![]() |
1 | Abel, T., Bryan, G.L. and Norman, M.L., “The Formation and Fragmentation of Primordial
Molecular Clouds”, Astrophys. J., 540, 39–44, (2000). [![]() ![]() ![]() |
![]() |
2 | Akiyama, S. and Wheeler, J.C., “Magnetic Fields in Supernovae”, in Fryer, C.L., ed., Stellar
Collapse, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque,
NM, June 2002, Astrophysics and Space Science Library, 302, pp. 259–275, (Kluwer Academic
Publishers, Dordrecht; Boston, 2004). [![]() ![]() ![]() |
![]() |
3 | Akiyama, S., Wheeler, J.C., Meier, D.L. and Lichtenstadt, I., “The Magnetorotational
Instability in Core-Collapse Supernova Explosions”, Astrophys. J., 584, 954–970, (2003). [![]() ![]() ![]() |
![]() |
4 | Andersson, N., “A New Class of Unstable Modes of Rotating Relativistic Stars”, Astrophys.
J., 502, 708–713, (1998). [![]() ![]() ![]() |
![]() |
5 | Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum
Grav., 20, R105–R144, (2003). [![]() ![]() ![]() |
![]() |
6 | Ardeljan, N.V., Bisnovatyi-Kogan, G.S. and Moiseenko, S.G., “Magnetorotational supernovae”,
Mon. Not. R. Astron. Soc., 359, 333–344, (2005). [![]() ![]() |
![]() |
7 | Arnaud, N. et al., “Detection of a close supernova gravitational wave burst in a network of
interferometers, neutrino and optical detectors”, Astropart. Phys., 21, 201–221, (2004). [![]() ![]() |
![]() |
8 | Arras, P., Flanagan, É.É., Morsink, S.M., Schenk, A.K., Teukolsky, S.A. and Wasserman, I.,
“Saturation of the r-mode instability”, Astrophys. J., 591, 1129–1151, (2002). [![]() ![]() ![]() |
![]() |
9 | Baiotti, L., Hawke, I. and Rezzolla, L., “On the gravitational radiation from the collapse of
neutron stars to rotating black holes”, Class. Quantum Grav., 24, S187–S206, (2007). [![]() ![]() |
![]() |
10 | Bardeen, J.M. and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates
and equations”, Phys. Rep., 96, 205–250, (1983). [![]() ![]() |
![]() |
11 | Baron, E., Cooperstein, J., Kahana, S. and Nomoto, K., “Collapsing white dwarfs”, Astrophys.
J., 320, 304–307, (1987). [![]() ![]() |
![]() |
12 | Baumgarte, T.W. and Shapiro, S.L., “Evolution of Rotating Supermassive Stars to the Onset
of Collapse”, Astrophys. J., 526, 941–952, (1999). [![]() ![]() ![]() |
![]() |
13 | Bazan, G. and Arnett, D., “Convection, Nucleosynthesis, and Core Collapse”, Astrophys. J.
Lett., 433, L41–L43, (1994). [![]() ![]() |
![]() |
14 | Begelman, M.C. and Rees, M.J., “The fate of dense stellar systems”, Mon. Not. R. Astron.
Soc., 185, 847–859, (1978). [![]() |
![]() |
15 | Begelman, M.C., Volunteri, M. and Rees, M.J., “Formation of supermassive black holes by
direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298, (2006). [![]() |
![]() |
16 | Benz, W., Bowers, R.L., Cameron, A.G.W. and Press, W.H., “Dynamic Mass Exchange in
Doubly Degenerate Binaries. I. 0.9 and 1.2 M⊙ Stars”, Astrophys. J., 348, 647–667, (1990).
[![]() ![]() |
![]() |
17 | Berti, E. and Cardoso, V., “Quasinormal ringing of Kerr black holes: The excitation factors”,
Phys. Rev. D, 74, 104020, (2006). [![]() ![]() |
![]() |
18 | Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black
holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030, (2006). [![]() ![]() ![]() |
![]() |
19 | Bethe, H.A. and Wilson, J.R., “Revival of a stalled supernova shock by neutrino heating”,
Astrophys. J., 295, 14–23, (1985). [![]() ![]() |
![]() |
20 | Blondin, J.M. and Mezzacappa, A., “The Spherical Accretion Shock Instability in the Linear
Regime”, Astrophys. J., 642, 401–409, (2006). [![]() ![]() |
![]() |
21 | Blondin, J.M., Mezzacappa, A. and DeMarino, C., “Stability of Standing Accretion Shocks,
with an Eye toward Core-Collapse Supernovae”, Astrophys. J., 584, 971–980, (2003). [![]() ![]() |
![]() |
22 | Bodenheimer, P. and Ostriker, J.P., “Rapidly Rotating Stars. VIII. Zero-viscosity Polytropic
Sequences”, Astrophys. J., 180, 159–169, (1973). [![]() ![]() |
![]() |
23 | Bonazzola, S. and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and
3D stellar collapse. I. Polytropic case”, Astron. Astrophys., 267, 623–633, (1993). [![]() |
![]() |
24 | Bondarescu, R., Teukolsky, S.A. and Wasserman, I., “Spinning down newborn neutron stars:
Nonlinear development of the r-mode instability”, Phys. Rev. D, 79, 104003, (2009). [![]() ![]() ![]() |
![]() |
25 | Braginsky, V.B. and Thorne, K.S., “Gravitational-wave bursts with memory and experimental
prospects”, Nature, 327, 123–125, (1987). [![]() |
![]() |
26 | Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear coupling network to simulate the
development of the r mode instability in neutron stars. I. Construction”, Phys. Rev. D, 70,
124017, (2004). [![]() ![]() ![]() |
![]() |
27 | Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear couplings of R-modes: Energy transfer
and saturation amplitudes at realistic timescales”, Phys. Rev. D, 70, 121501, (2004). [![]() ![]() ![]() |
![]() |
28 | Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear coupling network to simulate the
development of the r mode instability in neutron stars. II. Dynamics”, Phys. Rev. D, 71,
064029, (2005). [![]() ![]() |
![]() |
29 | Bromm, V., Coppi, P.S. and Larson, R.B., “Forming the First Stars in the Universe:
The Fragmentation of Primordial Gas”, Astrophys. J., 527, L5–L8, (1999). [![]() ![]() ![]() |
![]() |
30 | Brown, J.D., “Gravitational waves from the dynamical bar instability in a rapidly rotating
star”, Phys. Rev. D, 62, 084024, 1–11, (2000). [![]() ![]() ![]() |
![]() |
31 | Brown, J.D., “Rotational instabilities in post-collapse stellar cores”, in Centrella, J.M.,
ed., Astrophysical Sources for Ground-Based Gravitational Wave Detectors, Philadelphia,
Pennsylvania, 30 October – 1 November 2000, AIP Conference Proceedings, 575, pp. 234–245,
(American Institute of Physics, Melville, 2001). [![]() |
![]() |
32 | Bruenn, S.W., “Numerical simulations of core collapse supernovae”, in Guidry, M.W. and
Strayer, M.R., eds., Nuclear Physics in the Universe, Proceedings of the First Symposium on
Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24 – 26 September 1992,
pp. 31–50, (Institute of Physics, Bristol; Philadelphia, 1993). [![]() |
![]() |
33 | Bruenn, S.W., De Nisco, K.R. and Mezzacappa, A., “General Relativistic Effects in the
Core Collapse Supernova Mechanism”, Astrophys. J., 560, 326–338, (2001). [![]() ![]() ![]() |
![]() |
34 | Buras, R., Janka, H.-T., Rampp, M. and Kifonidis, K., “Two-dimensional hydrodynamic
core-collapse supernova simulations with spectral neutrino transport. II. Models for different
progenitor stars”, Astron. Astrophys., 457, 281–308, (2006). [![]() |
![]() |
35 | Burrows, A., Dessart, L., Livne, E., Ott, C.D. and Murphy, J., “Simulations of Magnetically
Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation”, Astrophys.
J., 664, 416–434, (2007). [![]() ![]() |
![]() |
36 | Burrows, A. and Goshy, J., “A Theory of Supernova Explosions”, Astrophys. J. Lett., 416,
L75–L78, (1993). [![]() |
![]() |
37 | Burrows, A. and Hayes, J., “Pulsar recoil and gravitational radiation due to asymmetrical
stellar collapse and explosion”, Phys. Rev. Lett., 76, 352–355, (1996). [![]() ![]() ![]() |
![]() |
38 | Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “An acoustic mechanism for
core-collapse supernova explosions”, New Astron. Rev., 50, 487–491, (2006). [![]() ![]() |
![]() |
39 | Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “Features of the Acoustic
Mechanism of Core-Collapse Supernova Explosions”, Astrophys. J., 655, 416–433, (2006).
[![]() ![]() |
![]() |
40 | Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “A New Mechanism for
Core-Collapse Supernova Explosions”, Astrophys. J., 640, 878–890, (2006). [![]() ![]() ![]() |
![]() |
41 | Calder, A.C. et al., “On Validating an Astrophysical Simulation Code”, Astrophys. J. Suppl.
Ser., 143, 201–229, (2002). [![]() ![]() ![]() |
![]() |
42 | Cantiello, M., Yoon, S.-C., Langer, N. and Livio, M., “Binary star progenitors of long
gamma-ray bursts”, Astron. Astrophys., 465, L29–L33, (2007). [![]() ![]() |
![]() |
43 | Cappellaro, E., Evans, R. and Turatto, M., “A new determination of supernova rates and
a comparison with indicators for galactic star formation”, Astron. Astrophys., 351, 459–466,
(1999). [![]() |
![]() |
44 | Cappellaro, E. et al., “Death rate of massive stars at redshift ∼0.3”, Astron. Astrophys., 430,
83–93, (2005). [![]() ![]() |
![]() |
45 | Centrella, J.M. and McMillan, S.L.W., “Gravitational Radiation from Nonaxisymmetric
Collisions of Neutron Stars”, Astrophys. J., 416, 719–732, (1993). [![]() ![]() |
![]() |
46 | Centrella, J.M., New, K.C.B., Lowe, L.L. and Brown, J.D., “Dynamical rotational instability
at low T∕W”, Astrophys. J. Lett., 550, L193–L196, (2001). [![]() ![]() |
![]() |
47 | Cerdá-Durán, P., Font, J.A., Antón, L. and Müller, E., “A new general relativistic
magnetohydrodynamics code for dynamical spacetimes”, Astron. Astrophys., 492, 937–953,
(2008). [![]() ![]() |
![]() |
48 | Cerdá-Durán, P., Quilis, V. and Font, J.A., “AMR simulations of the low T∕|W| bar-mode
instability of neutron stars”, Comput. Phys. Commun., 177, 288–297, (2007). [![]() ![]() |
![]() |
49 | Chandrasekhar, S., “Dynamical Instability of Gaseous Masses Approaching the Schwarzschild
Limit in General Relativity”, Phys. Rev. Lett., 12, 114–116, (1964). [![]() |
![]() |
50 | Chandrasekhar, S., “The Dynamical Instability of Gaseous Masses Approaching the
Schwarzschild Limit in General Relativity”, Astrophys. J., 140, 417–433, (1964). [![]() ![]() |
![]() |
51 | Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, New York, 1967). |
![]() |
52 | Chandrasekhar, S., “The Effect of Gravitational Radiation on the Secular Stability of the
Maclaurin Spheroid”, Astrophys. J., 161, 561–569, (1970). [![]() ![]() |
![]() |
53 | Chatterjee, D. and Bandyopadhyay, D., “Role of antikaon condensation in r-mode instability”,
in Santra, A.B., ed., Physics and Astrophysics of Hadrons and Hadronic Matter, Shantiniketan,
India, 6 – 10 Nov 2006, p. 237, (Narosa Publishing House, New Delhi, 2008). [![]() ![]() |
![]() |
54 | Chevalier, R.A., “Neutron star accretion in a supernova”, Astrophys. J., 346, 847–859, (1989).
[![]() ![]() |
![]() |
55 | Colgate, S.A., “Neutron-Star Formation, Thermonuclear Supernovae, and Heavy-Element
Reimplosion”, Astrophys. J., 163, 221–230, (1971). [![]() ![]() |
![]() |
56 | Colgate, S.A. and White, R.H., “The Hydrodynamic Behavior of Supernovae Explosions”,
Astrophys. J., 143, 626–681, (1966). [![]() ![]() |
![]() |
57 | Cook, G.B., Shapiro, S.L. and Teukolsky, S.A., “Testing a simplified version of Einstein’s
equations for numerical relativity”, Phys. Rev. D, 53, 5533–5540, (1996). [![]() ![]() ![]() |
![]() |
58 | Couch, R.G. and Arnett, W.D., “On the Thermal Properties of the Convective URCA Process”,
Astrophys. J., 194, 537–539, (1974). [![]() ![]() |
![]() |
59 | Dahlen, T. et al., “High-Redshift Supernova Rates”, Astrophys. J., 613, 189–199, (2004). [![]() ![]() |
![]() |
60 | Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “Multidimensional Radiation/Hydrodynamic
Simulations of Proto-Neutron Star Convection”, Astrophys. J., 645, 534–550, (2006). [![]() ![]() |
![]() |
61 | Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “Magnetically Driven Explosions of Rapidly
Rotating White Dwarfs Following Accretion-Induced Collapse”, Astrophys. J., 669, 585–599,
(2007). [![]() ![]() |
![]() |
62 | Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “The Proto-Neutron Star Phase of the
Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae”, Astrophys.
J., 673, L43–L46, (2008). [![]() ![]() |
![]() |
63 | Dessart, L., Burrows, A., Ott, C.D., Livne, E., Yoon, S.-C. and Langer, N., “Multidimensional
Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars”, Astrophys.
J., 644, 1063–1084, (2006). [![]() ![]() |
![]() |
64 | Detweiler, S. and Lindblom, L., “On the Evolution of the Homogeneous Ellipsoidal Figures.
II. Gravitational Collapse and Gravitational Radiation”, Astrophys. J., 250, 739–749, (1981).
[![]() ![]() |
![]() |
65 | Dimmelmeier, H., Font, J.A. and Müller, E., “Gravitational Waves from Relativistic
Rotational Core Collapse”, Astrophys. J. Lett., 560, L163–L166, (2001). [![]() ![]() ![]() |
![]() |
66 | Dimmelmeier, H., Font, J.A. and Müller, E., “Relativistic simulations of rotational core
collapse I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002).
[![]() ![]() ![]() |
![]() |
67 | Dimmelmeier, H., Font, J.A. and Müller, E., “Relativistic simulations of rotational core
collapse II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542,
(2002). [![]() ![]() ![]() |
![]() |
68 | Dimmelmeier, H., Ott, C.D., Janka, H.T., Marek, A. and Müller, E., “Generic
Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores”, Phys. Rev. D, 98,
251101, (2007). [![]() ![]() ![]() |
![]() |
69 | Dimmelmeier, H., Ott, C.D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal
from core collapse of rotating stars”, Phys. Rev. D, 78, 064056, (2008). [![]() ![]() |
![]() |
70 | Dimonte, G. et al., “A comparative study of turbulent Rayleigh–Taylor instability using
high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration”,
Phys. Fluids, 16, 1668–1693, (2002). [![]() ![]() |
![]() |
71 | Drago, A., Pagliara, G. and Parenti, I., “A Compact Star Rotating at 1122 Hz and the r-Mode
Instability”, Astrophys. J. Lett., 678, L117–L120, (2008). [![]() ![]() ![]() |
![]() |
72 | D’Souza, M.C.R., Motl, P.M., Tohline, J.E. and Frank, J., “Numerical Simulatons of the Onset
and Stability of Dynamical Mass Transfer in Binaries”, Astrophys. J., 643, 381–401, (2006).
[![]() ![]() |
![]() |
73 | Duez, M.D., Shapiro, S.L. and Yo, H.-J., “Relativistic hydrodynamic evolutions with black hole
excision”, Phys. Rev. D, 69, 104016, 1–16, (2004). [![]() ![]() |
![]() |
74 | Durisen, R.H. and Tohline, J.E., “Fission of rapidly rotating fluid systems”, in Black, D. and
Matthews, M., eds., Protostars and Planets II, pp. 534–575, (University of Arizona Press,
Tucson, 1985). [![]() |
![]() |
75 | Eisenstein, D.J. and Loeb, A., “Origin of Quasar Progenitors From The Collapse of
Low-spin Cosmological Perturbations”, Astrophys. J., 443, 11–17, (1995). [![]() ![]() ![]() |
![]() |
76 | Epstein, R., “The generation of gravitational radiation by escaping supernova neutrinos”,
Astrophys. J., 223, 1037–1045, (1976). [![]() ![]() |
![]() |
77 | Epstein, R., The post-Newtonian theory of the generation of gravitational radiation and its
application to stellar collapse, Ph.D. Thesis, (Stanford University, Stanford, 1976). [![]() |
![]() |
78 | Epstein, R. and Wagoner, R.V., “Post-Newtonian Generation of Gravitational Waves”,
Astrophys. J., 197, 717–723, (1975). [![]() ![]() |
![]() |
79 | Eriguchi, Y. and Müller, E., “Equilibrium models of differentially rotating polytropes and the
collapse of rotating stellar cores”, Astron. Astrophys., 147, 161–168, (1985). [![]() |
![]() |
80 | Favata, M., “Post-Newtonian corrections to the gravitational-wave memory for quasicircular,
inspiralling compact binaries”, Phys. Rev. D, 80, 024002, (2009). [![]() ![]() |
![]() |
81 | Fernández, R. and Thompson, C., “Dynamics of a Spherical Accretion Shock with Neutrino
Heating and Alpha-Particle Recombination”, Astrophys. J., 703, 1464–1485, (2009). [![]() ![]() |
![]() |
82 | Fernández, R. and Thompson, C., “Stability of a Spherical Accretion Shock with Nuclear
Dissociation”, Astrophys. J., 697, 1827–1841, (2009). [![]() ![]() |
![]() |
83 | Ferrarese, L. and Merritt, D., “A fundamental relation between supermassive black holes and
their host galaxies”, Astrophys. J. Lett., 539, L9–L12, (2000). [![]() ![]() |
![]() |
84 | Ferrari, V. and Galtieri, L., “Quasi-normal modes and gravitational wave astronomy”, Gen.
Relativ. Gravit., 40, 945–970, (2008). [![]() ![]() |
![]() |
85 | Ferrari, V., Miniutti, G. and Pons, J.A., “Gravitational waves from newly born, hot neutron
stars”, Mon. Not. R. Astron. Soc., 342, 629–638, (2003). [![]() ![]() |
![]() |
86 | Finn, L.S., “Supernovae, Gravitational Radiation, and the Quadrupole Formula”, in Evans,
C.R., Finn, L.S. and Hobill, D.W., eds., Frontiers in Numerical Relativity, International
workshop devoted to research in numerical relativity, held in Urbana-Champaign in May 1988,
pp. 126–145, (Cambridge University Press, Cambridge; New York, 1989). [![]() |
![]() |
87 | Finn, L.S., “Detectability of gravitational radiation from stellar-core collapse”, in Buchler, J.R.,
Detweiler, S. and Ipser, J.R., eds., Nonlinear problems in relativity and cosmology, 6th Florida
Workshop in Nonlinear Astronomy, held on October 2 – 4, 1990 in Gainesville, Florida, Ann.
N.Y. Acad. Sci., 631, pp. 156–172, (New York Academy of Sciences, New York, 1991). [![]() |
![]() |
88 | Finn, L.S., “Gravitional Radiation Sources and Signatures”, in Dixon, L.J., ed., Gravity: From
the Hubble Length to the Planck Length, Proceedings of the 26th SLAC Summer Institute on
Particle Physics (SSI 98), Stanford, USA, 3 – 14 August 1998, SLAC-R, 538, (SLAC, Springfield,
2001). URL (accessed 30 March 1999): ![]() |
![]() |
89 | Finn, L.S. and Evans, C.R., “Determining Gravitational Radiation from Newtonian
Self-Gravitating Systems”, Astrophys. J., 351, 588–600, (1990). [![]() ![]() |
![]() |
90 | Fischer, T., Whitehouse, S.C., Mezzacappa, A., Thielemann, F.-K. and Liebendörfer, M.,
“The neutrino signal from protoneutron star accretion and black hole formation”, Astron.
Astrophys., 499, 1–15, (2009). [![]() ![]() |
![]() |
91 | Fisker, J.L., Balsara, D.S. and Burger, T., “The accretion and spreading of matter on white
dwarfs”, New Astron. Rev., 50, 509–515, (2006). [![]() ![]() |
![]() |
92 | Foglizzo, T., “A Simple Toy Model of the Advective-Acoustic Instability. I. Perturbative
Approach”, Astrophys. J., 694, 820–832, (2009). [![]() ![]() |
![]() |
93 | Foglizzo, T., Galletti, P., Scheck, L. and Janka, H.-T., “Instability of a Stalled Accretion Shock:
Evidence for the Advective-Acoustic Cycle”, Astrophys. J., 654, 1006–1021, (2007). [![]() ![]() |
![]() |
94 | Foglizzo, T., Scheck, L. and Janka, H.-T., “Neutrino-driven Convection versus Advection
in Core-Collapse Supernovae”, Astrophys. J., 652, 1436–1450, (2006). [![]() ![]() ![]() |
![]() |
95 | Folkner, W.M., ed., Laser Interferometer Space Antenna: Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena 1998, AIP Conference Proceedings, 456, (Springer, New York, 1993). |
![]() |
96 | Friedman, J.L. and Morsink, S.M., “Axial Instability of Rotating Relativistic Stars”, Astrophys.
J., 502, 714–720, (1998). [![]() ![]() ![]() |
![]() |
97 | Fryer, C.L., “Mass Limits For Black Hole Formation”, Astrophys. J., 522, 413–418, (1999).
[![]() ![]() |
![]() |
98 | Fryer, C.L., “Neutron Star Kicks from Asymmetric Collapse”, Astrophys. J. Lett., 601,
L175–L178, (2004). [![]() ![]() |
![]() |
99 | Fryer, C.L., “Fallback in stellar collapse”, New Astron. Rev., 50, 492–495, (2006). [![]() ![]() |
![]() |
100 | Fryer, C.L., “Neutrinos from Fallback onto Newly Formed Neutron Stars”, Astrophys. J., 699,
409–420, (2009). [![]() ![]() |
![]() |
101 | Fryer, C.L., Benz, W. and Herant, M., “The Dynamics and Outcomes of Rapid Infall onto
Neutron Stars”, Astrophys. J., 460, 801–826, (1996). [![]() ![]() |
![]() |
102 | Fryer, C.L., Benz, W., Herant, M. and Colgate, S.A., “What can the accretion-induced collapse
of white dwarfs really explain?”, Astrophys. J., 516, 892–899, (1999). [![]() ![]() |
![]() |
103 | Fryer, C.L. and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541,
1033–1050, (2000). [![]() ![]() ![]() |
![]() |
104 | Fryer, C.L. and Heger, A., “Binary Merger Progenitors for Gamma-Ray Bursts and
Hypernovae”, Astrophys. J., 623, 302–313, (2005). [![]() ![]() |
![]() |
105 | Fryer, C.L., Herwig, F., Hungerford, A. and Timmes, F.X., “Supernova Fallback: A
Possible Site for the r-Process”, Astrophys. J. Lett., 646, L131–L134, (2006). [![]() ![]() ![]() |
![]() |
106 | Fryer, C.L., Holz, D.E. and Hughes, S.A., “Gravitational Wave Emission from Core Collapse
of Massive Stars”, Astrophys. J., 565, 430–446, (2002). [![]() ![]() |
![]() |
107 | Fryer, C.L., Holz, D.E. and Hughes, S.A., “Gravitational Waves from Stellar Collapse:
Correlations to Explosion Asymmetries”, Astrophys. J., 609, 288–300, (2004). [![]() ![]() |
![]() |
108 | Fryer, C.L., Holz, D.E., Hughes, S.A. and Warren, M.S., “Stellar collapse and gravitational
waves”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of ‘Core Collapse of Massive
Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Astrophysics and Space Science
Library, 302, pp. 373–401, (Kluwer Academic Publishers, Dordrecht; Boston, 2004). [![]() ![]() |
![]() |
109 | Fryer, C.L. and Kalogera, V., “Theoretical Black Hole Mass Distributions”, Astrophys. J., 554,
548–560, (2001). [![]() ![]() |
![]() |
110 | Fryer, C.L. and Kusenko, A., “Effects of Neutrino-driven Kicks on the Supernova Explosion
Mechanism”, Astrophys. J., 163, 335–343, (2006). [![]() ![]() ![]() |
![]() |
111 | Fryer, C.L. and New, K.C.B, “Gravitational Waves from Gravitational Collapse”, Living Rev.
Relativity, 6, lrr-2003-2, (2003). URL (accessed 18 May 2009): http://www.livingreviews.org/lrr-2003-2. |
![]() |
112 | Fryer, C.L. and Warren, M.S., “Modeling Core-Collapse Supernovae in Three Dimensions”,
Astrophys. J. Lett., 574, L65–L68, (2002). [![]() ![]() ![]() |
![]() |
113 | Fryer, C.L. and Warren, M.S., “The Collapse of Rotating Massive Stars in Three Dimensions”,
Astrophys. J., 601, 391–404, (2004). [![]() ![]() |
![]() |
114 | Fryer, C.L., Woosley, S.E. and Hartmann, D.H., “Formation Rates of Black Hole Accretion
Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152–177, (1999). [![]() ![]() |
![]() |
115 | Fryer, C.L., Woosley, S.E. and Heger, A., “Pair-Instability Supernovae, Gravity Waves,
and Gamma-Ray Transients”, Astrophys. J., 550, 372–382, (2001). [![]() ![]() ![]() |
![]() |
116 | Fryer, C.L. and Young, P.A., “Late-Time Convection in the Collapse of a 23 M⊙ Star”,
Astrophys. J., 659, 1438–1448, (2007). [![]() ![]() |
![]() |
117 | Fryer, C.L. et al., “The Supernova Gamma-Ray Burst Connection”, Publ. Astron. Soc. Pac.,
119, 1211–1232, (2007). [![]() ![]() |
![]() |
118 | Fryer, C.L. et al., “Spectra and Light Curves of Failed Supernovae”, Astrophys. J., 707,
193–207, (2009). [![]() ![]() |
![]() |
119 | Fu, W. and Lai, D., “Low=T∕|W| instabilities in differentially rotating proto-neutron stars
with magnetic fields”, Mon. Not. R. Astron. Soc., submitted, (2010). [![]() |
![]() |
120 | Fuller, G.M., Kusenko, A., Mociouiu, I. and Pascoli, S., “Pulsar kicks from a dark-matter sterile
neutrino”, Phys. Rev. D, 68, 103002, (2003). [![]() ![]() |
![]() |
121 | Gentle, A.P. and Miller, W.A., “A fully (3+1)-dimensional Regge calculus model of the Kasner
cosmology”, Class. Quantum Grav., 15, 389–405, (1965). [![]() ![]() |
![]() |
122 | “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for
Gravitational Physics (Albert Einstein Institute). URL (accessed 19 January 2010): ![]() |
![]() |
123 | Goldreich, P. and Lynden-Bell, D., “I. Gravitational stability of uniformly rotating disks”,
Mon. Not. R. Astron. Soc., 130, 97–124, (1965). [![]() |
![]() |
124 | “Gravitational Radiation from General Relativistic Rotational Core Collapse”, project
homepage, Max Planck Institute for Astrophysics, (2002). URL (accessed 7 January 2009): ![]() |
![]() |
125 | Gressman, P., Lin, L.-M., Suen, W.-M., Stergioulas, N. and Friedman, J.L., “Nonlinear r-modes
in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303, 1–5, (2002). [![]() ![]() ![]() |
![]() |
126 | Guerrero, J., García-Berro, E. and Isern, J., “Smoothed Particle Hydrodynamics simulations
of merging white dwarfs”, Astron. Astrophys., 413, 257–272, (2004). [![]() ![]() |
![]() |
127 | Gutiérrez, J., Canal, R. and García-Berro, E., “The gravitational collapse of ONe
electron-degenerate cores and white dwarfs: The role of 24Mg and 12C revisited”, Astron.
Astrophys., 435, 231–237, (2005). [![]() ![]() ![]() |
![]() |
128 | Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars”, Astrophys.
J. Suppl. Ser., 61, 479–507, (1986). [![]() ![]() |
![]() |
129 | Haehnelt, M.G., “Low-frequency gravitational waves from supermassive black holes”, Mon.
Not. R. Astron. Soc., 269, 199–208, (1994). [![]() |
![]() |
130 | Haehnelt, M.G., Natarajan, P. and Rees, M.J., “High-redshift galaxies, their active nuclei
and central black holes”, Mon. Not. R. Astron. Soc., 300, 817–827, (1998). [![]() ![]() ![]() |
![]() |
131 | Haehnelt, M.G. and Rees, M.J., “The formation of nuclei in newly formed galaxies and the
evolution of the quasar population”, Mon. Not. R. Astron. Soc., 263, 168–178, (1993). [![]() |
![]() |
132 | Haensel, P., Levenfish, K.P. and Yakovlev, D.G., “Bulk viscosity in superfluid neutron star
cores. III. Effects of Σ− hyperons”, Astron. Astrophys., 381, 1080–1089, (2002). [![]() ![]() ![]() |
![]() |
133 | Hayashi, A., Eriguchi, Y. and Hashimoto, M., “On the Possibility of the Nonexplosive Core
Contraction of Massive Stars: New Evolutionary Paths from Rotating White Dwarfs to Rotating
Neutron Stars”, Astrophys. J., 492, 286–297, (1998). [![]() ![]() |
![]() |
134 | Hayashi, A., Eriguchi, Y. and Hashimoto, M., “On the Possibility of the Nonexplosive Core
Contraction of Massive Stars. II. General Relativistic Analysis”, Astrophys. J., 521, 376–381,
(1999). [![]() ![]() |
![]() |
135 | Heger, A., The presupernova evolution of rotating massive stars, Ph.D. Thesis, (Technische Universität München, Munich, 1998). |
![]() |
136 | Heger, A., Fryer, C.L., Woosley, S.E., Langer, N. and Hartmann, D.H., “How Massive Single
Stars End Their Life”, Astrophys. J., 591, 288–300, (2003). [![]() ![]() |
![]() |
137 | Heger, A., Langer, N. and Woosley, S.E., “Presupernova Evolution of Rotating Massive Stars.
I. Numerical Method and Evolution of the Internal Stellar Structure”, Astrophys. J., 528,
368–396, (2000). [![]() ![]() ![]() |
![]() |
138 | Heger, A., Woosley, S.E. and Spruit, H.C., “Presupernova Evolution of Differentially Rotating
Massive Stars Including Magnetic Fields”, Astrophys. J., 626, 350–363, (2005). [![]() ![]() |
![]() |
139 | Herant, M., “The convective engine paradigm for the supernova explosion mechanism and its
consequences”, Phys. Rep., 256, 117–133, (1995). [![]() ![]() |
![]() |
140 | Herant, M., Benz, W., Hix, W.R., Fryer, C.L. and Colgate, S.A., “Inside the supernova: A
powerful convective engine”, Astrophys. J., 435, 339–361, (1994). [![]() ![]() |
![]() |
141 | Herwig, F., “Evolution of Asymptotic Giant Branch Stars”, Annu. Rev. Astron. Astrophys.,
43, 435–479, (2005). [![]() ![]() |
![]() |
142 | Hillebrandt, W., “Stellar Collapse and Supernova Explosions”, in Pacini, F., ed., High Energy Phenomena around Collapsed Stars, Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, September 2 – 13, 1985, NATO Science Series, 195, pp. 73–104, (Reidel, Dordrecht; Boston, 1987). |
![]() |
143 | Ho, W.C.G. and Lai, D., “r-Mode Oscillations and Spin-down of Young Rotating Magnetic
Neutron Stars”, Astrophys. J., 543, 386–394, (2000). [![]() ![]() ![]() |
![]() |
144 | Houck, J.C. and Chevalier, R.A., “Linear stability analysis of spherical accretion flows onto
compact objects”, Astrophys. J., 395, 592–603, (1992). [![]() ![]() |
![]() |
145 | Hough, J. and Rowan, S., “Laser interferometry for the detection of gravitational waves”, J.
Opt. A, 7, S257–S264, (2005). [![]() ![]() |
![]() |
146 | Houser, J.L., “The effect of rotation on the gravitational radiation and dynamical stability of
stiff stellar cores”, Mon. Not. R. Astron. Soc., 299, 1069–1086, (1998). [![]() ![]() |
![]() |
147 | Houser, J.L., Centrella, J.M. and Smith, S.C., “Gravitational radiation from nonaxisymmetric
instability in a rotating star”, Phys. Rev. Lett., 72, 1314–1317, (1994). [![]() ![]() |
![]() |
148 | Houser, J.L., Centrella, J.M. and Smith, S.C., “Gravitational radiation from rotational
instabilities in compac stellar cores with stiff equations of state”, Phys. Rev. D, 54, 7278–7297,
(1996). [![]() ![]() |
![]() |
149 | Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not.
R. Astron. Soc., 331, 805–816, (2002). [![]() ![]() ![]() |
![]() |
150 | Hughes, S.A., Márka, S., Bender, P.L. and Hogan, C.J., “New physics and astronomy with
the new gravitational-wave observatories”, in Graf, N., ed., Proceedings of Snowmass 2001, The
Future of Particle Physics, 30 June – 21 July 2001, Snowmass Village, Colorado, C010630, p.
P402, (SLAC eConf, Stanford, 2001). URL (accessed 15 October 2001): ![]() |
![]() |
151 | Iben Jr, I., “Massive stars in quasi-static equilibrium”, Astrophys. J., 138, 1090–1096, (1963).
[![]() ![]() |
![]() |
152 | Iben Jr, I. and Renzini, A., “Asymptotic Giant Branch Evolution and Beyond”, Annu. Rev.
Astron. Astrophys., 21, 271–342, (1983). [![]() ![]() |
![]() |
153 | Imamura, J.N. and Durisen, R.H., “The Dominance of Dynamic Barlike Instabilities in the
Evolution of a Massive Stellar Core Collapse That ‘Fizzles”’, Astrophys. J., 549, 1062–1075,
(2001). [![]() ![]() |
![]() |
154 | Imamura, J.N., Durisen, R.H. and Pickett, B.K., “Nonaxisymmetric Dynamic Instabilities of
Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars
and Fizzlers”, Astrophys. J., 528, 946–964, (2000). [![]() ![]() |
![]() |
155 | Janka, H.-T., “Supermassive Stars: Fact or Fiction?”, in Chui, C.K., Siuniaev, R.A. and
Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects
and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy
Conference, held in Garching, Germany, 6 – 10 August 2001, ESO Astrophysics Symposia, pp.
357–368, (Springer, Berlin; New York, 2002). [![]() ![]() ![]() |
![]() |
156 | Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G. and Müller, B., “Theory of
Core-Collapse Supernovae”, Phys. Rep., 442, 38–74, (2007). [![]() ![]() |
![]() |
157 | Jenet, F.A. and Prince, T.A., “Detection of variable frequency signals using a fast chirp
transform”, Phys. Rev. D, 62, 122001, 1–10, (2000). [![]() ![]() ![]() |
![]() |
158 | Jones, P.B., “Bulk viscosity of neutron-star matter”, Phys. Rev. D, 64, 084003, 1–7, (2001).
[![]() ![]() |
![]() |
159 | Jones, P.B., “Comment on ‘Gravitational radiation instability in hot young neutron stars”’,
Phys. Rev. Lett., 86, 1384, (2001). [![]() ![]() |
![]() |
160 | Keil, W., Janka, H.-T. and Müller, E., “Ledoux Convection in Protoneutron Stars—A Clue
to Supernova Nucleosynthesis?”, Astrophys. J., 473, 111–114, (1996). [![]() ![]() |
![]() |
161 | Kitaura, F.S., Janka, H.-T. and Hillebrandt, W., “Explosions of O-Ne-Mg cores, the Crab
supernova, and subluminous type II-P supernovae”, Astron. Astrophys., 450, 345–350, (2006).
[![]() ![]() |
![]() |
162 | Kokkotas, K.D. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev.
Relativity, 2, lrr-1999-2, (1999). URL (accessed 18 May 2009): http://www.livingreviews.org/lrr-1999-2. |
![]() |
163 | Kormendy, J., “Supermassive Black Holes in Disk Galaxies”, in Funes, J.G. and Corsini, E.M.,
eds., Galaxy Disks and Disk Galaxies, Proceedings of a conference sponsored by the Vatican
Observatory, held at the Pontifical Gregorian University in Rome, Italy, 12 – 16 June 2000,
ASP Conference Series, 230, pp. 247–256, (Astronomical Society of the Pacific, San Francisco,
2001). [![]() |
![]() |
164 | Kotake, K., Iwakami, W., Ohnishi, N. and Yamada, S., “Gravitational Radiation from Standing
Accretion Shock Instability in Core-Collapse Supernovae”, Astrophys. J. Lett., 697, L133–L136,
(2009). [![]() ![]() |
![]() |
165 | Kotake, K., Ohnishi, N. and Yamada, S., “Gravitational Radiation from Standing Accretion
Shock Instability in Core-Collapse Supernovae”, Astrophys. J., 655, 406–415, (2007). [![]() ![]() |
![]() |
166 | Kotake, K., Sato, K. and Takahashi, K., “Explosion mechanism, neutrino burst and
gravitational wave in core-collapse supernovae”, Rep. Prog. Phys., 69, 971–1143, (2006). [![]() ![]() |
![]() |
167 | Kotake, K., Sato, K. and Takahashi, K., “Gravitational Radiation from Standing Accretion
Shock Instability in Core-Collapse Supernovae”, Rep. Prog. Phys., 69, 971–1143, (2006). [![]() |
![]() |
168 | Kotake, K., Yamada, S. and Sato, K., “Gravitational radiation from axisymmetric rotational
core collapse”, Phys. Rev. D, 68, 044023, (2003). [![]() ![]() |
![]() |
169 | Kotake, K., Yamada, S., Sato, K., Sumiyoshi, K., Ono, H. and Suzuki, H., “Gravitational
radiation from rotational core collapse: Effects of magnetic fields and realistic equations of
state”, Phys. Rev. D, 69, 124004, 1–11, (2004). [![]() ![]() |
![]() |
170 | Kusenko, A. and Segre, G., “Pulsar Velocities and Neutrino Oscillations”, Phys. Rev. Lett., 77,
4872–4875, (1996). [![]() ![]() |
![]() |
171 | Lai, D., “Secular bar-mode evolution and gravitational waves from neutron stars”, in Centrella,
J.M., ed., Astrophysical Sources for Ground-based Gravitational Wave Detectors, Philadelphia,
PA, USA, 30 October – 1 November 2000, AIP Conference Proceedings, 575, pp. 246–257,
(American Institute of Physics, Melville, N.Y., 2001). [![]() ![]() |
![]() |
172 | Lai, D. and Goldreich, P., “Growth of Perturbations in Gravitational Collapse and Accretion”,
Astrophys. J., 535, 402–411, (2000). [![]() ![]() ![]() |
![]() |
173 | Lai, D. and Shapiro, S.L., “Gravitational Radiation from Rapidly Rotating Nascent Neutron
Stars”, Astrophys. J., 442, 259–272, (1995). [![]() ![]() ![]() |
![]() |
174 | Leaver, E.W., “An analytic representation for the quasi-normal modes of Kerr black holes”,
Proc. R. Soc. London, Ser. A, 402, 285–298, (1985). [![]() |
![]() |
175 | LeBlanc, J.M. and Wilson, J.R., “An analytic representation for the quasi-normal modes of
Kerr black holes”, Astrophys. J., 161, 541–551, (1985). [![]() ![]() |
![]() |
176 | Li, H., Finn, J.M., Lovelace, R.V.E. and Colgate, S.A., “Rossby Wave Instability of Thin
Accretion Disks. II. Detailed Linear Theory”, Astrophys. J., 533, 1023–1034, (2000). [![]() ![]() |
![]() |
177 | “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL
(accessed 4 October 2002): ![]() |
![]() |
178 | Lindblom, L. and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”,
Phys. Rev. D, 65, 063006, 1–15, (2002). [![]() ![]() ![]() |
![]() |
179 | Lindblom, L., Owen, B.J. and Morinsk, S.M., “Gravitational Radiation Instability in Hot Young
Neutron Stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). [![]() ![]() ![]() |
![]() |
180 | Lindblom, L., Tohline, J.E. and Vallisneri, M., “Nonlinear Evolution of the r-Modes in Neutron
Stars”, Phys. Rev. Lett., 86, 1152–1155, (2001). [![]() ![]() ![]() |
![]() |
181 | Lindblom, L., Tohline, J.E. and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in
neutron stars”, Phys. Rev. D, 65, 084039, 1–15, (2002). [![]() ![]() ![]() |
![]() |
182 | “LISA: Laser Interferometer Space Antenna”, project homepage, NASA. URL (accessed 4
October 2002): ![]() |
![]() |
183 | Liu, Y.T., “Dynamical instability of new-born neutron stars as sources of gravitational
radiation”, Phys. Rev. D, 65, 124003, 1–14, (2002). [![]() ![]() ![]() |
![]() |
184 | Liu, Y.T. and Lindblom, L., “Models of rapidly rotating neutron stars: remnants of
accretion-induced collapse”, Mon. Not. R. Astron. Soc., 324, 1063–1073, (2001). [![]() ![]() |
![]() |
185 | Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Magnetorotational collapse of very massive stars
to black holes in full general relativity”, Phys. Rev. D, 76, 084017, (2007). [![]() ![]() |
![]() |
186 | Loeb, A. and Rasio, F.A., “Collapse of Primordial Gas Clouds and the Formation of Quasar
Black Holes”, Astrophys. J., 432, 52–61, (1994). [![]() ![]() ![]() |
![]() |
187 | Loveridge, L.C., “Gravitational waves from a pulsar kick caused by neutrino conversions”, Phys.
Rev. D, 69, 024008, 1–8, (2004). [![]() ![]() |
![]() |
188 | Macchetto, F.D., “Supermassive Black Holes and Galaxy Morphology”, Astrophys. Space Sci.,
269, 269–291, (1999). [![]() ![]() |
![]() |
189 | MacFadyen, A.I. and Woosley, S.E., “Collapsars: Gamma-Ray Bursts and Explosions in ‘Failed
Supernovae”’, Astrophys. J., 524, 262–289, (1999). [![]() ![]() ![]() |
![]() |
190 | MacFadyen, A.I., Woosley, S.E. and Heger, A., “Supernovae, Jets, and Collapsars”, Astrophys.
J., 550, 410–425, (2001). [![]() ![]() |
![]() |
191 | Maeda, K. et al., “The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth
Event of a Strongly Magnetized Neutron Star”, Astrophys. J., 666, 1069–1082, (2007). [![]() ![]() |
![]() |
192 | Managan, R.A., “On the Secular Instability of Axisymmetric Rotating Stars to Gravitational
Radiation Reaction”, Astrophys. J., 294, 463–473, (1985). [![]() ![]() |
![]() |
193 | Mannucci, F., Della Valle, M. and Panagia, N., “How many supernovae are we missing at high
redshift”, Mon. Not. R. Astron. Soc., 377, 1229–1235, (2007). [![]() ![]() |
![]() |
194 | Marck, J.-A. and Bonazzola, S., “Gravitational radiation from three-dimensional gravitational stellar core collapse”, in D’Inverno, R., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, England, 16 – 20 December 1991, p. 247, (Cambridge University Press, Cambridge, 1992). |
![]() |
195 | Marek, A. and Janka, H.-T., “Delayed Neutrino-Driven Supernova Explosions Aided by the
Standing Accretion-Shock Instability”, Astrophys. J., 694, 664–696, (2009). [![]() ![]() |
![]() |
196 | Marek, A., Janka, H.-T. and Müller, E., “Equation-of-state dependent features in
shock-oscillation modulated neutrino and gravitational-wave signals from supernovae”, Astron.
Astrophys., 496, 475–494, (2009). [![]() ![]() |
![]() |
197 | Miyaji, S. and Nomoto, K., “On the collapse of 8–10 M⊙ stars due to electron capture”,
Astrophys. J., 318, 307–315, (1987). [![]() ![]() |
![]() |
198 | Mochkovitch, R. and Livio, M., “The coalescence of white dwarfs and type I supernovae”,
Astron. Astrophys., 209, 111–118, (1989). [![]() |
![]() |
199 | Mochkovitch, R. and Livio, M., “The coalescence of white dwarfs and type I supernovae. The
merged configuration”, Astron. Astrophys., 236, 378–384, (1990). [![]() |
![]() |
200 | Moe, M. and De Marco, O., “Do Most Planetary Nebulae Derive from Binaries? I. Population
Synthesis Model of the Galactic Planetary Nebula Population Produced by Single Stars and
Binaries”, Astrophys. J., 650, 916–932, (2006). [![]() ![]() |
![]() |
201 | Mönchmeyer, R., Schäfer, G., Müller, E. and Kates, R.E., “Gravitational waves from the
collapse of rotating stellar cores”, Astron. Astrophys., 246, 417–440, (1991). [![]() |
![]() |
202 | Moncrief, V., “Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system
over Teichmüller space”, J. Math. Phys., 30, 2907–2914, (1989). [![]() ![]() |
![]() |
203 | Motl, P.M., Tohline, J.E. and Frank, J., “Numerical Methods for the Simulation of Dynamical
Mass Transfer in Binaries”, Astrophys. J. Suppl. Ser., 138, 121–148, (2002). [![]() ![]() |
![]() |
204 | Müller, E., “Gravitational Radiation from Collapsing Rotating Stellar Cores”, Astron.
Astrophys., 114, 53–59, (1982). [![]() |
![]() |
205 | Müller, E., “Gravitational waves from core collapse supernovae”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 273–308, (Cambridge University Press, Cambridge, 1997). |
![]() |
206 | Müller, E., “Simulation of Astrophysical Fluid Flow”, in LeVeque, R.J., Mihalas, D., Dorfi,
E.A., Müller, E., Steiner, O. and Gautschy, A., eds., Computational Methods for Astrophysical
Fluid Flow, Lecture Notes of the Saas-Fee Advanced Course 27, Les Diablerets, Switzerland,
March 3 – 8, 1997, Saas-Fee Advanced Courses, 27, pp. 343–494, (Springer, Berlin; New York,
1998). [![]() |
![]() |
207 | Müller, E. and Hillebrandt, W., “The Collapse of Rotating Stellar Cores”, Astron. Astrophys.,
103, 358–366, (1981). [![]() |
![]() |
208 | Müller, E. and Janka, H.-T., “Gravitational radiation from convective instabilities in Type II
supernova explosions”, Astron. Astrophys., 317, 140–163, (1997). [![]() |
![]() |
209 | Müller, E., Rampp, M., Buras, R., Janka, H.-T. and Shoemaker, D.H., “Toward Gravitational
Wave Signals from Realistic Core-Collapse Supernova Models”, Astrophys. J., 603, 221–230,
(2004). [![]() ![]() |
![]() |
210 | Müller, E., Rózyczka, M. and Hillebrandt, W., “Stellar Collapse: Adiabatic Hydrodynamics
and Shock Wave Propagation”, Astron. Astrophys., 81, 288–292, (1980). [![]() |
![]() |
211 | Murphy, J.W. and Burrows, A., “Criteria for Core-Collapse Supernova Explosions by the
Neutrino Mechanism”, Astrophys. J., 688, 1159–1175, (2008). [![]() ![]() |
![]() |
212 | Murphy, J.W., Burrows, A. and Heger, A., “Pulsational Analysis of the Cores of Massive Stars
and Its Relevance to Pulsar Kicks”, Astrophys. J., 615, 460–474, (2004). [![]() ![]() |
![]() |
213 | Murphy, J.W., Ott, C.D. and Burrows, A., “A Model for Gravitational Wave Emission from
Neutrino-Driven Core-Collapse Supernovae”, Astrophys. J., 707, 1173–1190, (2009). [![]() ![]() |
![]() |
214 | Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of
Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005). [![]() ![]() |
![]() |
215 | Nagar, A., Zanotti, O., Font, J.A. and Rezzolla, L., “Accretion-driven gravitational radiation
from nonrotating compact objects: Infalling quadrupolar shells”, Phys. Rev. D, 69, 124028,
(2004). [![]() ![]() |
![]() |
216 | Nagar, A., Zanotti, O., Font, J.A. and Rezzolla, L., “Accretion-induced quasinormal mode
excitation of a Schwarzschild black hole”, Phys. Rev. D, 75, 044016, (2007). [![]() ![]() |
![]() |
217 | Nakazato, K., Sumiyoshi, K. and Yamada, S., “Gravitational Collapse and Neutrino Emission
of Population III Massive Stars”, Astrophys. J., 645, 519–533, (2006). [![]() ![]() |
![]() |
218 | Nakazato, K., Sumiyoshi, K. and Yamada, S., “Numerical Study of Stellar Core Collapse and
Neutrino Emission: Probing the Spherically Symmetric Black Hole Progenitors with 3–30 M⊙
Iron Cores”, Astrophys. J., 666, 1140–1151, (2007). [![]() ![]() |
![]() |
219 | Narayan, R., Paczyński, B. and Piran, T., “Gamma-Ray Bursts as the Death Throes of
Massive Binary Stars”, Astrophys. J. Lett., 395, L83–L86, (1992). [![]() ![]() |
![]() |
220 | Nazin, S.N. and Postnov, K.A., “High neutron star birth velocities and gravitational
radiation during supernova explosions”, Astron. Astrophys., 317, L79–L81, (1997). [![]() ![]() |
![]() |
221 | New, K.C.B., Centrella, J.M. and Tohline, J.E., “Gravitational waves from long-duration
simulations of the dynamical bar instability”, Phys. Rev. D, 62, 064019, 1–16, (2000). [![]() ![]() ![]() |
![]() |
222 | New, K.C.B. and Shapiro, S.L., “Evolution of Differentially Rotating Supermassive Stars
to the Onset of Bar Instability”, Astrophys. J., 548, 439–446, (2001). [![]() ![]() ![]() |
![]() |
223 | New, K.C.B. and Shapiro, S.L., “The formation of supermassive black holes and the
evolution of supermassive stars”, Class. Quantum Grav., 18, 3965–3975, (2001). [![]() ![]() ![]() |
![]() |
224 | Nomoto, K. and Kondo, Y., “Conditions for accretion-induced collapse of white dwarfs”,
Astrophys. J. Lett., 367, L19–L22, (1991). [![]() ![]() |
![]() |
225 | Novikov, I.D., “Gravitational radiation from a star collapsing into a disk”, Sov. Astron., 19,
398–399, (1976). [![]() |
![]() |
226 | Obergaulinger, M., Aloy, M.A., Dimmelmeier, H. and Müller, E., “Axisymmetric simulations
of magnetorotational core collapse: approximate inclusion of general relativistic effects”, Astron.
Astrophys., 457, 209–222, (2006). [![]() ![]() |
![]() |
227 | Obergaulinger, M.,
Aloy, M.A. and Müller, E., “Axisymmetric simulations of magneto-rotational core collapse:
dynamics and gravitational wave signal”, Astron. Astrophys., 450, 1107–1134, (2006). [![]() ![]() |
![]() |
228 | Ott, C.D., “The gravitational-wave signature of core-collapse supernovae”, Class. Quantum
Grav., 26, 063001, (2009). [![]() ![]() |
![]() |
229 | Ott, C.D., Burrows, A., Dessart, L. and Livne, E., “A New Mechanism for Gravitational-Wave
Emission in Core-Collapse Supernovae”, Phys. Rev. Lett., 96, 201102, (2006). [![]() ![]() |
![]() |
230 | Ott, C.D., Burrows, A., Livne, E. and Walder, R., “Gravitational Waves from Axisymmetric,
Rotating Stellar Core Collapse”, Astrophys. J., 600, 834–864, (2004). [![]() ![]() |
![]() |
231 | Ott, C.D., Burrows, A., Thompson, T.A., Livne, E. and Walder, R., “The Spin Periods and
Rotational Profiles of Neutron Stars at Birth”, Astrophys. J., 164, 130–155, (2006). [![]() ![]() |
![]() |
232 | Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Hawke, I., Zink, B. and Schnetter, E.,
“3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization
and a Nuclear Equation of State”, Phys. Rev. Lett., 98, 261101, (2007). [![]() ![]() |
![]() |
233 | Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Zink, B., Hawke, I. and Schnetter,
E., “Rotating collapse of stellar iron cores in general relativity”, Class. Quantum Grav., 24,
S139–S154, (2007). [![]() ![]() |
![]() |
234 | Ott, C.D., Ou, S., Tohline, J.E. and Burrows, A., “One-armed Spiral Instability in a Low-T∕|W|
Postbounce Supernova Core”, Astrophys. J., 625, L119–L122, (2005). [![]() ![]() |
![]() |
235 | Ou, S. and Tohline, J.E., “Unexpected Dynamical Instabilities in Differentially Rotating
Neutron Stars”, Astrophys. J., 651, 1068–1078, (2006). [![]() ![]() |
![]() |
236 | Ou, S., Tohline, J.E. and Lindblom, L., “Nonlinear Development of the Secular Bar-Mode
Instability in Rotating Neutron Stars”, Astrophys. J., 617, 490–499, (2004). [![]() ![]() |
![]() |
237 | Pickett, B.K., Durisen, R.H. and Davis, G.A., “The Dynamic Stability of Rotating Protostars
and Protostellar Disks. I. The Effects of the Angular Momentum Distribution”, Astrophys. J.,
458, 714–738, (1996). [![]() ![]() |
![]() |
238 | Piran, T. and Stark, R.F., “Numerical relativity, rotating gravitational collapse, and
gravitational radiation”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical
Relativity, Proceedings of a workshop held at Drexel University, October 7 – 11, 1985, pp. 40–73,
(Cambridge University Press, Cambridge; New York, 1986). [![]() |
![]() |
239 | Piro, A.L. and Pfahl, E., “Fragmentation of Collapsar Disks and the Production of
Gravitational Waves”, Astrophys. J., 658, 1173–1176, (2007). [![]() ![]() |
![]() |
240 | Podsiadlowski, Ph., Mazzali, P.A., Nomoto, K., Lazzati, D. and Cappellaro, E., “The Rates of
Hypernovae and Gamma-Ray Brusts: Implications for Their Progenitors”, Astrophys. J., 607,
L17–L20, (2004). [![]() ![]() |
![]() |
241 | Poelarends, A.J.T., Herwig, F., Langer, N. and Heger, A., “The Supernova Channel of
Super-AGB Stars”, Astrophys. J., 675, 614–625, (2008). [![]() ![]() |
![]() |
242 | Popham, R., Woosley, S.E. and Fryer, C.L., “Hyperaccreting Black Holes and Gamma-Ray
Bursts”, Astrophys. J., 518, 356–374, (1999). [![]() ![]() |
![]() |
243 | Porter, D.H. and Woodward, P.R., “Using PPM to Model Turbulent Stellar Convection”, in Grinstein, F., Margolin, L. and Rider, W., eds., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, (Cambridge University Press, Los Alamos, NM, 2006). [ADS]. |
![]() |
244 | Proga, D., MacFadyen, A.I., Armitage, P.J. and Begelman, M.C., “Axisymmetric
Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts”,
Astrophys. J. Lett., 599, L5–L8, (2003). [![]() ![]() |
![]() |
245 | Rampp, M., Müller, E. and Ruffert, M., “Simulations of non-axisymmetric rotational core
collapse”, Astron. Astrophys., 332, 969–983, (1998). [![]() |
![]() |
246 | Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and
Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan
Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 79–101, (University of Chicago
Press, Chicago; London, 1998). [![]() |
![]() |
247 | Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS,
(2002). URL (accessed 4 October 2002): ![]() |
![]() |
248 | Rezzolla, L., Lamb, F.K., Marković, D. and Shapiro, S.L., “Properties of r modes in rotating
magnetic neutron stars. I. Kinematic secular effects and magnetic evolution”, Phys. Rev. D,
64, 104013, 1–12, (2001). [![]() ![]() |
![]() |
249 | Rezzolla, L., Lamb, F.L., Marković, D. and Shapiro, S.L., “Properties of r modes in rotating
magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field”, Phys. Rev. D,
64, 104014, 1–13, (2001). [![]() ![]() |
![]() |
250 | Rockefeller, G., Fryer, C.L. and Li, H., “Collapsars in Three Dimensions”, arXiv e-print, (2006).
[![]() |
![]() |
251 | Ruffini, R. and Wheeler, J.A., “Relativistic Cosmology from Space Platforms”, in Hardy, V. and Moore, H., eds., Proceedings of the Conference on Space Physics, pp. 45–174, (ESRO, Paris, 1971). |
![]() |
252 | Sá, P.M. and Tomé, B., “Gravitational waves from r-modes”, Astrophys. Space Sci., 308,
557–561, (2007). [![]() ![]() |
![]() |
253 | Saenz, R.A. and Shapiro, S.L., “Gravitational Radiation from Stellar Collapse: Ellipsoidal
Models”, Astrophys. J., 221, 286–303, (1978). [![]() ![]() |
![]() |
254 | Saenz, R.A. and Shapiro, S.L., “Gravitational and Neutrino Radiation from Stellar Core
Collapse: Improved Ellipsoidal Model Calculations”, Astrophys. J., 229, 1107–1125, (1979).
[![]() ![]() |
![]() |
255 | Saenz, R.A. and Shapiro, S.L., “Gravitational Radiation from Stellar Core Collapse. III.
Damped Ellipsoidal Oscillations”, Astrophys. J., 244, 1033–1038, (1981). [![]() ![]() |
![]() |
256 | Saijo, M., “The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat
Simulations”, Astrophys. J., 615, 866–879, (2004). [![]() ![]() |
![]() |
257 | Saijo, M., “Dynamical bar instability in a relativistic rotational collapse”, Phys. Rev. D, 71,
104038, (2005). [![]() ![]() |
![]() |
258 | Saijo, M., Baumgarte, T.W. and Shapiro, S.L., “One-armed Spiral Instability in Differentially
Rotating Stars”, Astrophys. J., 595, 352–364, (2003). [![]() ![]() |
![]() |
259 | Saijo, M., Baumgarte, T.W., Shapiro, S.L. and Shibata, M., “Collapse of a rotating
supermassive star to a supermassive black hole: Post-Newtonian simulations”, Astrophys. J.,
569, 349–361, (2002). [![]() ![]() |
![]() |
260 | Saijo, M. and Yoshida, S., “Low T∕|W| dynamical instability in differentially rotating stars:
diagnosis with canonical angular momentum”, Mon. Not. R. Astron. Soc., 368, 1429–1442,
(2006). [![]() ![]() |
![]() |
261 | Salpeter, E.E., “Energy and pressure of a zero-temperature plasma”, Astrophys. J., 134,
669–682, (1961). [![]() ![]() |
![]() |
262 | Sanders, R.H., “The Effects of Stellar Collisions in Dense Stellar Systems”, Astrophys. J., 162,
791–809, (1970). [![]() ![]() |
![]() |
263 | Scheck, L., Janka, H.-T., Foglizzo, T. and Kifonidis, K., “Multidimensional supernova
simulations with approximative neutrino transport. II. Convection and the advective-acoustic
cycle in the supernova core”, Astron. Astrophys., 477, 931–952, (2008). [![]() ![]() |
![]() |
264 | Scheck, L., Kifonidis, K., Janka, H.-T. and Müller, E., “Multidimensional supernova
simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy
of neutrino-driven explosions in two spatial dimensions”, Astron. Astrophys., 457, 963–986,
(2006). [![]() ![]() |
![]() |
265 | Scheidegger, S., Fischer, T., Whitehouse, S.C. and Liebendörfer, M., “Gravitational waves
from 3D MHD core collapse simulations”, Astron. Astrophys., 490, 231–241, (2008). [![]() ![]() |
![]() |
266 | Scheidegger, S., Fischer, T., Whitehouse, S.C. and Liebendörfer, M., “Gravitational waves
from supernova matter”, Class. Quantum Grav., 27, 114101, (2010). [![]() ![]() |
![]() |
267 | Scheidegger, S., Käppeli, R., Whitehouse, S.C., Fischer, T. and Liebendörfer, M., “The
influence of model parameters on the prediction of gravitational wave signals from stellar core
collapse”, Astron. Astrophys., 514, A51, (2010). [![]() ![]() |
![]() |
268 | Schenk, A.K., Arras, P., Flanagan, É.É., Teukolsky, S.A. and Wasserman, I., “Nonlinear
mode coupling in rotating stars and the r-mode instability in neutron stars”, Phys. Rev. D,
65, 024001, 1–43, (2002). [![]() |
![]() |
269 | Schutz, B.F., “Gravitational Wave Astronomy”, Class. Quantum Grav., 16, A131–A156,
(1999). [![]() ![]() |
![]() |
270 | Segretain, L., Chabrier, G. and Mochkovitch, R., “The Fate of Merging White Dwarfs”,
Astrophys. J., 481, 355–362, (1997). [![]() ![]() |
![]() |
271 | Seidel, E. and Moore, T., “Gravitational radiation from realistic relativistic stars: Odd-parity
fluid perturbations”, Phys. Rev. D, 35, 2287–2296, (1987). [![]() ![]() |
![]() |
272 | Seidel, E. and Moore, T., “Gravitational radiation from perturbations of stellar core collapse models”, in Evans, C.R., Finn, L.S. and Hobill, D.W., eds., Frontiers in Numerical Relativity, pp. 146–162, (Cambridge University Press, Cambridge; New York, 1988). |
![]() |
273 | Shapiro, S.L., “Gravitational Radiation from Stellar Collapse: The Initial Burst”, Astrophys.
J., 214, 566–575, (1977). [![]() ![]() |
![]() |
274 | Shapiro, S.L. and Lightman, A.P., “Rapidly Rotating, Post-Newtonian Neutron Stars”,
Astrophys. J., 207, 263–278, (1976). [![]() ![]() |
![]() |
275 | Shapiro, S.L. and Teukolsky, S.A., “Gravitational Collapse of Supermassive Stars to Black
Holes: Numerical Solution of the Einstein Equations”, Astrophys. J. Lett., 234, L177–L181,
(1979). [![]() ![]() |
![]() |
276 | Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics
of Compact Objects, (Wiley, New York, 1983). [![]() |
![]() |
277 | Shibata, M., “Fully general relativistic simulation of coalescing binary neutron stars:
Preparatory tests”, Phys. Rev. D, 60, 104052, 1–25, (1999). [![]() ![]() |
![]() |
278 | Shibata, M., Karino, S. and Eriguchi, Y., “Dynamical instability of differentially rotating stars”,
Mon. Not. R. Astron. Soc., 334, L27–L31, (2002). [![]() ![]() |
![]() |
279 | Shibata, M., Karino, S. and Eriguchi, Y., “Dynamical instability of differentially rotating stars”,
Mon. Not. R. Astron. Soc., 343, 619–626, (2003). [![]() ![]() |
![]() |
280 | Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic
slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [![]() ![]() |
![]() |
281 | Shibata, M. and Sekiguchi, Y., “Gravitational waves from axisymmetric rotating stellar core
collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024, 1–16, (2004).
[![]() ![]() |
![]() |
282 | Shibata, M. and Sekiguchi, Y., “Three-dimensional simulations of stellar core collapse in full
general relativity: Nonaxisymmetric dynamical instabilities”, Phys. Rev. D, 71, 024014, 1–32,
(2005). [![]() ![]() |
![]() |
283 | Shibata, M. and Sekiguchi, Y.-I., “Three-dimensional simulations of stellar core collapse in full
general relativity: Nonaxisymmetric dynamical instabilities”, Phys. Rev. D, 71, 024014, (2005).
[![]() ![]() |
![]() |
284 | Shibata, M. and Shapiro, S.L., “Collapse of a Rotating Supermassive Star to a Supermassive
Black Hole: Fully Relativistic Simulations”, Astrophys. J. Lett., 572, L39–L43, (2002). [![]() ![]() |
![]() |
285 | Shibata, M., Shapiro, S.L. and Uryū, K., “Equilibrium and stability of supermassive stars in
binary systems”, Phys. Rev. D, 64, 024004, 1–14, (2001). [![]() ![]() ![]() |
![]() |
286 | Siess, L., “Evolution of massive AGB stars. I. Carbon burning phase”, Astron. Astrophys., 448,
717–729, (2006). [![]() ![]() |
![]() |
287 | Siess, L., “Evolution of massive AGB stars. II. model properties at non-solar metallicity and
the fate of Super-AGB stars”, Astron. Astrophys., 476, 893–909, (2007). [![]() ![]() |
![]() |
288 | Smartt, S.J., Eldridge, J.J., Crockett, R.M and Maund, J.R., “The death of massive stars – I.
Observational constraints on the progenitors of Type II-P supernovae”, Mon. Not. R. Astron.
Soc., 395, 1409–1437, (2008). [![]() ![]() |
![]() |
289 | Smith, S.C., Houser, J.L. and Centrella, J.M., “Simulations of Nonaxisymmetric Instability
in a Rotating Star: A Comparison Between Eulerian and Smooth Particle Hydrodynamics”,
Astrophys. J., 458, 236–256, (1996). [![]() ![]() ![]() |
![]() |
290 | Spruit, H.C., “Dynamo action by differential rotation in a stably stratified stellar interior”,
Astron. Astrophys., 381, 923–932, (2002). [![]() ![]() |
![]() |
291 | Stark, R.F. and Piran, T., “Gravitational-Wave Emission from Rotating Gravitational
Collapse”, Phys. Rev. Lett., 55, 891–894, (1985). [![]() ![]() |
![]() |
292 | “Stellar Hydrodynamics”, project homepage, Max Planck Institute for Astrophysics. URL
(accessed 7 January 2009): ![]() |
![]() |
293 | Stergioulas, N., Apostolatos, T.A. and Font, J.A., “Non-linear pulsations in differentially
rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental
mode”, Mon. Not. R. Astron. Soc., 352, 1089–1101, (2004). [![]() ![]() |
![]() |
294 | Stergioulas, N. and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys.
Rev. Lett., 86, 1148–1151, (2001). [![]() ![]() ![]() |
![]() |
295 | Sumiyoshi, K., Yamada, S. and Suzuki, H., “Dynamics and Neutrino Signal of Black Hole
Formation in Nonrotating Failed Supernovae. II. Progenitor Dependence”, Astrophys. J., 688,
1176–1185, (2008). [![]() ![]() |
![]() |
296 | Sumiyoshi, K., Yamada, S., Suzuki, H. and Chiba, S., “Neutrino Signals from the Formation
of a Black Hole: A Probe of the Equation of State of Dense Matter”, Phys. Rev. Lett., 97,
091101, (2006). [![]() ![]() |
![]() |
297 | Summerscales, T.Z., Burrows, A., Finn, L.S. and Ott, C.D., “Maximum Entropy for
Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse
Supernovae”, Astrophys. J., 678, 1142–1157, (2008). [![]() ![]() |
![]() |
298 | Suwa, Y., Takiwaki, T., Kotake, K. and Sato, Katsuhiko, “Gravitational Wave Background
from Population III Stars”, Astrophys. J., 665, 521078, L43–L46, (2007). [![]() ![]() |
![]() |
299 | Symbalisty, E.M.D., “Magnetorotational Iron Core Collapse”, Astrophys. J., 285, 729–746,
(1984). [![]() ![]() |
![]() |
300 | Takiwaki, T. and Kotake, K., “Gravitational-Wave Signatures in Magnetically-Driven
Supernova Explosions”, Phys. Rev. D, submitted, (2010). [![]() |
![]() |
301 | “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage,
National Astronomical Observatory of Japan. URL (accessed 4 October 2002): ![]() |
![]() |
302 | Tassoul, J.-L., Theory of Rotating Stars, (Princeton University Press, Princeton, 1978). |
![]() |
303 | Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations
for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185,
635–647, (1973). [![]() ![]() |
![]() |
304 | Thompson, C. and Murray, N., “Transport of Magnetic Fields in Convective, Accreting
Supernova Cores”, Astrophys. J., 560, 339–357, (2001). [![]() ![]() |
![]() |
305 | Thompson, T.A., Chang, P. and Quataert, E., “Magnetar Spin-Down, Hyperenergetic
Supernovae, and Gamma-Ray Bursts”, Astrophys. J., 611, 380–393, (2004). [![]() ![]() |
![]() |
306 | Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339,
(1980). [![]() ![]() |
![]() |
307 | Thorne, K.S., “Gravitational radiation”, in Hawking, S.W. and Israel, W., eds., Three Hundred
Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987).
[![]() |
![]() |
308 | Thorne, K.S., “Gravitational radiation”, in Böhringer, H., Morfill, G.E. and Trümper, J.E.,
eds., 17th Texas Symposium on Relativistic Astrophysics and Cosmology, Ann. N.Y. Acad. Sci.,
759, pp. 127–152, (New York Academy of Sciences, New York, 1995). [![]() ![]() |
![]() |
309 | Thorne, K.S., “Gravitational Waves from Compact Bodies”, in van Paradijs, J., van den
Heuvel, E.P.J. and Kuulkers, E., eds., Compact Stars in Binaries (IAU Colloquium 165),
Proceedings of the 165th Symposium of the International Astronomical Union, held in The
Hague, the Netherlands, August 15 – 19, 1994, pp. 153–183, (Kluwer Academic Publishers,
Dordrecht; Boston, 1996). [![]() |
![]() |
310 | Thorne, K.S., Price, R.H. and MacDonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, 1986). |
![]() |
311 | Thuan, T.X. and Ostriker, J.P., “Gravitational Radiation from Stellar Collapse”, Astrophys.
J. Lett., 191, L105–L107, (1974). [![]() ![]() |
![]() |
312 | Tohline, J.E., “The Collapse of Rotating Stellar Cores: Equilibria Between White Dwarf and
Neutron Star Densities”, Astrophys. J., 285, 721–728, (1984). [![]() ![]() |
![]() |
313 | Tohline, J.E., Durisen, R.H. and McCollough, M., “The linear and nonlinear dynamic stability
of rotating n = 3∕2 polytropes”, Astrophys. J., 298, 220–234, (1985). [![]() ![]() |
![]() |
314 | Tohline, J.E. and Hachisu, I., “The Breakup of Self-Gravitating Rings, Tori, and Thick
Accretion Disks”, Astrophys. J., 361, 394–407, (1990). [![]() ![]() |
![]() |
315 | Toman, J., Imamura, J.N., Pickett, B.K. and Durisen, R.H., “Nonaxisymmetric Dynamic
Instabilities of Rotating Polytropes. I. The Kelvin Modes”, Astrophys. J., 497, 370–387, (1998).
[![]() ![]() |
![]() |
316 | Toomre, A., “On the gravitational stability of a disk of stars”, Astrophys. J., 139, 1217–1238,
(1964). [![]() ![]() |
![]() |
317 | Turner, M.S., “Gravitational radiation from supernova neutrino bursts”, Astrophys. J., 274,
565–566, (1978). [![]() ![]() |
![]() |
318 | Turner, M.S. and Wagoner, R.V., “Gravitational radiation from slowly-rotating ‘supernovae’:
Preliminary results”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of
the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 383–407, (Cambridge University
Press, Cambridge, 1979). [![]() ![]() |
![]() |
319 | van den Heuvel, E.P.J. and Yoon, S.-C., “Long gamma-ray burst progenitors: boundary
conditions and binary models”, Astrophys. Space Sci., 311, 177–183, (2007). [![]() ![]() ![]() |
![]() |
320 | van Putten, M.H.P.M., “Proposed Source of Gravitational Radiation from a Torus around a
Black Hole”, Phys. Rev. Lett., 87, 091101, (2001). [![]() ![]() |
![]() |
321 | van Putten, M.H.P.M. and Levinson, A., “Theory and Astrophysical Consequences of a
Magnetized Torus around a Rapidly Rotating Black Hole”, Astrophys. J., 584, 937–953, (2003).
[![]() ![]() ![]() |
![]() |
322 | van Riper, K.A. and Arnett, W.D., “Stellar Collapse and Explosion: Hydrodynamics of the
Core”, Astrophys. J. Lett., 225, L129–L132, (1978). [![]() ![]() |
![]() |
323 | Villain, L., Pons, J.A., Cerdá-Durán, P. and Gourgoulhon, E., “Evolutionary sequences of
rotating protoneutron stars”, Astron. Astrophys., 418, 283–294, (2004). [![]() ![]() |
![]() |
324 | “Virgo”, project homepage, INFN. URL (accessed 4 October 2002): ![]() |
![]() |
325 | Walder, R., Burrows, A., Ott, C.D., Livne, E., Lichtenstadt, I. and Jarrah, M., “Evolutionary
sequences of rotating protoneutron stars”, Astrophys. J., 626, 317–332, (2005). [![]() ![]() |
![]() |
326 | Watts, A.L., Andersson, N. and Jones, D.I., “The Nature of Low T∕|W| Dynamical Instabilities
in Differentially Rotating Stars”, Astrophys. J., 618, L37–L40, (2005). [![]() ![]() |
![]() |
327 | Weinberg, N.A. and Quataert, E., “Non-linear saturation of g-modes in proto-neutron stars:
quieting the acoustic engine”, Mon. Not. R. Astron. Soc., 387, L64–L68, (2008). [![]() ![]() ![]() |
![]() |
328 | Wheeler, J.A., “Geometrodynamics and the Issue of Final State”, in DeWitt, C.M. and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 315–320, (Gordon and Breach, New York; London, 1964). |
![]() |
329 | Wheeler,
J.C., Meier, D.L. and Wilson, J.R., “Asymmetric Supernovae from Magnetocentrifugal Jets”,
Astrophys. J., 568, 807–819, (2002). [![]() ![]() |
![]() |
330 | Wickramasinghe, D.T. and Ferrario, L., “Magnetism in Isolated and Binary White Dwarfs”,
Publ. Astron. Soc. Pac., 112, 873–924, (2000). [![]() ![]() |
![]() |
331 | Williams, H.A. and Tohline, J.E., “Linear and nonlinear dynamic instability of rotating
polytropes”, Astrophys. J., 315, 594–601, (1987). [![]() ![]() |
![]() |
332 | Woodward, J.W., Tohline, J.E. and Hachisu, I., “The Stability of Thick, Self-gravitating Disks
in Protostellar Systems”, Astrophys. J., 420, 247–267, (1994). [![]() ![]() |
![]() |
333 | Woosley, S.E., “Gamma-ray bursts from stellar mass accretion disks around black holes”,
Astrophys. J., 405, 273–277, (1993). [![]() ![]() |
![]() |
334 | Woosley, S.E. and Baron, E., “The collapse of white dwarfs to neutron stars”, Astrophys. J.,
391, 228–235, (1992). [![]() ![]() |
![]() |
335 | Woosley, S.E. and Bloom, J., “The Supernova–Gamma-Ray Burst Connection”, Annu. Rev.
Astron. Astrophys., 44, 507–556, (2006). [![]() ![]() |
![]() |
336 | Yakunin, K.N. et al., “Gravitational waves from core collapse supernovae”, Class. Quantum
Grav., 27, 194005, (2002). [![]() ![]() ![]() |
![]() |
337 | Yamada, S. and Sato, K., “Gravitational Radiation from Rotational Collapse of a Supernova
Core”, Astrophys. J., 450, 245–252, (1995). [![]() ![]() |
![]() |
338 | Yoon, S.-C. and Langer, N., “Evolution of rapidly rotating metal-poor massive stars towards
gamma-ray bursts”, Astron. Astrophys., 443, 643–648, (2005). [![]() ![]() |
![]() |
339 | Yoon, S.-C. and Langer, N., “On the evolution of rapidly rotating massive white dwarfs towards
supernovae or collapses”, Astron. Astrophys., 435, 967–985, (2005). [![]() ![]() |
![]() |
340 | Yoon, S.-C., Langer, N. and Norman, C., “On the evolution of rapidly rotating massive white
dwarfs towards supernovae or collapses”, Astron. Astrophys., 460, 199–208, (2006). [![]() ![]() |
![]() |
341 | Yoon, S.-C., Langer, N. and Scheithauer, S., “Effects of rotation on the helium burning shell
source in accreting white dwarfs”, Astron. Astrophys., 425, 217–228, (2004). [![]() ![]() |
![]() |
342 | Yoon, S.-C., Podsiadlowski, P. and Rosswog, S., “Remnant evolution after a carbon-oxygen
white dwarf merger”, Mon. Not. R. Astron. Soc., 380, 933–948, (2007). [![]() ![]() |
![]() |
343 | Yoshida, S., Ohnishi, N. and Yamada, S., “Excitation of g-Modes in a Proto-Neutron Star by
the Standing Accretion Shock Instability”, Astrophys. J., 665, 1268–1276, (2007). [![]() ![]() ![]() |
![]() |
344 | Zanotti, O., Rezzolla, L. and Font, J.A., “Quasi-periodic accretion and gravitational waves from
oscillating ‘toroidal neutron stars’ around a Schwarzschild black hole”, Mon. Not. R. Astron.
Soc., 341, 832–848, (2003). [![]() ![]() |
![]() |
345 | Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics, 1, (University of Chicago Press, Chicago, 1971). |
![]() |
346 | Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in
tensor harmonics”, Phys. Rev. D, 2, 2141–2160, (1970). [![]() ![]() |
![]() |
347 | Zhang, W., Woosley, S.E. and Heger, A, “Fallback and Black Hole Production in Massive
Stars”, Astrophys. J., 679, 639–654, (2008). [![]() ![]() |
![]() |
348 | Zink, B., Stergioulas, N., Hawke, I., Ott, C.D., Schnetter, E. and Müller, E., “Formation of
Supermassive Black Holes through Fragmentation of Torodial Supermassive Stars”, Phys. Rev.
Lett., 96, 161101, (2006). [![]() ![]() |
![]() |
349 | Zink, B., Stergioulas, N., Hawke, I., Ott, C.D., Schnetter, E. and Müller, E., “Nonaxisymmetric
instability and fragmentation of general relativistic quasitoroidal stars”, Phys. Rev. D, 76,
024019, (2007). [![]() ![]() |
![]() |
350 | Zwerger, T. and Müller, E., “Dynamics and gravitational wave signature of axisymmetric
rotational core collapse”, Astron. Astrophys., 320, 209–227, (1997). [![]() |
http://www.livingreviews.org/lrr-2011-1 |
Living Rev. Relativity 14, (2011), 1
![]() This work is licensed under a Creative Commons License. E-mail us: |