an SMBH has been observed to have been
expelled from the center of its galaxy, an event that could only have happened as a result of a
merger between two SMBHs [223]. The rate at which galaxies merge is about 1 yr–1 out to a
red-shift of
[187], and LISA’s detection rate for SMBH mergers might be roughly the
same.
Modelling of the merger of two black holes requires numerical relativity, and the accuracy and reliability of numerical simulations is now becoming good enough that they will soon become an integral part of gravitational wave searches.
The SMBH environment of our own galaxy is known to contain a large number of compact objects and
white dwarfs. Near the central SMBH there is a disproportionately large number of stellar-mass black holes,
which have sunk there through random gravitational encounters with the normal stellar population
(dynamical friction). Three body interaction will occasionally drive one of these compact objects into a
capture orbit of the central SMBH. The compact object will sometimes be captured [307, 341, 340] into a
highly eccentric trajectory () with the periastron close to the last stable orbit of the
SMBH. Since the mass of the captured object will be about
, while the SMBH will
have a far greater mass, we essentially have a “test mass” falling in the geometry of a Kerr
black hole. By Equation (33
) we would expect that the small body would spend many orbits in
the relativistic regime near the horizon of the large black hole: a
black hole falling
into a
black hole would require on the order of 105 orbits. The emitted gravitational
radiation [320
, 180
, 179
, 69
, 171
, 59
] would consist of a very long wave train that carries information
about the nearly geodesic trajectory of the test body, thereby providing a very clean probe
to survey the spacetime geometry of the central object (which could be a Kerr black hole or
some other compact object) and test whether or not this geometry is as predicted by general
relativity [321, 200, 178
, 177, 70
].
This kind of event happens occasionally to every SMBH that lives in the center of a galaxy.
Indeed, since the SNR from matched filtering builds up in proportion to the square root of the
observation time [cf. Equation (33
)] and the inherent amplitude of the
radiation is linear in
[cf. Equation (30
)], the SNR varies with the symmetric mass ratio as
and typical SNR will be about ten to a thousand times smaller than an SMBH binary
at the same distance. LISA will, therefore, be able to see such sources only to much smaller
distances, say between 1 to 10 Gpc depending on the mass ratio. For events at such distances
LISA’s SNR after matched filtering could be in the range 10 – 100, but matched filtering will be
very difficult because of the complexity of the orbit, especially of its evolution due to radiation
effects. However, this volume of space contains a large number of galaxies, and the event rate is
expected to be several tens to hundreds per year [69
]. There will be a background from more
distant sources that might in the end set the limit on how much sensitivity LISA has to these
events.
Due to relativistic frame dragging, for each passage of the apastron the test body could execute several
nearly circular orbits at its periastron. Therefore, long periods of low-frequency, small-amplitude radiation
will be followed by several cycles of high-frequency, large-amplitude radiation [320, 180, 179, 69, 171, 59].
The apastron slowly shrinks, while the periastron remains more or less at the same location, until the final
plunge of the compact object before merger. Moreover, if the central black hole has a large spin then
spin-orbit coupling leads to precession of the orbital plane thereby changing the polarization of the wave as
seen by LISA.
Thus, there is a lot of structure in the waveforms owing to a number of different physical effects:
contribution from higher-order multipoles due to an eccentric orbit, precession of the orbital plane,
precession of the periastron, etc., and gravitational radiation backreaction plays a pivotal role in
the dynamics of these systems. If one looks at the time-frequency map of such a signal one
notices that the signal power is greatly smeared across the map [323], as compared to that of a
sharp chirp from a nonspinning black-hole binary. For this reason, this spin modulated chirp is
sometimes referred to as a smirch [325]. More commonly, such sources are called extreme mass ratio
inspirals (EMRIs) and represent systems whose mass ratio is in the range of
10–3 – 10–6.
Inspirals of systems with their mass ratio in the range
10–2 – 10–3 are termed intermediate
mass ratio inspirals or IMRIs. These latter systems correspond to the inspiral of intermediate
mass black holes of mass
and might constitute a prominent source in LISA
provided the central SMBH grew in mass as a result of a number of mergers of small black
holes [33, 34, 35
].
While black hole perturbation theory with a careful treatment of radiation reaction is necessary for the description of EMRIs, IMRIs may be amenable to a description using a hybrid scheme of post-Newtonian approximations and perturbation theory. This is an area that requires more study.
http://www.livingreviews.org/lrr-2009-2 | ![]() This work is licensed under a Creative Commons License. Problems/comments to |