![]() |
1 | Anderson, M., “On long-time evolution in general relativity and geometrization of 3-manifolds”,
Commun. Math. Phys., 222, 533–567, (2001). [![]() ![]() |
![]() |
2 | Andersson, L. and Rendall, A.D., “Quiescent cosmological singularities”, Commun. Math. Phys.,
218, 479–511, (2001). [![]() ![]() |
![]() |
3 | Andersson, L., van Elst, H. and Uggla, C., “Gowdy phenomenology in scale-invariant variables”,
Class. Quantum Grav., 21, S29–S57, (2004). [![]() ![]() |
![]() |
4 | Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun.
Math. Phys., 206, 337–365, (1999). [![]() ![]() |
![]() |
5 | Andréasson, H., Rendall, A.D. and Weaver, M., “Existence of CMC and constant areal time
foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29,
237–262, (2004). [![]() ![]() |
![]() |
6 | Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., “Oscillatory Approach to a Singular Point
in the Relativistic Cosmology”, Adv. Phys., 19, 525–573, (1970). [![]() |
![]() |
7 | Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., “A general solution of the Einstein
equations with a time singularity”, Adv. Phys., 31, 639–667, (1982). [![]() |
![]() |
8 | Berger, B.K., “Asymptotic Behavior of a Class of Expanding Gowdy Spacetimes”, arXiv e-print,
(2002). [![]() |
![]() |
9 | Berger, B.K., Chruściel, P.T., Isenberg, J. and Moncrief, V., “Global Foliations of Vacuum
Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [![]() ![]() |
![]() |
10 | Berger, B.K. and Garfinkle, D., “Phenomenology of the Gowdy universe on T3 ×R”, Phys. Rev.
D, 57, 4767–4777, (1998). [![]() ![]() |
![]() |
11 | Berger, B.K. and Moncrief, V., “Numerical Investigation of Cosmological Singularities”, Phys.
Rev. D, 48, 4676–4687, (1993). [![]() ![]() |
![]() |
12 | Chae, M. and Chruściel, P.T., “On the dynamics of Gowdy space times”, Commun. Pure Appl.
Math., 57, 1015–1074, (2004). [![]() ![]() |
![]() |
13 | Choquet-Bruhat, Y. and Geroch, R., “Global aspects of the Cauchy problem in General
Relativity”, Commun. Math. Phys., 14, 329–335, (1969). [![]() |
![]() |
14 | Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar
field”, Ann. Math. (2), 149, 183–217, (1999). [![]() |
![]() |
15 | Christodoulou, D., Mathematical Problems of General Relativity I, Zurich Lectures in Advanced
Mathematics, (EMS Publishing House, Zürich, 2008). [![]() |
![]() |
16 | Chruściel, P.T., “On Space-Times with U(1) × U(1) Symmetric Compact Cauchy Surfaces”,
Ann. Phys. (N.Y.), 202, 100–150, (1990). [![]() |
![]() |
17 | Chruściel, P.T., On Uniqueness in the Large of Solutions of Einstein’s Equations (Strong Cosmic Censorship), CMA Proceedings, 27, (Australian National University Press, Canberra, 1991). |
![]() |
18 | Chruściel, P.T., “On completeness of orbits of Killing vector fields”, Class. Quantum Grav.,
10, 2091–2101, (1993). [![]() ![]() |
![]() |
19 | Chruściel, P.T., Galloway, G. and Pollack, D., Mathematical general relativity: a sampler,
Preprint Series, 03, (Institut Mittag-Leffler, Djursholm, Sweden, 2009). URL (accessed 8 January
2010): ![]() |
![]() |
20 | Chruściel, P.T. and Isenberg, J., “Non-isometric vacuum extensions of vacuum maximal
globally hyperbolic spacetimes”, Phys. Rev. D, 48, 1616–1628, (1993). [![]() |
![]() |
21 | Chruściel, P.T., Isenberg, J. and Moncrief, V., “Strong Cosmic Censorship in Polarized Gowdy
Spacetimes”, Class. Quantum Grav., 7, 1671–1680, (1990). [![]() |
![]() |
22 | Chruściel, P.T. and Lake, K., “Cauchy horizons in Gowdy spacetimes”, Class. Quantum Grav.,
21, S153–S169, (2004). [![]() ![]() |
![]() |
23 | Dafermos, M., “Stability and instability of the Cauchy horizon for the spherically symmetric
Einstein-Maxwell-scalar field equations”, Ann. Math., 158, 875–928, (2003). [![]() |
![]() |
24 | Dafermos, M., “The interior of charged black holes and the problem of uniqueness in general
relativity”, Commun. Pure Appl. Math., 58, 445–504, (2005). [![]() ![]() |
![]() |
25 | Dafermos, M. and Rendall, A.D., “Inextendibility of expanding cosmological models with
symmetry”, Class. Quantum Grav., 22, L143–L147, (2005). [![]() ![]() |
![]() |
26 | Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for T2-symmetric cosmological
spacetimes with collisionless matter”, arXiv e-print, (2006). [![]() |
![]() |
27 | Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for surface-symmetric cosmological
spacetimes with collisionless matter”, arXiv e-print, (2007). [![]() |
![]() |
28 | Damour, T., Henneaux, M. and Nicolai, H., “Cosmological billiards”, Class. Quantum Grav.,
20, R145–R200, (2003). [![]() ![]() |
![]() |
29 | Damour, T., Henneaux, M., Rendall, A.D. and Weaver, M., “Kasner-like behaviour for subcritical
Einstein-matter systems”, Ann. Henri Poincare, 3, 1049–1111, (2002). [![]() ![]() |
![]() |
30 | Damour, T. and Nicolai, H., “Higher order M-theory corrections and the Kac–Moody algebra
E10”, Class. Quantum Grav., 22, 2849–2880, (2005). [![]() ![]() |
![]() |
31 | Eardley, D., Liang, E. and Sachs, R., “Velocity-Dominated Singularities in Irrotational Dust
Cosmologies”, J. Math. Phys., 13, 99–107, (1972). [![]() |
![]() |
32 | Eardley, D.M. and Moncrief, V., “The Global Existence Problem and Cosmic Censorship in
General Relativity”, Gen. Relativ. Gravit., 13, 887–892, (1981). [![]() |
![]() |
33 | Fischer, A.E. and Moncrief, V., “The reduced Einstein equations and the conformal volume
collapse of 3-manifolds”, Class. Quantum Grav., 18, 4493–4515, (2001). [![]() |
![]() |
34 | Fourès-Bruhat, Y., “Théorème d’existence pour certains systèmes d’équations aux
dérivées partielles non linéaires”, Acta Math., 88, 141–225, (1952). [![]() |
![]() |
35 | Friedrich, H. and Rendall, A.D., “The Cauchy problem for the Einstein equations”, in Schmidt,
B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour
of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New York,
2000). [![]() ![]() |
![]() |
36 | Garfinkle, D. and Weaver, M., “High velocity spikes in Gowdy spacetimes”, Phys. Rev. D, 67,
124009, (2003). [![]() ![]() |
![]() |
37 | Gowdy, R.H., “Errata: Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 1102,
(1971). [![]() |
![]() |
38 | Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826–829, (1971).
[![]() |
![]() |
39 | Gowdy, R.H., “Vacuum Spacetimes with Two-Parameter Spacelike Isometry Groups and
Compact Invariant Hypersurfaces: Topologies and Boundary Conditions”, Ann. Phys. (N.Y.),
83, 203–241, (1974). [![]() |
![]() |
40 | Grubišić, B. and Moncrief, V., “Asymptotic behaviour of the T3 × R Gowdy space-times”,
Phys. Rev. D, 47, 2371–2382, (1993). [![]() ![]() |
![]() |
41 | Hawking, S.W., “The Occurrence of singularities in cosmology. III. Causality and singularities”,
Proc. R. Soc. London, Ser. A, 300, 187–201, (1967). [![]() |
![]() |
42 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [![]() |
![]() |
43 | Hawking, S.W. and Penrose, R., “The singularities of gravitational collapse and cosmology”,
Proc. R. Soc. London, Ser. A, 314, 529–548, (1970). [![]() |
![]() |
44 | Heinzle, J.M. and Ringström, H., “Future asymptotics of vacuum Bianchi type VI0 solutions”,
Class. Quantum Grav., 26, 145001, (2009). [![]() |
![]() |
45 | Heinzle, J.M. and Uggla, C., “Mixmaster: fact and belief”, Class. Quantum Grav., 26, 075016,
(2009). [![]() ![]() |
![]() |
46 | Heinzle, J.M. and Uggla, C., “A new proof of the Bianchi type IX attractor theorem”, Class.
Quantum Grav., 26, 075015, (2009). [![]() ![]() |
![]() |
47 | Heinzle, J.M., Uggla, C. and Röhr, N., “The cosmological billiard attractor”, Adv. Theor. Math.
Phys., 13, 293–407, (2009). [![]() |
![]() |
48 | Isenberg, J. and Kichenassamy, S., “Asymptotic behavior in polarized T2-symmetric vacuum
space-times”, J. Math. Phys., 40, 340–352, (1999). [![]() |
![]() |
49 | Isenberg, J. and Moncrief, V., “The Existence of Constant Mean Curvature Foliations of
Gowdy 3-Torus Spacetimes”, Commun. Math. Phys., 86, 485–493, (1983). [![]() ![]() |
![]() |
50 | Isenberg, J. and Moncrief, V., “Asymptotic behavior of the gravitational field and the nature of
singularities in Gowdy spacetimes”, Ann. Phys. (N.Y.), 199, 84–122, (1990). [![]() |
![]() |
51 | Isenberg, J. and Weaver, M., “On the area of the symmetry orbits in T2 symmetric spacetimes”,
Class. Quantum Grav., 20, 3783–3796, (2003). [![]() ![]() |
![]() |
52 | Jurke, T., “On future asymptotics of polarized Gowdy T3-models”, Class. Quantum Grav., 20,
173–191, (2003). [![]() ![]() |
![]() |
53 | Kichenassamy, S., Nonlinear Wave Equations, Monographs and Textbooks in Pure and Applied
Mathematics, 194, (Marcel Dekker, New York, 1996). [![]() |
![]() |
54 | Kichenassamy, S. and Rendall, A.D., “Analytic description of singularities in Gowdy
spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). [![]() |
![]() |
55 | Lifshitz, E.M. and Khalatnikov, I.M., “Investigations in relativistic cosmology”, Adv. Phys., 12,
185–249, (1963). [![]() |
![]() |
56 | Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969). [![]() |
![]() |
57 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Fransisco, 1973). |
![]() |
58 | Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys.
(N.Y.), 132, 87–107, (1981). [![]() |
![]() |
59 | Mostert, P.S., “On a compact Lie group acting on a manifold”, Ann. Math., 65, 447–455, (1957). |
![]() |
60 | O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied
Mathematics, 103, (Academic Press, San Diego; London, 1983). [![]() |
![]() |
61 | Penrose, R., “Gravitational Collapse and Space-Time Singularities”, Phys. Rev. Lett., 14, 57–59,
(1965). [![]() |
![]() |
62 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1,
252–276, (1969). [![]() |
![]() |
63 | Penrose, R., “Singularities and Time-Asymmetry”, in Hawking, S.W. and Israel, W., eds., General Relativity: An Einstein Centenary Survey, 1, pp. 581–638, (Cambridge University Press, Cambridge; New York, 1979). |
![]() |
64 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Gen. Relativ. Gravit.,
34, 1141–1165, (2002). [![]() |
![]() |
65 | Rendall, A.D., “Reduction of the Characteristic Initial Value Problem to the Cauchy Problem
and Its Applications to the Einstein Equations”, Proc. R. Soc. London, Ser. A, 427, 221–239,
(1990). [![]() |
![]() |
66 | Rendall, A.D., “Constant mean curvature foliations in cosmological spacetimes”, Helv. Phys.
Acta, 69, 490–500, (1996). [![]() |
![]() |
67 | Rendall, A.D., “Existence of constant mean curvature foliations in spacetimes with
two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). [![]() ![]() |
![]() |
68 | Rendall, A.D., “Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity”,
Class. Quantum Grav., 17, 3305–3316, (2000). [![]() ![]() |
![]() |
69 | Rendall, A.D., “Theorems on Existence and Global Dynamics for the Einstein Equations”, Living
Rev. Relativity, 8, lrr-2005-6, (2005). URL (accessed 7 August 2009): http://www.livingreviews.org/lrr-2005-6. |
![]() |
70 | Rendall, A.D., Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, (Oxford University Press, Oxford; New York, 2008). |
![]() |
71 | Rendall, A.D. and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class. Quantum
Grav., 18, 2959–2975, (2001). [![]() ![]() |
![]() |
72 | Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class.
Quantum Grav., 4, 713–731, (2000). [![]() ![]() |
![]() |
73 | Ringström, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405–500, (2001). [![]() ![]() |
![]() |
74 | Ringström, H., “Asymptotic expansions close to the singularity in Gowdy spacetimes”, Class.
Quantum Grav., 21, S305–S322, (2004). [![]() ![]() |
![]() |
75 | Ringström, H., “On a wave map equation arising in general relativity”, Commun. Pure Appl.
Math., 57, 657–703, (2004). [![]() |
![]() |
76 | Ringström, H., “On Gowdy vacuum spacetimes”, Math. Proc. Camb. Phil. Soc., 136, 485–512,
(2004). [![]() ![]() |
![]() |
77 | Ringström, H., “Curvature blow up on a dense subset of the singularity in T3-Gowdy”, J.
Hyperbol. Differ. Equations, 2, 547–564, (2005). [![]() |
![]() |
78 | Ringström, H., “Data at the moment of infinite expansion for polarized Gowdy”, Class.
Quantum Grav., 22, 1647–1653, (2005). [![]() |
![]() |
79 | Ringström, H., “Existence of an asymptotic velocity and implications for the asymptotic
behaviour in the direction of the singularity in T3-Gowdy”, Commun. Pure Appl. Math., 59,
977–1041, (2006). [![]() |
![]() |
80 | Ringström, H., “On curvature decay in expanding cosmological models”, Commun. Math.
Phys., 264, 613–630, (2006). [![]() |
![]() |
81 | Ringström, H., “On the T3-Gowdy Symmetric Einstein–Maxwell Equations”, Ann. Henri
Poincare, 7, 1–20, (2006). [![]() |
![]() |
82 | Ringström, H., The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and
Physics, (EMS Publishing House, Zürich, 2009). [![]() ![]() |
![]() |
83 | Ringström, H., “Strong cosmic censorship in T3-Gowdy spacetimes”, Ann. Math., 170, 1181–1240, (2009). |
![]() |
84 | Smulevici, J., “Strong Cosmic Censorship for T2-Symmetric Spacetimes with Cosmological
Constant and Matter”, Ann. Henri Poincare, 9, 1425–1453, (2008). [![]() ![]() |
![]() |
85 | Smulevici, J., “On the area of the symmetry orbits of cosmological spacetimes with toroidal or
hyperbolic symmetry”, arXiv e-print, (2009). [![]() |
![]() |
86 | Ståhl, F., “Fuchsian analysis of S2 × S1 and S3 Gowdy spacetimes”, Class. Quantum Grav.,
19, 4483–4504, (2002). [![]() ![]() |
![]() |
87 | Tanimoto, M., “Locally U(1) × U(1) symmetric cosmological models”, Class. Quantum Grav.,
18, 479–507, (2001). [![]() ![]() |
![]() |
88 | Uggla, C., van Elst, H., Wainwright, J. and Ellis, G.F.R., “The past attractor in inhomogeneous
cosmology”, Phys. Rev. D, 68, 103502, (2003). [![]() ![]() |
![]() |
89 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). |
![]() |
90 | Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv e-print, (1997).
[![]() |
![]() |
91 | Weaver, M., “On the area of the symmetry orbits in T2 symmetric pacetimes with Vlasov
matter”, Class. Quantum Grav., 21, 1079–1097, (2004). [![]() ![]() |
http://www.livingreviews.org/lrr-2010-2 |
Living Rev. Relativity 13, (2010), 2
![]() This work is licensed under a Creative Commons License. E-mail us: |