The rate of core-collapse supernovae can be determined by simply multiplying the star-formation rate times
the fraction of stars in the and
mass range. The uncertainties in such a
calculation lie in determining the limits on either side of this range (determined by theory), the
power in the initial mass function and the star formation rate (both beyond theory at this
point). The latter two quantities, both set by observations, dominate the errors in this rate
estimate.
Indeed, especially at high redshift, the supernova rate is better constrained by observations than
the rate of star formation and it is often used to determine the star-formation history. The
local rate of supernovae as a function of galaxy type has been studied [43, 193]. The rate of
supernovae in a Milky-Way–sized galaxy is roughly 1 per 100 y for type II and type Ib/c
supernovae. It is believed that the rate has been decreasing since a redshift of roughly 1 – 1.5
(Figure 6
).
The evolution of a core-collapse supernova passes through a number of phases: collapse and
bounce, post-bounce and convection and neutron-star cooling. The runaway collapse of the core
continues until the core reaches nuclear densities. At this point, nuclear forces and neutron
degeneracy pressure sharply increase the core pressure, causing the core to bounce and sending
a shock wave throughout the star. The nature of the bounce depends upon the equation of
state: a stiffer equation of state causes the star to bounce more quickly but also more weakly
than a softer equation of state. Within the current uncertainties, the bounce still occurs at
an enclosed mass (mass zone measured from the center of the star) of . By
the time the bounce shock stalls, the mass of the core is closer to
. Including
the effects of general relativity acts to effectively soften the equation of state. Rotation can
cause the bounce to occur at lower densities (as centrifugal support contributes to the bounce),
but for the current fastest-rotating cores produced in stellar models, this effect is less than
20% [113
, 69
].
As the bounce shock moves outward, it becomes optically thin to neutrinos and the shock
loses its internal energy. For these “standard” core-collapse explosions, the shock then does not
have enough energy to throw off the infalling star and the shock stalls. But it leaves behind an
entropy profile that is convectively unstable. Furthermore, heating from the hot core also drives
convection8.
If the convective region can develop enough energy to blow off the infalling star, a successful supernova
explosion (Figure 7) results. Especially for explosions with long delays (greater than a few hundred ms),
the SASI may play a strong role in the convection (see the review at the beginning of this
section).
In any event, both instabilities, if driven to late times, will naturally produce explosions with
asymmetries that may explain the observational evidence for asphericities in the core-collapse explosion:
pulsar velocities, mixing, polarization (Figure 8). It may also produce stronger gravitational wave signals
than the higher-mode neutrino-driven convection. Fryer [99] has argued that the long delays
required for SASI to dominate leads to low-energy explosions that do not eject much 56Ni and
produce dim supernovae (Figure 5
). If true, any extremely delayed (more than 400 ms) explosion
mechanism does not match supernova observations and cannot be the dominant fate of stellar
collapse (although given the rough observed limits on the supernova rate and the difficulty in
observing dim supernovae, we cannot constrain the importance of this mechanism with any
certainty).
As the proto neutron star cools, it may also develop strong convection and this could be another
source of GWs [160, 34
]. But the extent of this convection ranges from growing throughout
the entire proto neutron star [160
], to select regions in the star [60], to small regions in the
star [140, 112
, 113
, 116
]. Only when the convection is in the entire proto neutron star [160] is it
considered to play a large role in the supernova explosion. Although a small contribution to the
GW signal, this convection may not be negligible in calculating the full GW signal from core
collapse [228
].
Another possible source of GWs is the oscillations in the proto neutron star [40]. But, like the strong
proto–neutron-star convection, there are arguments against such strong oscillations [116
, 85
, 343
, 195
, 327
].
In strongly magnetized neutron stars, when neutrino oscillations into sterile neutrinos in the core occur,
we also expect asymmetries in the neutrino emission to lead to asymmetries in the neutrinos escaping the
core, producing GWs [170, 120
].
But, by far, the most studied source of GWs from proto neutron stars are the rotationally-induced bar-mode instabilities. All of these can contribute to the outflows from the cooling neutron star. If magnetic fields develop or there is a high mass-infall rate [305], these outflows can add significantly to the explosion energy and at least one supernovae seems to have experienced such a secondary explosion [191].
In Section 2, we reviewed the wide variety of mechanisms that lead to GW emission, i.e., time varying quadrupole moments in the matter or the radiation. The complex dynamics and physics within the evolution of a standard core-collapse supernova allow for a variety of scenarios for GW emission at different phases in the collapse.
Bounce: At core bounce, when the infalling material reaches nuclear densities and the collapse halts, the matter reaches its peak acceleration. If the collapse phase is asymmetric, either by asymmetries in the stellar structure or through rotation, this phase can lead to the strongest GW emission. The primary source of this emission is the rapidly changing quadrupole moment in the matter as the asymmetries evolve (Section 4.1). But the asymmetries in the bounce also produce the initial asymmetry in the neutrino emission and this asymmetry may lead to a strong GW signal as well (Section 4.4).
Post-bounce and Convection: The convection above the proto neutron star can also develop strong asymmetries as the convective cells merge into low-mode convection. This can lead to rapidly varying quadrupole moments in both the matter (Section 4.2) and the core (Section 4.4).
In the Neutron Star: Convection in the cooling neutron star could produce strong GW emission. So
can asymmetric neutrino emission produced by neutrino oscillations to stellar neutrinos in the
core9.
Pulsations in the newly formed proto neutron star may also produce a strong GW signal [85, 229
]. But the
most-studied GW source arises from bar-mode instabilities, in part because, if they develop, they may
produce a GW signal that rivals both the bounce and convective GW signals.
http://www.livingreviews.org/lrr-2011-1 |
Living Rev. Relativity 14, (2011), 1
![]() This work is licensed under a Creative Commons License. E-mail us: |