Equation Icon  −1∕2 unm (x,y,z) = (2n+m −1n!m!π ) w1(z) exp(i(n + m + 1)Ψ(z)) × ( √2x) ( √2y ) ( k(x2+y2) x2+y2) (132 ) Hn w-(z) Hm w(z) exp − i-2RC(z)- − w2(z) .