In the presentation below of the standard modeling of small nongravitational forces, we generally follow
the discussion in [27], starting with nongravitational forces that originate from sources external to the
spacecraft, and followed by a review of forces of on-board origin. We also discuss effects acting on the radio
signal sent to, or received from, the spacecraft.
Most notable among the sources for the forces external to the Pioneer spacecraft is the solar pressure.
This force is a result of the exchange of momentum between solar photons and the spacecraft,
as solar photons are absorbed or reflected by the spacecraft. This force can be significant in
magnitude in the vicinity of the Earth, at 1 AU from the Sun, especially when considering
spacecraft with a large surface area, such as those with large solar panels or antennas. For
this reason, solar pressure models are usually developed before a spacecraft is launched. These
models take into account the effective surface areas of the portions of the spacecraft exposed to
sunlight, and their thermal and optical properties. These models offer a computation of the
acceleration of the spacecraft due to solar pressure as a function of solar distance and spacecraft
orientation.
The simplest way of modeling solar pressure is by using a “flat plate” model. In this case, the spacecraft is treated as a flat surface, oriented at same angle with respect to incoming solar rays. The surface absorbs some solar heat, while it reflects the rest; reflection can be specular or diffuse. A flat plate model is fully characterized by three numbers: the area of the plate, its specular and its diffuse reflectivities. This model is particularly applicable to Pioneer 10 and 11 throughout most of their mission, as the spacecraft were oriented such that their large parabolic dish antennas were aimed only a few degrees away from the Sun, and most of the spacecraft body was behind the antenna, not exposed to sunlight.
In the case of a flat plate model, the force produced by the solar pressure can be described using a
combination of several force vectors. One vector, the direction of which coincides with the direction of
incoming solar radiation, represents the force due to photons from solar radiation intercepted by the
spacecraft. The magnitude of this vector is proportional to the solar constant at the
spacecraft’s distance from the Sun, multiplied by the projected area of the flat plate surface:
Equation (4.8) reflects the amount of momentum carried by solar photons that are intercepted by the
spacecraft body. However, one must also account for the amount of momentum carried away by photons
that are reflected or re-emitted by the spacecraft body. These momenta depend on the material properties
of the spacecraft exterior surfaces. The absorptance coefficient
determines the amount of sunlight
absorbed (i.e., not reflected) by spacecraft materials. The emittance coefficient
determines the efficience
with which the spacecraft radiates (absorbed or internally generated) heat relative to an idealized
black body. Finally, the specularity coefficient
determines the direction in which sunlight is
reflected: a fully specular surface reflects sunlight like a mirror, whereas a diffuse (Lambertian)
surface reflects light in the direction of its normal. Together, these coefficients can be used in
conjunction with basic vector algebra to calculate the force acting on the spacecraft due to specular
reflection:
Lastly, the force due to solar heating (i.e., re-emission of absorbed solar heat) can be computed in conjunction with the recoil force due to internally generated heat, which is discussed later in this section.
The solar wind is a stream of charged particles, primarily protons and electrons with energies of
1 keV, ejected from the upper atmosphere of the Sun. Solar wind particles intercepted by a spacecraft
transfer their momentum to the spacecraft. The acceleration caused by the solar wind has the same form as
Equation (4.8
), with
replaced by
, where
is the proton density at 1 AU and
is the speed of the wind (electrons in the solar wind travel faster, but due to
their smaller mass, their momenta are much smaller than the momenta of the protons). Thus,
When a spacecraft is in the vicinity of a planetary body, it interacts with that body in a variety of ways. In addition to the planet’s gravity, the spacecraft may be subjected to radiation pressure from the planet, be slowed by drag in the planet’s extended atmosphere, and it may interact with the planet’s magnetosphere.
For instance, for Earth orbiting satellites, the Earth’s optical albedo of [235]:
Atmospheric drag can be modeled as follows [235]:
The Lorentz force acting on a charged object with charge traveling through a magnetic field with
field strength
at a velocity
is given by
The long-term accelerations of Pioneer 10 and 11, however, remain unaffected by planetary effects, due to the fact that except for brief encounters with Jupiter and Saturn, the two spacecraft traveled in deep space, far from any planetary bodies.
The interplanetary magnetic field strength is less than 1 nT [27]. Considering a spacecraft velocity of
104 m/s and a charge of 10–4 C, Equation (4.14
) gives a force of 10–9 N or less, with a corresponding
acceleration (assuming a spacecraft mass of
250 kg) of
or less. This value is two
orders of magnitude smaller than the anomalous Pioneer acceleration of
(see Section 5.6).
While there have been attempts to explain the anomalous acceleration as a result of a drag force induced by exotic forms of matter (see Section 6.2), no known form of matter (e.g., gas, dust particles) in interplanetary space produces a drag force of significance.
The drag force on a sail was estimated as [261]:
where Using the Pioneer spacecraft’s 2.74 m high-gain antenna as a sail and an approximate velocity of
10–4 m/s relative to the interplanetary medium, and assuming to be of order unity, we can estimate a
drag force of
The density of dust of interstellar origin has been measured by the Ulysses probe [189, 262] at
. The average interplanetary dust density, which also contains orbiting dust, is
believed to be almost two orders of magnitude higher according to the consensus view [262]. However,
higher dust densities are conceivable.
On the other hand, if one presumes a model density, the constancy of the observed anomalous
acceleration of the Pioneer spacecraft puts upper limits on the dust density. For instance, an isothermal
density model yields the limit
.
http://www.livingreviews.org/lrr-2010-4 | ![]() This work is licensed under a Creative Commons License. Problems/comments to |