These recent independent analyses of the Pioneer 10 and 11 radiometric Doppler data confirmed the existence of the Pioneer anomaly at the level reported by the JPL’s 2002 study and they also provided new knowledge of the effect. Below we review these analyses in some detail.
Shortly after publication of the 2002 JPL result, Markwardt [194] published an independent analysis that was unique in the sense that it utilized a separately obtained data set. Rather than using data in the form of JPL-supplied Orbit Determination Files, Markwardt obtained Pioneer 10 tracking data from the National Space Science Data Center (NSSDC) archive. This data was in the Archival Tracking Data File (ATDF) format, which Markwardt processed using tools developed for the purposes of this specific study [192, 193].
The Pioneer 10 data used in Markwardt’s investigation spanned the years 1987 through 1994, and his
result, (see Figure 7.1
), is consistent with the JPL result. Markwardt
was also the first to investigate explicitly the possible presence of a jerk (i.e., the rate of change of
acceleration31,
defined as
) term, and found that a term
is consistent
with the data. Based on the studied Pioneer 10 data set, Markwardt found that the anomaly is nearly
constant with time, with a characteristic variation time scale of over 70 yr, which is still too short to rule
out on-board thermal radiation effects.
Olsen [274] focused on the constancy of the anomalous acceleration using the HELIOSAT orbit
determination program that was independently developed by him at the University of Oslo, Norway.
Analysis confirmed the acceleration at the levels reported by [27] for the same segments of Pioneer 10 and
11 data that were used by JPL (see Table 7.1). The study found that systematic variations in the
anomalous acceleration are consistent with solar coronal mass ejections and that the Doppler
data alone cannot distinguish between constant acceleration and slowly decreasing acceleration.
Specifically, the study concluded that heat dissipation cannot be excluded as a source of the
anomaly.
Software | Pioneer 10 (I) | Pioneer 10 (II) | Pioneer 10 (III) | Pioneer 11 |
ODP/Sigma | 8.00 ± 0.01 | 8.66 ± 0.01 | 7.84 ± 0.01 | 8.44 ± 0.04 |
CHASMP | 8.22 ± 0.02 | 8.89 ± 0.01 | 7.92 ± 0.01 | 8.69 ± 0.03 |
HELIOSAT | 7.85 ± 0.02 | 8.78 ± 0.01 | 7.75 ± 0.01 | 8.10 ± 0.01 |
Toth [377] also studied the anomalous acceleration using independently developed orbit determination
software, and confirmed that the introduction of a constant acceleration term significantly improves
the post-fit residuals (Figure 7.2
). Toth determined the anomalous accelerations of Pioneers
10 and 11 as
and
correspondingly, where the error terms were taken from [27
] (excluding terms related to thermal
modeling, which is the subject of on-going effort). Studying the temporal behavior of the anomalous
acceleration, he was able to find a best fit for the acceleration and jerk terms of both spacecraft:
and
(Pioneer 10) and
and
(Pioneer 11). Toth’s
study demonstrated that a moderate jerk term is consistent with the Doppler data and, therefore,
an anomalous acceleration that is a slowly changing function of time cannot be excluded at
present.
Toth’s orbit determination software also has the capability to utilize telemetry data. In particular, the code can be used to estimate the thermal recoil force as a function of the heat generated on-board, or conversely, to fit thermal recoil force coefficients to radiometric Doppler measurements, as discussed in Section 7.4.4.
Levy et al. [179] also performed an analysis of the Pioneer data using the independently developed orbit
determination program ODYSSEY. The team confirmed the presence of an acceleration signal consistent
with that found in other studies: for Pioneer 10, they obtained an anomalous acceleration of
(see Figure 7.3
). Their study shows the presence in the residual of
periodic terms with periods consistent with half a sidereal day, one sidereal day, and half a year, and they
investigate the possibility that these variations may be due to perturbations of unknown origin that modify
the propagation of the signal.
In view of all these studies, the existence of the Pioneer anomaly in the Pioneer 10 and 11 radiometric
Doppler data is established beyond doubt. Furthermore, the analyses [179, 194, 274, 377
] brought new
knowledge about the effect, especially insofar as the temporal behavior of the anomaly is concerned. As a
result, the anomalous acceleration can no longer be characterized as having a constant magnitude. Instead,
the effect clearly shows temporal decrease – perhaps consistent with the decay of the radioactive fuel on
board – the conjecture that needs further investigation. This recently-gained knowledge serves as a guide for
new study of the effect (discussed in Section 7.3); it also points out the unresolved questions that we
summarize below.
http://www.livingreviews.org/lrr-2010-4 | ![]() This work is licensed under a Creative Commons License. Problems/comments to |