References

1 Abdalla, E., Konoplya, R.A. and Zhidenko, A., “Perturbations of Schwarzschild black holes in laboratories”, Class. Quantum Grav., 24, 5901–5910, (2007). [External LinkDOI], [External LinkarXiv:0706.2489 [hep-th]].
2 Abraham, H., Bilic, N. and Das, T.K., “Acoustic horizons in axially symmetric relativistic accretion”, Class. Quantum Grav., 23, 2371–2393, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509057].
3 Alù, A. and Engheta, N., “Cloaking a Sensor”, Phys. Rev. Lett., 102, 233901, (2009). [External LinkDOI].
4 Amati, D. and Russo, J.G., “Black holes by analytic continuation”, Phys. Rev. D, 56, 974–982, (1997). [External LinkDOI], [External Linkhep-th/9602125].
5 Ambrosetti, N., Charbonneau, J. and Weinfurtner, S., “The fluid/gravity correspondence: Lectures notes from the 2008 Summer School on Particles, Fields, and Strings”, arXiv e-print, (2008). [External LinkarXiv:0810.2631 [gr-qc]].
6 Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Sarkar, S., “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo”, Nature, 393, 763–765, (1998). [External Linkastro-ph/9712103].
7 Anderson, J.L. and Spiegel, E.A., “Radiative transfer through a flowing refractive medium”, Astrophys. J., 202, 454–464, (1975). [External LinkDOI], [External LinkADS].
8 Anderson, T.H., Mackay, T.G. and Lakhtakia, A., “Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking”, Phys. Lett. A, 374, 4637–4641, (2010). [External LinkDOI], [External LinkarXiv:arXiv:1007.3113 [physics.optics]].
9 Anglin, J.R., “Influence functionals and the accelerating detector”, Phys. Rev. D, 47, 4525–4537, (1993). [External LinkDOI], [External Linkhep-th/9210035].
10 Antunes, N.D., “Numerical simulation of vacuum particle production: applications to cosmology, dynamical Casimir effect and time-dependent non-homogeneous dielectrics”, arXiv e-print, (2003). [External Linkhep-ph/0310131].
11 Arbona, A., “Is a classical Euclidean TOE reasonable?”, arXiv e-print, (2003). [External Linkgr-qc/0310007].
12 Arteaga, D., Parentani, R. and Verdaguer, E., “Propagation in a thermal graviton background”, Phys. Rev. D, 70, 044019, (2004). [External LinkDOI], [External Linkgr-qc/0311065].
13 Aspachs, M., Adesso, G. and Fuentes, I., “Optimal Quantum Estimation of the Unruh-Hawking Effect”, Phys. Rev. Lett., 105, 151301, (2010). [External LinkDOI], [External LinkarXiv:1007.0389 [quant-ph]].
14 Babichev, E., Mukhanov, V. and Vikman, A., “Looking beyond the horizon”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany , 23 – 29 July 2006, pp. 1471–1474, (World Scientific, River Edge, NJ; Singapore, 2007). [External LinkDOI], [External LinkarXiv:0704.3301 [hep-th]]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812834300/9789812834300_0171.html.
15 Babichev, E., Mukhanov, V. and Vikman, A., “‘Superluminal’ scalar fields and black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)006.
16 Babichev, E., Mukhanov, V. and Vikman, A., “k-Essence, superluminal propagation, causality and emergent geometry”, J. High Energy Phys., 2008(02), 101, (2008). [External LinkDOI], [External LinkarXiv:0708.0561 [hep-th]].
17 Badulin, S.I., Pokazayev, K.V. and Rozenberg, A.D., “A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows”, Izv. Atmos. Ocean. Phys., 19(10), 782–787, (1983).
18 Balazs, N.L., “Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave”, Phys. Rev., 110, 236–239, (1958). [External LinkDOI].
19 Balbinot, R., Carusotto, I., Fabbri, A. and Recati, A., “Testing Hawking particle creation by black holes through correlation measurements”, Int. J. Mod. Phys. D, 19, 2371–2377, (2010). [External LinkDOI], [External LinkarXiv:1005.4000 [gr-qc]].
20 Balbinot, R., Fabbri, A., Fagnocchi, S. and Nagar, A., “Numerical analysis of backreaction in acoustic black holes”, Nuovo Cimento B, 121, 201–212, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601083].
21 Balbinot, R., Fabbri, A., Fagnocchi, S. and Parentani, R., “Hawking radiation from acoustic black holes, short distance and back-reaction effects”, Riv. Nuovo Cimento, 028(03), 1–55, (2005). [External LinkarXiv:gr-qc/0601079].
22 Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. and Carusotto, I., “Non-local density correlations as signal of Hawking radiation in BEC acoustic black holes”, Phys. Rev. A, 78, 021603, (2008). [External LinkDOI], [External LinkarXiv:0711.4520 [cond-mat.other]].
23 Balbinot, R., Fagnocchi, S. and Fabbri, A., “Quantum effects in acoustic black holes: The backreaction”, Phys. Rev. D, 71, 064019, 1–11, (2004). [External Linkgr-qc/0405098].
24 Balbinot, R., Fagnocchi, S. and Fabbri, A., “The depletion in Bose Einstein condensates using Quantum Field Theory in curved space”, Phys. Rev. A, 75, 043622, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0610367].
25 Balbinot, R., Fagnocchi, S., Fabbri, A. and Procopio, G.P., “Backreaction in Acoustic Black Holes”, Phys. Rev. Lett., 95, 161302, 1–4, (2004). [External Linkgr-qc/0405096].
26 Baldovin, F., Novello, M., Perez Bergliaffa, S.E. and Salim, J.M., “A nongravitational wormhole”, Class. Quantum Grav., 17, 3265–3276, (2000). [External LinkDOI], [External Linkgr-qc/0003075].
27 Barceló, C., “Cosmology as a search for overall equilibrium”, J. Exp. Theor. Phys. Lett., 84, 635–639, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0611090].
28 Barceló, C. and Campos, A., “Braneworld physics from the analog-gravity perspective”, Phys. Lett. B, 563, 217–223, (2003). [External LinkDOI], [External Linkhep-th/0206217].
29 Barceló, C., Cano, A., Garay, L.J. and Jannes, G., “Stability analysis of sonic horizons in Bose-Einstein condensates”, Phys. Rev. D, 74, 024008, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603089].
30 Barceló, C., Cano, A., Garay, L.J. and Jannes, G., “Quasi-normal mode analysis in BEC acoustic black holes”, Phys. Rev. D, 75, 084024, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0701173].
31 Barceló, C., Cano, A., Jannes, G. and Garay, L.J., “Probing effects of modified dispersion relations with Bose–Einstein condensates”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)007.
32 Barceló, C., Finazzi, S. and Liberati, S., “On the impossibility of superluminal travel: the warp drive lesson”, arXiv e-print, (2010). [External LinkarXiv:1001.4960 [gr-qc]].
33 Barceló, C., Garay, L.J. and Jannes, G., “Sensitivity of Hawking radiation to superluminal dispersion relations”, Phys. Rev. D, 79, 024016, (2009). [External LinkDOI], [External LinkarXiv:0807.4147 [gr-qc]].
34 Barceló, C., Garay, L.J. and Jannes, G., “Quantum Non-Gravity”, arXiv e-print, (2010). [External LinkarXiv:1002.4651 [gr-qc]].
35 Barceló, C., Garay, L.J. and Jannes, G., “The two faces of quantum sound”, Phys. Rev. D, 82, 044042, (2010). [External LinkDOI], [External LinkarXiv:1006.0181 [gr-qc]].
36 Barceló, C. and Jannes, G., “A real Lorentz-FitzGerald contraction”, Found. Phys., 38, 191–199, (2008). [External LinkDOI], [External LinkarXiv:0705.4652 [gr-qc]].
37 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Causal structure of analogue spacetimes”, New J. Phys., 6, 186, (2004). [External LinkDOI]. URL (accessed 31 May 2005):
External Linkhttp://stacks.iop.org/NJP/6/186.
38 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Hawking-like radiation does not require a trapped region”, Phys. Rev. Lett., 97, 171301, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0607008].
39 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Quasi-particle creation by analogue black holes”, Class. Quantum Grav., 23, 5341–5366, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0604058].
40 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Fate of gravitational collapse in semiclassical gravity”, Phys. Rev. D, 77, 044032, (2008). [External LinkDOI], [External LinkarXiv:0712.1130 [gr-qc]].
41 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Hawking-like radiation from evolving black holes and compact horizonless objects”, J. High Energy Phys., 2010(02), 003, (2010). [External LinkDOI], [External LinkarXiv:1011.5911 [gr-qc]].
42 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Minimal conditions for the existence of a Hawking-like flux”, Phys. Rev. D, 83, 041501(R), (2010). [External LinkDOI], [External LinkarXiv:1011.5593 [gr-qc]].
43 Barceló, C., Liberati, S. and Visser, M., “Analog gravity from Bose–Einstein condensates”, Class. Quantum Grav., 18, 1137–1156, (2001). [External LinkDOI], [External Linkgr-qc/0011026].
44 Barceló, C., Liberati, S. and Visser, M., “Analog gravity from field theory normal modes?”, Class. Quantum Grav., 18, 3595–3610, (2001). [External LinkDOI], [External Linkgr-qc/0104001].
45 Barceló, C., Liberati, S. and Visser, M., “Refringence, field theory, and normal modes”, Class. Quantum Grav., 19, 2961–2982, (2002). [External Linkgr-qc/0111059].
46 Barceló, C., Liberati, S. and Visser, M., “Analogue models for FRW cosmologies”, Int. J. Mod. Phys. D, 12, 1641–1650, (2003). [External LinkDOI], [External Linkgr-qc/0305061].
47 Barceló, C., Liberati, S. and Visser, M., “Probing semiclassical analogue gravity in Bose–Einstein condensates with widely tunable interactions”, Phys. Rev. A, 68, 053613, (2003). [External LinkDOI], [External Linkcond-mat/0307491].
48 Barceló, C., Liberati, S. and Visser, M., “Towards the Observation of Hawking Radiation in Bose–Einstein Condensates”, Int. J. Mod. Phys. A, 18, 3735–1–11, (2003). [External LinkDOI], [External Linkgr-qc/0110036].
49 Barceló, C., Liberati, S. and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 8, lrr-2005-12, (2005). [External LinkarXiv:gr-qc/0505065]. URL (accessed 13 December 2010):
http://www.livingreviews.org/lrr-2005-12.
50 Barceló, C., Visser, M. and Liberati, S., “Einstein gravity as an emergent phenomenon?”, Int. J. Mod. Phys. D, 10, 799–806, (2001). [External LinkDOI], [External Linkgr-qc/0106002].
51 Bardeen, J.M., Carter, B. and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [External LinkDOI].
52 Barrabès, C., Frolov, V.P. and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). [External LinkDOI], [External Linkgr-qc/9812076].
53 Barrabès, C., Frolov, V.P. and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000). [External LinkDOI], [External Linkgr-qc/0001102].
54 Basak, S., “Sound wave in vortex with sink”, arXiv e-print, (2003). [External Linkgr-qc/0310105].
55 Basak, S., “Analog of Superradiance effect in BEC”, arXiv e-print, (2005). [External Linkgr-qc/0501097].
56 Basak, S. and Majumdar, P., “Reflection coefficient for superresonant scattering”, Class. Quantum Grav., 20, 2929–2936, (2003). [External LinkDOI], [External Linkgr-qc/0303012].
57 Basak, S. and Majumdar, P., “‘Superresonance’ from a rotating acoustic black hole”, Class. Quantum Grav., 20, 3907–3913, (2003). [External LinkDOI], [External Linkgr-qc/0203059].
58 Bassett, B.A., Liberati, S., Molina-París, C. and Visser, M., “Geometrodynamics of variable-speed-of-light cosmologies”, Phys. Rev. D, 62, 103518, 1–18, (2000). [External LinkDOI], [External Linkastro-ph/0001441].
59 Bastero-Gil, M., “What can we learn by probing trans-Planckian physics”, in Khalil, S., Shafi, Q. and Tallat, H., eds., International Conference on High Energy Physics, January 9 – 14, 2001, Cairo, Egypt, pp. 283–288, (Rinton Press, Princeton, NJ, 2001). [External Linkhep-ph/0106133].
60 Becar, R., Gonzalez, P., Pulgar, G. and Saavedra, J., “Hawking radiation via Anomaly and Tunneling method from Unruh’s and Canonical acoustic black hole”, arXiv e-print, (2008). [External LinkarXiv:0808.1735 [gr-qc]].
61 Bekaert, X., Boulanger, N. and Sundell, P., “How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples”, arXiv e-print, (2010). [External LinkarXiv:1007.0435 [hep-th]].
62 Belgiorno, F., “Black Hole Thermodynamics in Carathéodory’s Approach”, Phys. Lett. A, 312, 324–330, (2003). [External LinkDOI], [External Linkgr-qc/0210020].
63 Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Rizzi, L., Gorini, V. and Faccio, D., “Dielectric black holes induced by a refractive index perturbation and the Hawking effect”, Phys. Rev. D, 83, 024015, (2011). [External LinkDOI], [External LinkarXiv:1003.4150 [quant-ph]].
64 Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G. and Faccio, D., “Quantum radiation from superluminal refractive index perturbations”, Phys. Rev. Lett., 104, 140403, (2010). [External LinkDOI], [External LinkarXiv:0910.3508 [quant-ph]].
65 Belgiorno, F., Liberati, S., Visser, M. and Sciama, D.W., “Sonoluminescence: two-photon correlations as a test of thermality”, Phys. Lett. A, 271, 308–313, (2000). [External LinkDOI], [External LinkarXiv:quant-ph/9904018].
66 Belgiorno, F. et al., “Hawking Radiation from Ultrashort Laser Pulse Filaments”, Phys. Rev. Lett., 105, 203901, (2010). [External LinkDOI], [External LinkarXiv:1009.4634 [gr-qc]].
67 Berry, M.V., “Tsunami asymptotics”, New J. Phys., 7, 129, (2005). [External LinkDOI]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/7/i=1/a=129.
68 Berry, M.V., “Focused tsunami waves”, Proc. R. Soc. London, Ser. A, 463, 3055–3071, (2007). [External LinkDOI].
69 Berti, E., Cardoso, V. and Lemos, J.P.S., “Quasinormal modes and classical wave propagation in analogue black holes”, Phys. Rev. D, 70, 124006, (2004). [External LinkDOI], [External Linkgr-qc/0408099].
70 Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001, (2009). [External LinkDOI], [External LinkarXiv:0905.2975 [gr-qc]].
71 Bhattacharyya, G., Mathews, P., Rao, K. and Sridhar, K., “Searching for signals of minimal length in extra dimensional models using dilepton production at hadron colliders”, Phys. Lett. B, 603, 46–50, (2004). [External LinkDOI], [External Linkhep-ph/0408295].
72 Bilic, N., “Relativistic Acoustic Geometry”, Class. Quantum Grav., 16, 3953–3964, (1999). [External LinkDOI], [External Linkgr-qc/9908002].
73 Bini, D., Cherubini, C. and Filippi, S., “Effective geometries in self-gravitating polytropes”, Phys. Rev. D, 78, 064024, (2008). [External LinkDOI].
74 Bini, D., Cherubini, C., Filippi, S. and Geralico, A., “Effective geometry of the n = 1 uniformly rotating self-gravitating polytrope”, Phys. Rev. D, 82, 044005, (2010). [External LinkDOI].
75 Birrell, N.D. and Davis, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1982). [External LinkGoogle Books].
76 Blaauwgeers, R., Eltsov, V.B., Eska, G., Finne, A.P., Haley, R.P., Krusius, M., Skrbek, L. and Volovik, G.E., “AB interface in rotating superfluid 3He: the first example of a superfluid shear-flow instability”, Physica B, 329-333, 57–61, (2003). [External LinkDOI].
77 Blaauwgeers, R. et al., “Shear Flow and Kelvin-Helmholtz Instability in Superfluids”, Phys. Rev. Lett., 89, 155301, (2002). [External LinkDOI], [External LinkarXiv:cond-mat/0111343].
78 Błaut, A., Kowalski-Glikman, J. and Nowak-Szczepaniak, D., “κ-Poincaré dispersion relations and the black hole radiation”, Phys. Lett. B, 521, 364–370, (2001). [External Linkgr-qc/0108069].
79 Bogoliubov, N., “On the theory of superfluidity”, J. Phys. (Moscow), 11, 23, (1947).
80 Bombelli, L. and Sonego, S., “Relationships between various characterizations of wave tails”, J. Phys. A: Math. Gen., 27, 7177–7199, (1994). [External LinkDOI].
81 Boonserm, P., Cattoen, C., Faber, T., Visser, M. and Weinfurtner, S., “Effective refractive index tensor for weak field gravity”, Class. Quantum Grav., 22, 1905–1915, (2005). [External LinkDOI], [External Linkgr-qc/0411034].
82 Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon, Oxford; New York, 1980), 6th edition.
83 Bousso, R. and Polchinski, J., “The string theory landscape”, Sci. Am., 291, 60–69, (2004). [External LinkDOI].
84 Brandenberger, R.H., “Frontiers of inflationary cosmology”, Braz. J. Phys., 31, 131–146, (2001). [External LinkDOI], [External Linkhep-ph/0102183].
85 Brandenberger, R.H., “A Status Review of Inflationary Cosmology”, arXiv e-print, (2001). [External Linkhep-ph/0101119].
86 Brandenberger, R.H., “Trans-Planckian Physics and Inflationary Cosmology”, in He, X.-G. and Ng, K.-W., eds., Cosmology and Particle Astrophysics (CosPA 2002), Proceedings of the 2002 International Symposium, Taipei, Taiwan, 31 May – 2 June 2002, pp. 100–113, (World Scientific, Singapore, River Edge, NJ, 2003). [External LinkDOI], [External Linkhep-th/0210186], [External LinkGoogle Books]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812704900/9789812704900_0008.html.
87 Brandenberger, R.H., “Lectures on the theory of cosmological perturbations”, in Bretón, N., Cervantes-Cota, J. and Salgado, M., eds., The Early Universe and Observational Cosmology, Proceedings of the 5th Mexican School on Gravitation and Mathematical Physics (DGFM 2002), Playa del Carmen, Quintana Roo, Mexico, 24 – 29 November 2002, Lecture Notes in Physics, 646, pp. 127–167, (Springer, Berlin; New York, 2004). [External Linkhep-th/0306071].
88 Brandenberger, R.H., Joras, S.E. and Martin, J., “Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe”, Phys. Rev. D, 66, 083514, 1–9, (2002). [External LinkDOI], [External Linkhep-th/0112122].
89 Brandenberger, R.H. and Martin, J., “The robustness of inflation to changes in super-Planck-scale physics”, Mod. Phys. Lett. A, 16, 999–1006, (2001). [External LinkDOI], [External Linkastro-ph/0005432].
90 Brandenberger, R.H. and Martin, J., “On signatures of short distance physics in the cosmic microwave background”, Int. J. Mod. Phys. A, 17, 3663–3680, (2002). [External LinkDOI], [External Linkhep-th/0202142].
91 Brevik, I. and Halnes, G., “Light rays at optical black holes in moving media”, Phys. Rev. D, 65, 024005, 1–12, (2002). [External Linkgr-qc/0106045].
92 Brillouin, L., Wave propagation and group velocity, (Academic, Woodbury, NY, 1960).
93 Brout, R., Gabriel, C., Lubo, M. and Spindel, P., “Minimal length uncertainty principle and the trans-Planckian problem of black hole physics”, Phys. Rev. D, 59, 044005, 1–6, (1999). [External LinkDOI], [External Linkhep-th/9807063].
94 Brout, R., Massar, S., Parentani, R. and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559–4568, (1995). [External LinkDOI], [External Linkhep-th/9506121].
95 Brout, R., Massar, S., Parentani, R. and Spindel, P., “A Primer for black hole quantum physics”, Phys. Rep., 260, 329–454, (1995). [External LinkDOI], [External LinkarXiv:0710.4345 [gr-qc]].
96 Budker, D., Kimball, D.F., Rochester, S.M. and Yashchuk, V.V., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation”, Phys. Rev. Lett., 83, 1767–1770, (1999). [External LinkDOI].
97 Bunkov, Y.M., “Spin superfluidity and magnons Bose–Einstein condensation”, Phys. Usp., 53, 848–853, (2010). [External LinkDOI], [External LinkarXiv:1003.4889 [cond-mat.other]].
98 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (accessed 31 May 2005):
http://www.livingreviews.org/lrr-2004-5.
99 Burgess, C.P., Cline, J.M., Filotas, E., Matias, J. and Moore, G.D., “Loop-generated bounds on changes to the graviton dispersion relation”, J. High Energy Phys., 2002(03), 043, (2002). [External LinkDOI], [External Linkhep-ph/0201082].
100 Cacciatori, S.L., Belgiorno, F., Gorini, V., Ortenzi, G., Rizzi, L., Sala, V.G. and Faccio, D., “Spacetime geometries and light trapping in travelling refractive index perturbations”, New J. Phys., 12, 095021, (2010). [External LinkDOI], [External LinkarXiv:1006.1097 [physics.optics]]. URL (accessed 25 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095021.
101 Cadoni, M., “Acoustic analogues of two-dimensional black holes”, Class. Quantum Grav., 22, 409–419, (2004). [External Linkgr-qc/0410138].
102 Cadoni, M. and Mignemi, S., “Acoustic analogues of black hole singularities”, Phys. Rev. D, 72, 084012, (2005). [External LinkDOI], [External Linkgr-qc/0504143].
103 Cadoni, M. and Pani, P., “Acoustic horizons for axially and spherically symmetric fluid flow”, Class. Quantum Grav., 23, 2427–2434, (2006). [External LinkDOI], [External LinkarXiv:physics/0510164].
104 Calogeracos, A. and Volovik, G.E., “Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum”, J. Exp. Theor. Phys. Lett., 69, 281–287, (1999). [External LinkDOI], [External Linkcond-mat/9901163].
105 Calzetta, E.A. and Hu, B.L., “BEC Collapse, Particle Production and Squeezing of the Vacuum”, arXiv e-print, (2002). [External Linkcond-mat/0208569].
106 Calzetta, E.A. and Hu, B.L., “Bose–Einstein condensate collapse and dynamical squeezing of vacuum fluctuations”, Phys. Rev. A, 68, 043625, (2003). [External LinkDOI], [External Linkcond-mat/0207289].
107 Calzetta, E.A., Hu, B.L. and Mazzitelli, F.D., “Coarse-grained effective action and renormalization group theory in semiclassical gravity and cosmology”, Phys. Rep., 352, 459–520, (2001). [External LinkDOI], [External Linkhep-th/0102199].
108 Canfora, F. and Vilasi, G., “Back Reaction from Trace Anomaly in RN-blackholes Evaporation”, J. High Energy Phys., 2003(12), 055, (2003). [External LinkDOI], [External Linkgr-qc/0402017].
109 Canfora, F. and Vilasi, G., “Trace anomaly and black holes evaporation”, arXiv e-print, (2003). [External Linkgr-qc/0302036].
110 Caravelli, F. and Markopoulou, F., “Properties of Quantum Graphity at Low Temperature”, arXiv e-print, (2010). [External LinkarXiv:1008.1340 [gr-qc]].
111 Cardoso, V., “Acoustic Black Holes”, in Mourão, A.M., Pimenta, M., Potting, R. and Sá, P.M., eds., New Worlds in Astroparticle Physics, Proceedings of the Fifth International Workshop, Faro, Portugal, 8 – 10 January 2005, pp. 245–251, (World Scientific, River Edge, NJ; Singapore, 2006). [External LinkDOI], [External Linkphysics/0503042]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812774439/9789812774439_0026.html.
112 Cardoso, V., Lemos, J.P.S. and Yoshida, S., “Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis”, Phys. Rev. D, 70, 124032, 1–7, (2004). [External LinkDOI], [External Linkgr-qc/0410107].
113 Carlip, S., “Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885–942, (2001). [External LinkDOI], [External Linkgr-qc/0108040].
114 Carlip, S., “Horizons, constraints, and black hole entropy”, Int. J. Theor. Phys., 46, 2192–2203, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0601041].
115 Carlip, S., “Black Hole Thermodynamics and Statistical Mechanics”, in Papantonopoulos, E., ed., Physics of Black Holes: A Guided Tour, Fourth Aegean School on Black Holes, held in Mytilene, Greece, 17 – 22 September 2007, Lecture Notes in Physics, 769, pp. 89–123, (Springer, Berlin; New York, 2009). [External LinkDOI], [External LinkarXiv:0807.4520 [gr-qc]].
116 Carter, B., “Relativistic superfluid models for rotating neutron stars”, in Blaschke, D., Glendenning, N.K. and Sedrakian, A., eds., Physics of Neutron Star Interiors, Lecture Notes in Physics, 578, p. 54, (Springer, Berlin; New York, 2001). [External Linkastro-ph/0101257], [External LinkGoogle Books].
117 Carter, B. and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars I: Milne-Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–325, (2004). [External LinkDOI], [External Linkastro-ph/0305186].
118 Carusotto, I., Balbinot, R., Fabbri, A. and Recati, A., “Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates”, Eur. Phys. J. D, 56, 391–404, (2010). [External LinkDOI], [External LinkarXiv:0907.2314 [cond-mat.quant-gas]].
119 Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. and Fabbri, A., “Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates”, New J. Phys., 10, 103001, (2008). [External LinkDOI], [External LinkarXiv:0803.0507 [cond-mat.other]]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/10/i=10/a=103001.
120 Casadio, R., “On dispersion relations and the statistical mechanics of Hawking radiation”, Class. Quantum Grav., 19, 2453–2462, (2002). [External LinkDOI], [External Linkhep-th/0111287].
121 Casadio, R., “On brane-world black holes and short scale physics”, Ann. Phys. (N.Y.), 307, 195–208, (2003). [External LinkDOI], [External Linkhep-ph/0304099].
122 Casadio, R. and Mersini, L., “Short distance signatures in cosmology: Why not in black holes?”, Int. J. Mod. Phys. A, 19, 1395–1412, (2004). [External LinkDOI], [External Linkhep-th/0208050].
123 Casalderrey-Solana, J., Shuryak, E.V. and Teaney, D., “Hydrodynamic flow from fast particles”, arXiv e-print, (2006). [External LinkarXiv:hep-ph/0602183].
124 Casher, A., Englert, F., Itzhaki, N., Massar, S. and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). [External LinkDOI], [External Linkhep-th/9606106].
125 Cassidy, M.J. and Hawking, S.W., “Models for chronology selection”, Phys. Rev. D, 57, 2372–2380, (1998). [External LinkDOI], [External Linkhep-th/9709066].
126 Castin, Y. and Dum, R., “Bose–Einstein Condensates in Time Dependent Traps”, Phys. Rev. Lett., 77, 5315–5319, (1996). [External LinkDOI].
127 Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., “The electronic properties of graphene”, Rev. Mod. Phys., 81, 109–162, (2009). [External LinkDOI].
128 Chang, D., Chu, C.-S. and Lin, F.-L., “Transplanckian dispersion relation and entanglement entropy of black hole”, Fortschr. Phys., 52, 477–482, (2004). [External LinkDOI], [External Linkhep-th/0312136].
129 Chang, D., Chu, C.-S. and Lin, F.-L., “Transplanckian entanglement entropy”, Phys. Lett. B, 583, 192–198, (2004). [External LinkDOI], [External Linkhep-th/0306055].
130 Chang-Young, E., Eune, M., Kimm, K. and Lee, D., “Surface gravity and Hawking temperature from entropic force viewpoint”, Mod. Phys. Lett. A, 25, 2825–2830, (2010). [External LinkDOI], [External LinkarXiv:1003.2049 [gr-qc]].
131 Chapline, G., Hohlfeld, E., Laughlin, R.B. and Santiago, D.I., “Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A, 18, 3587–3590, (2003). [External LinkDOI], [External Linkgr-qc/0012094].
132 Chapline, G. and Mazur, P.O., “Superfluid picture for rotating space-times”, arXiv e-print, (2004). [External Linkgr-qc/0407033].
133 Chen, H. and Chan, C.T., “Acoustic cloaking in three dimensions using acoustic metamaterials”, Appl. Phys. Lett., 91, 183518, (2007). [External LinkDOI].
134 Chen, S.-B. and Jing, J.-L., “Quasinormal modes of a coupled scalar field in the acoustic black hole spacetime”, Chinese Phys. Lett., 23, 21–24, (2006). [External LinkDOI].
135 Cherubini, C., Federici, F., Succi, S. and Tosi, M.P., “Excised acoustic black holes: The scattering problem in the time domain”, Phys. Rev. D, 72, 084016, 1–9, (2005). [External LinkDOI], [External Linkgr-qc/0504048].
136 Choy, K., Kruk, T., Carrington, M.E., Fugleberg, T., Zahn, J., Kobes, R., Kunstatter, G. and Pickering, D., “Energy flow in acoustic black holes”, Phys. Rev. D, 73, 104011, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0505163].
137 Christensen, S.M. and Fulling, S.A., “Trace anomalies and the Hawking effect”, Phys. Rev. D, 15, 2088–2104, (1977). [External LinkDOI].
138 Chruściel, P.T., “Black holes”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the internationl workshop, Tübingen, Germany, April 2001, Lecture Notes in Physics, 604, pp. 61–102, (Springer, Berlin; New York, 2002). [External Linkgr-qc/0201053].
139 Chruściel, P.T., Galloway, G.J. and Pollack, D., “Mathematical general relativity: a sampler”, arXiv e-print, (2010). [External LinkarXiv:1004.1016 [gr-qc]].
140 Chu, C.-S., Greene, B.R. and Shiu, G., “Remarks on inflation and noncommutative geometry”, Mod. Phys. Lett. A, 16, 2231–2240, (2001). [External Linkhep-th/0011241].
141 Coleman, S.R. and Glashow, S.L., “High-energy tests of Lorentz invariance”, Phys. Rev. D, 59, 116008, 1–14, (1999). [External LinkDOI], [External Linkhep-ph/9812418].
142 Collins, H. and Martin, M.R., “The enhancement of inflaton loops in an α-vacuum”, Phys. Rev. D, 70, 084021, 1–9, (2004). [External LinkDOI], [External Linkhep-ph/0309265].
143 Comer, G.L., “Superfluid analog of the Davies-Unruh effect”, arXiv e-print, (1992). [External Linkgr-qc/0505005].
144 Consoli, M., “Approximate Lorentz invariance of the vacuum: A physical solution of the ‘hierarchy problem’?”, arXiv e-print, (2003). [External Linkhep-ph/0306070].
145 Corley, S., “Particle creation via high frequency dispersion”, Phys. Rev. D, 55, 6155–6161, (1997). [External LinkDOI].
146 Corley, S.R., The role of short distance physics in the Hawking effect, Ph.D. Thesis, (University of Maryland, College Park, MD, 1997).
147 Corley, S., “Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach”, Phys. Rev. D, 57, 6280–6291, (1998). [External LinkDOI], [External Linkhep-th/9710075].
148 Corley, S. and Jacobson, T.A., “Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568–1586, (1996). [External LinkDOI], [External Linkhep-th/9601073].
149 Corley, S. and Jacobson, T.A., “Lattice black holes”, Phys. Rev. D, 57, 6269–6279, (1998). [External LinkDOI], [External Linkhep-th/9709166].
150 Corley, S. and Jacobson, T.A., “Black hole lasers”, Phys. Rev. D, 59, 124011, 1–12, (1999). [External LinkDOI], [External Linkhep-th/9806203].
151 Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A. and Wieman, C.E., “Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions”, Phys. Rev. Lett., 85, 1795–1798, (2000). [External LinkDOI].
152 Cortijo, A. and Vozmediano, M.A.H., “Effects of topological defects and local curvature on the electronic properties of planar graphene”, Nucl. Phys. B, 763, 293–308, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0612374].
153 Cortijo, A. and Vozmediano, M.A.H., “Electronic properties of curved graphene sheets”, Europhys. Lett., 77, 47002, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0603717].
154 Courant, R. and Hilbert, D., Methods of Mathematical Physics, Wiley Classics Library,  2, (Interscience, New York, 1989).
155 Coutant, A. and Parentani, R., “Black hole lasers, a mode analysis”, Phys. Rev. D, 81, 084042, (2010). [External LinkDOI], [External LinkarXiv:0912.2755 [hep-th]].
156 Crispino, L.C.B., Oliveira, E.S. and Matsas, G.E.A., “Absorption cross section of canonical acoustic holes”, Phys. Rev. D, 76, 107502, (2007). [External LinkDOI].
157 Czerniawski, J., “What is wrong with Schwarzschild’s coordinates?”, arXiv e-print, (2002). [External Linkgr-qc/0201037].
158 Damour, T., “The entropy of black holes: A primer”, in Dalibard, J., Duplantier, B. and Rivasseau, V., eds., Poincaré Seminar 2003: Bose–Einstein Condensation – Entropy, Proceedings of the third and fourth Poincaré Seminars, Progress in Mathematical Physics,  38, (Birkhäuser, Basel; Boston, 2004). [External Linkhep-th/0401160].
159 Das, S., “Black hole thermodynamics: Entropy, information and beyond”, Pramana, 63, 797–816, (2004). [External LinkDOI], [External Linkhep-th/0403202].
160 Das, T.K., “Analogous Hawking Radiation from Astrophysical Black Hole Accretion”, arXiv e-print, (2004). [External Linkastro-ph/0404482].
161 Das, T.K., “Analogue Hawking radiation from astrophysical black hole accretion”, Class. Quantum Grav., 21, 5253–5260, (2004). [External LinkDOI], [External Linkgr-qc/0408081].
162 Das, T.K., “Transonic Black Hole Accretion as Analogue System”, arXiv e-print, (2004). [External Linkgr-qc/0411006].
163 Das, T.K., “Astrophysical Accretion as an Analogue Gravity Phenomena”, arXiv e-print, (2007). [External LinkarXiv:0704.3618 [astro-ph]].
164 Das, T.K., Bilic, N. and Dasgupta, S., “Black-Hole Accretion Disc as an Analogue Gravity Model”, J. Cosmol. Astropart. Phys., 2007(06), 009, (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0604477].
165 Dasgupta, S., Bilic, N. and Das, T.K., “Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue”, Gen. Relativ. Gravit., 37, 1877–1890, (2005). [External LinkDOI], [External LinkarXiv:astro-ph/0501410].
166 Davies, P.C.W., Fulling, S.A. and Unruh, W.G., “Energy momentum tensor near an evaporating black hole”, Phys. Rev. D, 13, 2720–2723, (1976). [External LinkDOI].
167 de A. Marques, G., “Analogue of superradiance effect in acoustic black hole in the presence of disclination”, arXiv e-print, (2007). [External LinkarXiv:0705.3916 [gr-qc]].
168 de Felice, F., “On the gravitational field acting as an optical medium”, Gen. Relativ. Gravit., 2, 347–357, (1971).
169 De Lorenci, V.A. and Klippert, R., “Analogue gravity from electrodynamics in nonlinear media”, Phys. Rev. D, 65, 064027, 1–6, (2002). [External LinkDOI], [External Linkgr-qc/0107008].
170 De Lorenci, V.A., Klippert, R., Novello, M. and Salim, J.M., “Nonlinear electrodynamics and FRW cosmology”, Phys. Rev. D, 65, 063501, 1–5, (2002). [External LinkDOI].
171 De Lorenci, V.A., Klippert, R. and Obukhov, Y.N., “On optical black holes in moving dielectrics”, Phys. Rev. D, 68, 061502, 1–4, (2003). [External LinkDOI], [External Linkgr-qc/0210104].
172 de M Carvalho, A.M., Moraes, F. and Furtado, C., “The self-energy of a charged particle in the presence of a topological defect distribution”, Int. J. Mod. Phys. A, 19, 2113–2122, (2004). [External LinkDOI], [External Linkgr-qc/0401030].
173 Dolan, S.R., Oliveira, E.S. and Crispino, L.C.B., “Scattering of Sound Waves by a Canonical Acoustic Hole”, Phys. Rev. D, 79, 064014, (2009). [External LinkDOI], [External LinkarXiv:0904.0010 [gr-qc]].
174 Dolan, S.R. and Ottewill, A.C., “On an Expansion Method for Black Hole Quasinormal Modes and Regge Poles”, Class. Quantum Grav., 26, 225003, (2009). [External LinkDOI], [External LinkarXiv:0908.0329 [gr-qc]].
175 Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A. and Wieman, C.E., “Dynamics of collapsing and exploding Bose-Einstein condensates”, Nature, 412, 295–299, (2001). [External LinkDOI], [External Linkcond-mat/0105019].
176 Doran, C., “A new form of the Kerr solution”, Phys. Rev. D, 61, 067503, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9910099].
177 Dumin, Y.V., “Topological Defect Density in One-Dimensional Friedmann-Robertson-Walker Cosmological Model: Corrections Inferred from the Multi-Josephson-Junction-Loop Experiment”, arXiv e-print, (2003). [External Linkhep-ph/0308184].
178 Dziarmaga, J., “Analog electromagnetism in a symmetrized 3He-A”, arXiv e-print, (2001). [External Linkgr-qc/0112041].
179 Easther, R., Greene, B.R., Kinney, W.H. and Shiu, G., “Inflation as a probe of short distance physics”, Phys. Rev. D, 64, 103502, 1–8, (2001). [External LinkDOI], [External Linkhep-th/0104102].
180 Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Aether Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., DESERFEST: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World Scientific, River Edge, NJ; Singapore, 2004). [External LinkDOI], [External LinkarXiv:gr-qc/0410001 [gr-qc]]. URL (accessed 15 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812774804/9789812774804_0012.html.
181 Ellis, G.F.R. and Uzan, J.-P., “‘c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240–247, (2005). [External LinkDOI], [External Linkgr-qc/0305099].
182 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Volkov, G., “Gravitational-recoil effects on fermion propagation in space-time foam”, Gen. Relativ. Gravit., 32, 1777–1798, (2000). [External Linkgr-qc/9911055].
183 Eltsov, V.B., Krusius, M. and Volovik, G.E., “Superfluid 3He: A Laboratory model system of quantum field theory”, arXiv e-print, (1998). [External Linkcond-mat/9809125v1].
184 Englert, F., “The Black hole history in tamed vacuum”, arXiv e-print, (1994). [External Linkgr-qc/9408005].
185 Englert, F., Massar, S. and Parentani, R., “Source vacuum fluctuations of black hole radiance”, Class. Quantum Grav., 11, 2919–2938, (1994). [External LinkDOI], [External Linkgr-qc/9404026].
186 Fabbri, A. and Mayoral, C., “Step-like discontinuities in Bose–Einstein condensates and Hawking radiation: the hydrodynamic limit”, arXiv e-print, (2010). [External LinkarXiv:1004.4876 [gr-qc]].
187 Faccio, D., Cacciatori, S., Gorini, V., Sala, V.G., Averchi, A., Lotti, A., Kolesik, M. and Moloney, J.V., “Analogue Gravity and Ultrashort Laser Pulse Filamentation”, Europhys. Lett., 89, 34004, (2010). [External LinkDOI], [External LinkarXiv:0905.4426 [gr-qc]].
188 Fagnocchi, S., “Analog models beyond kinematics”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0611096].
189 Fagnocchi, S., “Back-reaction effects in acoustic black holes”, J. Phys.: Conf. Ser., 33, 445–450, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601084].
190 Fagnocchi, S., “Correlations of Hawking radiation in acoustic black holes”, J. Phys.: Conf. Ser., 222, 012036, (2010). [External LinkDOI].
191 Fagnocchi, S., Finazzi, S., Liberati, S., Kormos, M. and Trombettoni, A., “Relativistic Bose–Einstein condensates: a new system for analogue models of gravity”, New J. Phys., 12, 095012, (2010). [External LinkDOI], [External LinkarXiv:1001.1044 [gr-qc]]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095012.
192 Farhat, M., Guenneau, S. and Enoch, S., “Ultrabroadband Elastic Cloaking in Thin Plates”, Phys. Rev. Lett., 103, 024301, (2009). [External LinkDOI].
193 Federici, F., Cherubini, C., Succi, S. and Tosi, M.P., “Superradiance from BEC vortices: a numerical study”, Phys. Rev. A, 73, 033604, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0503089].
194 Fedichev, P.O. and Fischer, U.R., “Gibbons–Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose–Einstein-Condensed Gas”, Phys. Rev. Lett., 91, 240407, (2003). [External LinkDOI], [External Linkcond-mat/0304342].
195 Fedichev, P.O. and Fischer, U.R., “‘Cosmological’ quasiparticle production in harmonically trapped superfluid gases”, Phys. Rev. A, 69, 033602, (2004). [External Linkcond-mat/0303063].
196 Fedichev, P.O. and Fischer, U.R., “Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate”, Phys. Rev. D, 69, 064021, (2004). [External LinkDOI], [External Linkcond-mat/0307200].
197 Finazzi, S., Liberati, S. and Barceló, C., “Semiclassical instability of dynamical warp drives”, Phys. Rev. D, 79, 124017, (2009). [External LinkDOI], [External LinkarXiv:arXiv:0904.0141 [gr-qc]].
198 Finazzi, S., Liberati, S. and Sindoni, L., “The cosmological constant: a lesson from Bose-Einstein condensates”, arXiv e-print, (2011). [External LinkarXiv:1103.4841 [gr-qc]].
199 Finazzi, S. and Parentani, R., “Black hole lasers in Bose–Einstein condensates”, New J. Phys., 12, 095015, (2010). [External LinkDOI], [External LinkarXiv:1005.4024 [cond-mat.quant-gas]]. URL (accessed 25 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095015.
200 Finazzi, S. and Parentani, R., “Spectral properties of acoustic black hole radiation: broadening the horizon”, arXiv e-print, (2010). [External LinkarXiv:1012.1556 [gr-qc]].
201 Finne, A.P., Eltsov, V.B., Hanninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., “Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157–3230, (2006). [External LinkDOI].
202 Finne, A.P., Eltsov, V.B., Hänninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., “Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157, (2006). [External LinkDOI], [External LinkarXiv:cond-mat/0606619].
203 Fischer, U.R., “Motion of quantized vortices as elementary objects”, Ann. Phys. (N.Y.), 278, 62–85, (1999). [External LinkDOI], [External Linkcond-mat/9907457].
204 Fischer, U.R., “Quasiparticle universes in Bose–Einstein condensates”, Mod. Phys. Lett. A, 19, 1789–1812, (2004). [External LinkDOI], [External Linkcond-mat/0406086].
205 Fischer, U.R., “Dynamical Aspects of Analogue Gravity: The Backreaction of Quantum Fluctuations in Dilute Bose-Einstein Condensates”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718, pp. 93–113, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:cond-mat/0512537].
206 Fischer, U.R. and Schützhold, R., “Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates”, Phys. Rev. A, 70, 063615, (2004). [External LinkDOI], [External Linkcond-mat/0406470].
207 Fischer, U.R. and Visser, M., “Riemannian geometry of irrotational vortex acoustics”, Phys. Rev. Lett., 88, 110201, 1–4, (2002). [External LinkDOI], [External Linkcond-mat/0110211].
208 Fischer, U.R. and Visser, M., “On the space-time curvature experienced by quasiparticle excitations in the Painlevé–Gullstrand effective geometry”, Ann. Phys. (N.Y.), 304, 22–39, (2003). [External LinkDOI], [External Linkcond-mat/0205139].
209 Fischer, U.R. and Visser, M., “Warped space-time for phonons moving in a perfect nonrelativistic fluid”, Europhys. Lett., 62, 1–7, (2003). [External LinkDOI], [External Linkgr-qc/0211029].
210 Fischer, U.R. and Volovik, G.E., “Thermal quasi-equilibrium states across Landau horizons in the effective gravity of superfluids”, Int. J. Mod. Phys. D, 10, 57–88, (2001). [External Linkgr-qc/0003017].
211 Fiurásek, J., Leonhardt, U. and Parentani, R., “Slow-light pulses in moving media”, Phys. Rev. A, 65, 011802, 1–4, (2002). [External Linkquant-ph/0011100].
212 Flato, M., Sternheimer, D. and Fronsdal, C., “Difficulties with massless particles”, Commun. Math. Phys., 90, 563, (1983). [External LinkDOI].
213 Fock, V.A., The Theory of Space, Time, and Gravitation, (Pergamon, New York, 1964), 2nd edition.
214 Fonseca-Barbatti, C., Novello, M., Salim, J.M. and Arcuri, R.C., “Creation of a wormhole due to nonlinear electrodynamics”, Mod. Phys. Lett. A, 17, 1305–1314, (2002). [External LinkDOI].
215 Ford, L.H., “Quantum field theory in curved spacetime”, arXiv e-print, (1997). [External Linkgr-qc/9707062].
216 Ford, L.H. and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226–2235, (1997). [External LinkDOI], [External Linkgr-qc/9704050].
217 Ford, L.H. and Svaiter, N.F., “A Fluid Analog Model for Boundary Effects in Field Theory”, Phys. Rev. D, 80, 065034, (2009). [External LinkDOI], [External LinkarXiv:0903.2694 [quant-ph]].
218 Ford, L.H. and Svaiter, N.F., “Quantum Density Fluctuations in Classical Liquids”, Phys. Rev. Lett., 102, 030602, (2009). [External LinkDOI].
219 Foster, B.Z. and Jacobson, T., “Post-Newtonian parameters and constraints on Einstein-aether theory”, Phys. Rev. D, 73, 064015, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509083 [gr-qc]].
220 Franchini, F. and Kravtsov, V.E., “Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms”, Phys. Rev. Lett., 103, 166401, (2009). [External LinkDOI], [External LinkarXiv:0905.3533 [cond-mat.str-el]].
221 Friedan, D., “A tentative theory of large distance physics”, J. High Energy Phys., 2003(10), 063, (2003). [External LinkDOI], [External Linkhep-th/0204131].
222 Frolov, V.P., “Black Hole Entropy and Physics at Planckian Scales”, in Sánchez, N. and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, September 18 – 19, 1995, NATO ASI Series C, 476, (Kluwer, Dordrecht; Boston, 1996). [External Linkhep-th/9510156].
223 Frolov, V.P. and Larsen, A.L., “Stationary strings and 2-D black holes”, Nucl. Phys. B, 449, 149–158, (1995). [External LinkDOI], [External Linkhep-th/9503060].
224 Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge; New York, 1989). [External LinkGoogle Books].
225 Fursaev, D.V., “Entanglement and gravitational physics”, J. Phys. A: Math. Gen., 39, 6385–6391, (2006). [External LinkDOI].
226 Fursaev, D.V., “Entanglement entropy in critical phenomena and analogue models of quantum gravity”, Phys. Rev. D, 73, 124025, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0602134].
227 Furtado, C., de M Carvalho, A.M., Garcia de Andrade, L.C. and Moraes, F., “Holonomy, Aharonov–Bohm effect and phonon scattering in superfluids”, arXiv e-print, (2004). [External Linkgr-qc/0401025].
228 Furuhashi, H., Nambu, Y. and Saida, H., “Simulation of Acoustic Black Hole in a Laval Nozzle”, Class. Quantum Grav., 23, 5417–5438, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601066].
229 Gambini, R. and Pullin, J., “Nonstandard optics from quantum spacetime”, Phys. Rev. D, 59, 124021, (1999). [External LinkDOI], [External Linkgr-qc/9809038].
230 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166, (1995). [External LinkDOI], [External Linkgr-qc/9403008].
231 Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., “Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates”, Phys. Rev. Lett., 85, 4643–1–5, (2000). [External LinkDOI], [External Linkgr-qc/0002015].
232 Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., “Sonic black holes in dilute Bose–Einstein condensates”, Phys. Rev. A, 63, 023611, 1–13, (2001). [External LinkDOI], [External Linkgr-qc/0005131].
233 Garcia de Andrade, L.C., “Irrotational vortex geometry of torsion loops”, arXiv e-print, (2004). [External Linkgr-qc/0409115].
234 Garcia de Andrade, L.C., “Non-Riemannian acoustic black holes: Hawking radiation and Lorentz symmetry breaking”, arXiv e-print, (2004). [External Linkgr-qc/0411103].
235 Garcia de Andrade, L.C., “Non-Riemannian geometry of turbulent acoustic flows and analog gravity”, arXiv e-print, (2004). [External Linkgr-qc/0410036].
236 Garcia de Andrade, L.C., “Non-Riemannian geometry of vortex acoustics”, Phys. Rev. D, 70, 064004, (2004). [External LinkDOI], [External Linkgr-qc/0405062].
237 Garcia de Andrade, L.C., “Non-Riemannian vortex geometry of rotational viscous fluids and breaking of the acoustic Lorentz invariance”, Phys. Lett. A, 339, 188–193, (2005). [External LinkDOI], [External Linkgr-qc/0409116].
238 Garcia de Andrade, L.C., “On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity”, Phys. Lett. A, 346, 327–329, (2005). [External LinkDOI], [External Linkgr-qc/0502106].
239 Garcia de Andrade, L.C., “Relativistic superfluid hydrodynamics”, arXiv e-print, (2005). [External Linkgr-qc/0503088].
240 Garcia de Andrade, L.C., de M Carvalho, A.M. and Furtado, C., “Geometric phase for fermionic quasiparticles scattering by disgyration in superfluids”, Europhys. Lett., 67, 538–544, (2004). [External Linkgr-qc/0406057].
241 Ge, X.-H. and Kim, S.-W., “Black hole analogues in braneworld scenario”, arXiv e-print, (2007). [External LinkarXiv:0705.1396 [hep-th]].
242 Ge, X.-H. and Kim, S.-W., “Probing extra dimensions with higher dimensional black hole analogues?”, Phys. Lett. B, 652, 349–358, (2007). [External LinkDOI], [External LinkarXiv:0705.1404 [hep-th]].
243 Ge, X.-H. and Shen, Y.-G., “Quantum teleportation with sonic black holes”, Phys. Lett. B, 623, 141–146, (2005). [External LinkDOI], [External LinkarXiv:quant-ph/0507166].
244 Ghafarnejad, H. and Salehi, H., “Hadamard renormalization, conformal anomaly and cosmological event horizons”, Phys. Rev. D, 56, 4633–4639, (1997). [External LinkDOI], [External Linkhep-th/9709158].
245 Gibbons, G.W. and Hawking, S.W., “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15, 2752–2756, (1977). [External LinkDOI].
246 Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M. and Werner, M.C., “Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry”, Phys. Rev. D, 79, 044022, (2009). [External LinkDOI], [External LinkarXiv:0811.2877 [gr-qc]].
247 Giovanazzi, S., “Hawking Radiation in Sonic Black Holes”, Phys. Rev. Lett., 94, 061302, 1–4, (2005). [External LinkDOI], [External Linkphysics/0411064].
248 Giovanazzi, S., “The sonic analogue of black hole radiation”, J. Phys. B: At. Mol. Opt. Phys., 39, S109–S120, (2006). [External LinkDOI], [External LinkarXiv:cond-mat/0604541].
249 Giovanazzi, S., Farrell, C., Kiss, T. and Leonhardt, U., “Conditions for one-dimensional supersonic flow of quantum gases”, Phys. Rev. A, 70, 063602, (2004). [External LinkDOI], [External Linkcond-mat/0405007].
250 Girelli, F., Liberati, S., Percacci, R. and Rahmede, C., “Modified dispersion relations from the renormalization group of gravity”, Class. Quantum Grav., 24, 3995–4008, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0607030].
251 Girelli, F., Liberati, S. and Sindoni, L., “Phenomenology of quantum gravity and Finsler geometry”, Phys. Rev. D, 75, 064015, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0611024].
252 Girelli, F., Liberati, S. and Sindoni, L., “Gravitational dynamics in Bose-Einstein condensates”, Phys. Rev. D, 78, 084013, (2008). [External LinkDOI], [External LinkarXiv:0807.4910 [gr-qc]].
253 Girelli, F., Liberati, S. and Sindoni, L., “Emergence of Lorentzian signature and scalar gravity”, Phys. Rev. D, 79, 044019, (2009). [External LinkDOI].
254 Girelli, F., Liberati, S. and Sindoni, L., “Is the notion of time really fundamental?”, arXiv e-print, (2009). [External LinkarXiv:0903.4876 [gr-qc]].
255 Girelli, F., Liberati, S. and Sindoni, L., “On the emergence of time and gravity”, Phys. Rev. D, 79, 044019, (2009). [External LinkDOI], [External LinkarXiv:0806.4239 [gr-qc]].
256 Giulini, D., “Remarks on the Notions of General Covariance and Background Independence”, in Stamatescu, I.-O. and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, 721, pp. 105–120, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:gr-qc/0603087 [gr-qc]].
257 Glass, E.N. and Krisch, J.P., “Schwarzschild atmospheric processes: A classical path to the quantum”, Gen. Relativ. Gravit., 32, 735–741, (2000). [External LinkDOI], [External Linkgr-qc/9910080].
258 Gordon, W., “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig), 72, 421–456, (1923). [External LinkDOI].
259 Górski, A.Z. and Szmigielski, J., “On Pairs of Difference Operators Satisfying: [D,X]=Id”, J. Math. Phys., 39, 545–568, (1998). [External LinkDOI], [External Linkhep-th/9703015].
260 Goulart de Oliveira Costa, É. and Perez Bergliaffa, S.E., “A classification of the effective metric in nonlinear electrodynamics”, Class. Quantum Grav., 26, 135015, (2009). [External LinkDOI], [External LinkarXiv:0905.3673 [gr-qc]].
261 Griffin, A., Excitations in a Bose-condensed Liquid, Cambridge Studies in Low Temperature Physics,  4, (Cambridge University Press, Cambridge; New York, 1993). [External LinkGoogle Books].
262 Gu, Zheng-Cheng and Wen, Xiao-Gang, “A lattice bosonic model as a quantum theory of gravity”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0606100].
263 Gu, Z.-C. and Wen, X.-G., “Emergence of helicity +2 modes (gravitons) from qubit models”, arXiv e-print, (2009). [External LinkarXiv:0907.1203 [gr-qc]].
264 Gullstrand, A., “Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Ark. Mat. Astron. Fys., 16(8), 1–15, (1922).
265 Hadamard, J., Leçons sur la propagation des ondes et les équations de l’hydrodynamique (Lectures on the propagation of waves and the equations of hydrodynamics), (Hermann, Paris, 1903).
266 Hambli, N. and Burgess, C.P., “Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717–5722, (1996). [External LinkDOI], [External Linkhep-th/9510159].
267 Hamilton, A.J.S. and Lisle, J.P., “The river model of black holes”, Am. J. Phys., 76, 519–532, (2008). [External LinkDOI], [External Linkgr-qc/0411060].
268 Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. and Markström, K., “Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime”, Phys. Rev. D, 81, 104032, (2010). [External LinkDOI], [External LinkarXiv:0911.5075 [gr-qc]].
269 Hassan, S.F. and Sloth, M.S., “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434–458, (2003). [External LinkDOI], [External Linkhep-th/0204110].
270 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974). [External LinkDOI].
271 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [External LinkDOI]. Online version (accessed 23 March 2011):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1103899181.
272 Hawking, S.W., “Chronology protection conjecture”, Phys. Rev. D, 46, 603–611, (1992). [External LinkDOI].
273 Hawking, S.W., “The Chronology Protection Conjecture”, in Sato, H. and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held in Kyoto, Japan, 23 – 29 June 1991, pp. 3–16, (World Scientific, Singapore, 1992).
274 Hawking, S.W., “Chronology Protection: Making the World Safe for Historians”, in Hawking, S.W., Thorne, K.S., Novikov, I., Ferris, T. and Lightman, A., eds., The Future of Spacetime, pp. 87–108, (W.W. Norton, New York; London, 2002).
275 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
276 Hehl, F.W. and Obukhov, Y.N., “To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field”, Found. Phys., submitted, (2004). [External Linkphysics/0404101].
277 Hehl, F.W. and Obukhov, Y.N., “Linear media in classical electrodynamics and the Post constraint”, Phys. Lett. A, 334, 249–259, (2005). [External LinkDOI], [External Linkphysics/0411038].
278 Helfer, A.D., “Trans-Planckian modes, back-reaction, and the Hawking process”, arXiv e-print, (2000). [External Linkgr-qc/0008016].
279 Helfer, A.D., “Do black holes radiate?”, Rep. Prog. Phys., 66, 943–1008, (2003). [External LinkDOI], [External Linkgr-qc/0304042].
280 Helfer, A.D., “State reduction and energy extraction from black holes”, Phys. Lett. A, 329, 277–283, (2004). [External LinkDOI], [External Linkgr-qc/0407055].
281 Henson, J., “The causal set approach to quantum gravity”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0601121].
282 Heyl, J. S., “See a Black Hole on a Shoestring”, Phys. Rev. D, 74, 064029, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0602065].
283 Himemoto, Y. and Tanaka, T., “A generalization of the model of Hawking radiation with modified high frequency dispersion relation”, Phys. Rev. D, 61, 064004, 1–18, (2000). [External LinkDOI], [External Linkgr-qc/9904076].
284 Ho, P.-M., “Regularization of Newton constant, trans-Planckian dispersion relation, and symmetry of particle spectrum”, Class. Quantum Grav., 21, 2641–2650, (2004). [External LinkDOI], [External Linkhep-th/0308103].
285 Hochberg, D., “Evaporating black holes and collapsing bubbles in fluids”, unpublished, (1997).
286 Hochberg, D. and Pérez-Mercader, J., “A Liquid Model Analogue for Black Hole Thermodynamics”, Phys. Rev. D, 55, 4880–4888, (1997). [External LinkDOI], [External Linkgr-qc/9609043].
287 Hořava, P., “Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 79, 084008, (2009). [External LinkDOI], [External LinkarXiv:0901.3775 [hep-th]].
288 Hořava, P., “Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point”, Phys. Rev. Lett., 102, 161301, (2009). [External LinkDOI], [External LinkarXiv:0902.3657 [hep-th]].
289 Hořava, P. and Melby-Thompson, C.M., “General Covariance in Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 82, 064027, (2010). [External LinkarXiv:1007.2410 [hep-th]].
290 Horstmann, B., Reznik, B., Fagnocchi, S. and Cirac, J.I., “Hawking Radiation from an Acoustic Black Hole on an Ion Ring”, Phys. Rev. Lett., 104, 250403, (2010). [External LinkDOI], [External LinkarXiv:0904.4801 [quant-ph]].
291 Horstmann, B., Schützhold, R., Reznik, B., Fagnocchi, S. and Cirac, J.I., “Measurement of Hawking Radiation with Ions in the Quantum Regime”, arXiv e-print, (2010). [External LinkarXiv:1008.3494 [quant-ph]].
292 Horwitz, L.P. and Oron, O., “Classical Gravity as an Eikonal Approximation to a Manifestly Lorentz Covariant Quantum Theory with Brownian Interpretation”, in Reimer, A., ed., Quantum Gravity Research Trends, Horizons in World Physics, 250, (Nova Science, New York, 2005). [External Linkgr-qc/0407076].
293 Hossenfelder, S., “The minimal length and large extra dimensions”, Mod. Phys. Lett. A, 19, 2727–2744, (2004). [External LinkDOI], [External Linkhep-ph/0410122].
294 Hossenfelder, S., “Running coupling with minimal length”, Phys. Rev. D, 70, 105003, (2004). [External LinkDOI], [External Linkhep-ph/0405127].
295 Hossenfelder, S., “Self-consistency in theories with a minimal length”, Class. Quantum Grav., 23, 1815–1821, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0510245].
296 Hu, B.L., “Dynamical finite size effect, inflationary cosmology and thermal particle production”, in Lee, H.C., ed., CAP–NSERC Summer Institute in Theoretical Physics, Edmonton, Alberta, July 10 – 25, 1987, (World Scientific, Singapore; Teaneck, NJ, 1988).
297 Hu, B.L., “Nonequilibrium quantum fields in cosmology: Comments on selected current topics”, in De Vega, H.J. and Sánchez, N., eds., Second Paris Cosmology Colloquium, 2 – 4 June, 1994, Observatoire de Paris, France, p. 111, (World Scientific, Singapore; River Edge, NJ, 1995). [External Linkgr-qc/9409053].
298 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). [External Linkgr-qc/9902064].
299 Hu, B.L., “Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0503067].
300 Hu, B.L., “Emergent/Quantum Gravity: Macro/Micro Structures of Spacetime”, J. Phys.: Conf. Ser., 174, 012015, (2009). [External LinkDOI], [External LinkarXiv:0903.0878 [gr-qc]].
301 Hu, B.L. and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1–R42, (2003). [External LinkDOI], [External Linkgr-qc/0211090].
302 Hu, B.L. and Verdaguer, E., “Stochastic Gravity: Theory and Applications”, Living Rev. Relativity, 7, lrr-2004-3, (2004). URL (accessed 31 May 2005):
http://www.livingreviews.org/lrr-2004-3.
303 Huhtala, P. and Volovik, G.E., “Fermionic Microstates within the Painlevé–Gullstrand Black Hole”, J. Exp. Theor. Phys., 94, 853–861, (2002). [External LinkDOI], [External Linkgr-qc/0111055].
304 Indurain, J. and Liberati, S., “The Theory of a Quantum Noncanonical Field in Curved Spacetimes”, Phys. Rev. D, 80, 045008, (2009). [External LinkDOI], [External LinkarXiv:0905.4568 [hep-th]].
305 Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987).
306 Ito, K. and Ugakkai, N.S., eds., Encyclopedic Dictionary of Mathematics, (MIT, Cambridge, MA, 1987), 2nd edition.
307 Jacobson, T.A., “Black-hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731–1739, (1991). [External LinkDOI].
308 Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728–741, (1993). [External LinkDOI], [External Linkhep-th/9303103].
309 Jacobson, T.A., “Introduction to Black Hole Microscopy”, in Macías, A., Quevedo, H., Obregón, O. and Matos, T., eds., Recent Developments in Gravitation and Mathematical Physics, Proceedings of the First Mexican School on Gravitation and Mathematical Physics, Guanajuato, Mexico, 12 – 16 December 1994, (World Scientific, Singapore; River Edge, NJ, 1996). [External Linkhep-th/9510026].
310 Jacobson, T.A., “On the origin of the outgoing black hole modes”, Phys. Rev. D, 53, 7082–7088, (1996). [External LinkDOI], [External Linkhep-th/9601064].
311 Jacobson, T.A., “Trans-Planckian redshifts and the substance of the space-time river”, Prog. Theor. Phys. Suppl., 136, 1–17, (1999). [External LinkDOI], [External Linkhep-th/0001085].
312 Jacobson, T.A., “Lorentz violation and Hawking radiation”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry, Proceedings of the Second Meeting, Bloomington, USA, 15 – 18 August 2001, pp. 316–320, (World Scientific, Singapore; River Edge, NJ, 2002). [External LinkDOI], [External Linkgr-qc/0110079]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812778123/9789812778123_0039.html.
313 Jacobson, T.A., “Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, 2002 Pan-American Advanced Studies Institute School, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Científicos, pp. 39–90, (Springer, New York, 2005). [External Linkgr-qc/0308048].
314 Jacobson, T., “Einstein-aether gravity: a status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [External LinkarXiv:0801.1547 [gr-qc]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43.
315 Jacobson, T.A. and Kang, G., “Conformal invariance of black hole temperature”, Class. Quantum Grav., 10, L201–L206, (1993). [External LinkDOI], [External Linkgr-qc/9307002].
316 Jacobson, T.A. and Koike, T., “Black hole and baby universe in a thin film of 3He-A”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 87–108, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkcond-mat/0205174], [External LinkGoogle Books].
317 Jacobson, T.A., Liberati, S. and Mattingly, D., “Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale”, Nature, 424, 1019–1021, (2003). [External Linkastro-ph/0212190].
318 Jacobson, T.A., Liberati, S. and Mattingly, D., “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D, 67, 124011, 1–26, (2003). [External LinkDOI], [External Linkhep-ph/0209264].
319 Jacobson, T.A., Liberati, S. and Mattingly, D., “Astrophysical Bounds on Planck Suppressed Lorentz Violation”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics, 669, pp. 101–130, (Springer, Berlin; New York, 2005). [External LinkDOI], [External Linkhep-ph/0407370].
320 Jacobson, T.A., Liberati, S. and Mattingly, D., “Quantum gravity phenomenology and Lorentz violation”, in Trampetić, J. and Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, September 2003, Dubrovnik, Springer Proceedings in Physics,  98, (Springer, Berlin; New York, 2005). [External Linkgr-qc/0404067].
321 Jacobson, T., Liberati, S. and Mattingly, D., “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints”, Ann. Phys. (N.Y.), 321, 150–196, (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0505267].
322 Jacobson, T.A. and Mattingly, D., “Hawking radiation on a falling lattice”, Phys. Rev. D, 61, 024017, 1–10, (2000). [External Linkhep-th/9908099].
323 Jacobson, T. and Mattingly, D., “Einstein-aether waves”, Phys. Rev. D, 70, 024003, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0402005 [gr-qc]].
324 Jacobson, T. and Parentani, R., “Black hole entanglement entropy regularized in a freely falling frame”, Phys. Rev. D, 76, 024006, (2007). [External LinkDOI], [External LinkarXiv:hep-th/0703233].
325 Jacobson, T. and Parentani, R., “Horizon surface gravity as 2d geodesic expansion”, Class. Quantum Grav., 25, 195009, (2008). [External LinkDOI], [External LinkarXiv:0806.1677 [gr-qc]].
326 Jacobson, T.A. and Volovik, G.E., “Effective spacetime and Hawking radiation from moving domain wall in thin film of 3He-A”, J. Exp. Theor. Phys. Lett., 68, 874–880, (1998). [External LinkDOI], [External Linkgr-qc/9811014].
327 Jacobson, T.A. and Volovik, G.E., “Event horizons and ergoregions in 3He”, Phys. Rev. D, 58, 064021, 1–7, (1998). [External LinkDOI].
328 Jain, P., Weinfurtner, S., Visser, M. and Gardiner, C.W., “Analog model of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: Application of the classical field method”, Phys. Rev. A, 76, 033616, (2007). [External LinkDOI], [External LinkarXiv:0705.2077 [cond-mat.other]].
329 Jannes, G., “On the condensed matter scheme for emergent gravity and interferometry”, arXiv e-print, (2008). [External LinkarXiv:0810.0613 [gr-qc]].
330 Jannes, G., “Condensed matter lessons about the origin of time”, arXiv e-print, (2009). [External LinkarXiv:0904.3627 [gr-qc]].
331 Jannes, G., Emergent gravity: the BEC paradigm, Ph.D. Thesis, (Universidad Complutense de Madrid, Madrid, 2009). [External LinkarXiv:0907.2839 [gr-qc]].
332 Jannes, G., “Some comments on ‘The Mathematical Universe”’, Found. Phys., 39, 397–406, (2009). [External LinkDOI], [External LinkarXiv:0904.0867 [gr-qc]].
333 Jannes, G., Barceló, C., Cano, A. and Garay, L.J., “QNM spectrum in (1+1)-dimensional BEC black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)021.
334 Jannes, G., Piquet, R., Maïssa, P., Mathis, C. and Rousseaux, G., “The circular jump is a white hole”, arXiv e-print, (2010). [External LinkarXiv:1010.1701 [physics.flu-dyn]].
335 Jevicki, A. and Thaler, J., “Dynamics of black hole formation in an exactly solvable model”, Phys. Rev. D, 66, 024041, 1–6, (2002). [External LinkDOI], [External Linkhep-th/0203172].
336 Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., “Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54, R1753–R1756, (1996). [External LinkDOI].
337 Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., “Evolution and global collapse of trapped Bose condensates under variations of the scattering length”, Phys. Rev. Lett., 79, 2604–2607, (1997). [External LinkDOI], [External Linkphysics/9705005].
338 Kash, M.M. et al., “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas”, Phys. Rev. Lett., 82, 5229–5232, (1999). [External LinkDOI].
339 Katsnelson, M.I. and Novoselov, K.S., “Graphene: New bridge between condensed matter physics and quantum electrodynamics”, Solid State Commun., 143, 3–13, (2007). [External LinkDOI].
340 Katti, R., Samuel, J. and Sinha, S., “The Universe in a Soap Film”, Class. Quantum Grav., 26, 135018, (2009). [External LinkDOI], [External LinkarXiv:0904.1057 [gr-qc]].
341 Kempf, A., “Mode generating mechanism in inflation with a cutoff”, Phys. Rev. D, 63, 083514, 1–5, (2001). [External LinkDOI], [External Linkastro-ph/0009209].
342 Kempf, A., “A covariant information-density cutoff in curved space-time”, Phys. Rev. Lett., 92, 221301, (2004). [External LinkDOI], [External Linkgr-qc/0310035].
343 Kempf, A. and Niemeyer, J.C., “Perturbation spectrum in inflation with cutoff”, Phys. Rev. D, 64, 103501, 1–6, (2001). [External LinkDOI], [External Linkastro-ph/0103225].
344 Kim, S.-W., Kim, W.T. and Oh, J.J., “Decay rate and low-energy near-horizon dynamics of acoustic black holes”, Phys. Lett. B, 608, 10–16, (2005). [External LinkDOI], [External Linkgr-qc/0409003].
345 Kim, W. and Shin, H., “Anomaly Analysis of Hawking Radiation from Acoustic Black Hole”, J. High Energy Phys., 2007(07), 070, (2007). [External LinkDOI], [External LinkarXiv:0706.3563 [hep-th]].
346 Kim, W., Son, E.J. and Yoon, M., “Thermodynamics of (2+1)-dimensional acoustic black hole based on the generalized uncertainty principle”, arXiv e-print, (2008). [External LinkarXiv:0801.1439 [gr-qc]].
347 Kim, W.T., Son, E.J., Yoon, M.S. and Park, Y.J., “Statistical entropy and superradiance in 2+1 dimensional acoustic black holes”, J. Korean Phys. Soc., 49, 15–20, (2006). [External Linkgr-qc/0504127].
348 Kiss, T. and Leonhardt, U., “Towards a classification of wave catastrophes”, J. Opt. A, 6, S246–S247, (2004). [External LinkDOI], [External Linkphysics/0309036].
349 Klinkhamer, F.R. and Volovik, G.E., “Dynamic vacuum variable and equilibrium approach in cosmology”, Phys. Rev. D, 78, 063528, (2008). [External LinkDOI], [External LinkarXiv:0806.2805 [gr-qc]].
350 Klinkhamer, F.R. and Volovik, G.E., “Self-tuning vacuum variable and cosmological constant”, Phys. Rev. D, 77, 085015, (2008). [External LinkDOI], [External LinkarXiv:0711.3170 [gr-qc]].
351 Klinkhamer, F.R. and Volovik, G.E., “Towards a solution of the cosmological constant problem”, J. Exp. Theor. Phys. Lett., 91, 259–265, (2010). [External LinkDOI], [External LinkarXiv:0907.4887 [hep-th]].
352 Kobes, R., “Superresonance effect and energy flow in acoustic black holes”, Can. J. Phys., 84, 501–506, (2006). [External LinkDOI].
353 Kocharovskaya, O., Rostovtsev, Y. and Scully, M.O., “Stopping Light via Hot Atoms”, Phys. Rev. Lett., 86, 628–631, (2001). [External LinkDOI].
354 Kokkotas, K.D. and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (accessed 31 May 2005):
http://www.livingreviews.org/lrr-1999-2.
355 Kolekar, S. and Padmanabhan, T., “Holography in Action”, Phys. Rev. D, 82, 024036, (2010). [External LinkDOI], [External LinkarXiv:1005.0619 [gr-qc]].
356 Konopka, T., “Statistical Mechanics of Graphity Models”, Phys. Rev. D, 78, 044032, (2008). [External LinkDOI], [External LinkarXiv:0805.2283 [hep-th]].
357 Konopka, T. and Markopoulou, F., “Constrained mechanics and noiseless subsystems”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0601028].
358 Konopka, T., Markopoulou, F. and Severini, S., “Quantum Graphity: a model of emergent locality”, Phys. Rev. D, 77, 104029, (2008). [External LinkDOI], [External LinkarXiv:0801.0861 [hep-th]].
359 Kopnin, N.B. and Volovik, G.E., “Critical velocity and event horizon in pair-correlated systems with relativistic fermionic quasiparticles”, J. Exp. Theor. Phys. Lett., 67, 528–532, (1998). [External LinkDOI], [External Linkcond-mat/9712187].
360 Kostelecký, V.A. and Samuel, S., “Spontaneous breaking of Lorentz symmetry in string theory”, Phys. Rev. D, 39, 683–685, (1989). [External LinkDOI].
361 Kowalski-Glikman, J., “Testing dispersion relations of quantum kappa-Poincare algebra on cosmological ground”, Phys. Lett. B, 499, 1–8, (2001). [External LinkDOI], [External Linkastro-ph/0006250].
362 Kowalski-Glikman, J., “De Sitter space as an arena for doubly special relativity”, Phys. Lett. B, 547, 291–296, (2002). [External LinkDOI], [External Linkhep-th/0207279].
363 Kowalski-Glikman, J., “Doubly special relativity: A kinematics of quantum gravity?”, in Semikhatov, A.M., Vasiliev, M.V. and Zaikin, V., eds., 3rd International Sakharov Conference on Physics, Proceedings of the conference, Moscow, Russia, June 24 – 29, 2002, (Scientific World, Moscow, 2002). [External Linkhep-th/0209264].
364 Kraus, P. and Wilczek, F., “A Simple Stationary Line Element for the Schwarzschild Geometry, and Some Applications”, arXiv e-print, (June 1994). [External Linkgr-qc/9406042].
365 Krein, G., Menezes, G. and Svaiter, N.F., “Analog model for quantum gravity effects: phonons in random fluids”, Phys. Rev. Lett., 105, 131301, (2010). [External LinkDOI], [External LinkarXiv:1006.3350 [hep-th]].
366 Kugo, T., “Limitations on the existence of massless composite states”, Phys. Lett. B, 109, 205–208, (1982). [External LinkDOI].
367 Kurita, Y., Kobayashi, M., Ishihara, H. and Tsubota, M., “Particle creation in Bose–Einstein condensates: Theoretical formulation based on conserving gapless mean-field theory”, Phys. Rev. A, 82, 053602, (2010). [External LinkDOI], [External LinkarXiv:1007.0073 [cond-mat.quant-gas]].
368 Kurita, Y., Kobayashi, M., Morinari, T., Tsubota, M. and Ishihara, H., “Spacetime analogue of Bose-Einstein condensates: Bogoliubov-de Gennes formulation”, arXiv e-print, (2008). [External LinkarXiv:0810.3088 [cond-mat.other]].
369 Lahav, O., Itah, A., Blumkin, A., Gordon, C. and Steinhauer, J., “Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate”, Phys. Rev. Lett., 105, 240401, (2010). [External LinkDOI], [External LinkarXiv:0906.1337].
370 Lamb, H., Hydrodynamics, (Dover, Mineola, NY, 1932), 6th edition. Reissue of 1932 ed., first edition publ. 1879.
371 Lämmerzahl, C. and Hehl, F.W., “Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics”, Phys. Rev. D, 70, 105022, 1–10, (2004). [External LinkDOI], [External Linkgr-qc/0409072].
372 Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Course of Theoretical Physics,  6, (Pergamon; Addison-Wesley, London; Reading, MA, 1959).
373 Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford; New York, 1971), 3rd edition.
374 Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics,  9, (Pergamon Press, Oxford; New York, 1980).
375 Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Electrodynamics of continuous media, Course of Theoretical Physics,  8, (Pergamon Press, Oxford; New York, 1984), 2nd edition.
376 Larsen, A.L., “Cosmic strings and black holes”, arXiv e-print, (1996). [External Linkhep-th/9610063].
377 Laschkarew, W., “Zur Theorie der Gravitation”, Z. Phys., 35, 473–476, (1926). [External LinkDOI].
378 Laughlin, R.B., “Emergent relativity”, Int. J. Mod. Phys. A, 18, 831–854, (2003). [External LinkDOI], [External Linkgr-qc/0302028].
379 Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933).
380 Lemoine, M., Lubo, M., Martin, J. and Uzan, J.-P., “Stress-energy tensor for trans-Planckian cosmology”, Phys. Rev. D, 65, 023510, 1–14, (2002). [External Linkhep-th/0109128].
381 Lemoine, M., Martin, J. and Uzan, J.-P., “Trans-Planckian dark energy?”, Phys. Rev. D, 67, 103520, 1–13, (2003). [External LinkDOI], [External Linkhep-th/0212027].
382 Leonhardt, U., “Space-time geometry of quantum dielectrics”, Phys. Rev. A, 62, 012111, 1–8, (2000). [External LinkDOI], [External Linkphysics/0001064].
383 Leonhardt, U., “Slow Light”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 61–85, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkgr-qc/0108085], [External LinkGoogle Books].
384 Leonhardt, U., “Quantum physics of simple optical instruments”, Rep. Prog. Phys., 66, 1207–1250, (2003). [External LinkDOI], [External Linkquant-ph/0305007].
385 Leonhardt, U., “Optical Conformal Mapping”, Science, 312(5781), 1777–1780, (2006). [External LinkDOI].
386 Leonhardt, U., Kiss, T. and Öhberg, P., “Intrinsic instability of sonic white holes”, arXiv e-print, (2002). [External Linkgr-qc/0211069].
387 Leonhardt, U. and Philbin, T.G., “Transformation Optics and the Geometry of Light”, Prog. Optics, 53, 69–152, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.4778].
388 Leonhardt, U. and Philbin, T.G., “Black Hole Lasers Revisited”, in Schützhold, R. and Unruh, B., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718, pp. 229–246, (Springer, Berlin; New York, 2010). [External LinkarXiv:0803.0669 [gr-qc]].
389 Leonhardt, U. and Piwnicki, P., “Optics of nonuniformly moving media”, Phys. Rev. A, 60, 4301–4312, (1999). [External LinkDOI].
390 Leonhardt, U. and Piwnicki, P., “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity”, Phys. Rev. Lett., 84, 822–825, (2000). [External LinkDOI], [External Linkcond-mat/9906332].
391 Leonhardt, U. and Piwnicki, P., “Reply to the comment on ‘Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity’ by M. Visser”, Phys. Rev. Lett., 85, 5253, (2000). [External LinkDOI], [External Linkgr-qc/0003016].
392 Lepe, S. and Saavedra, J., “Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes”, Phys. Lett. B, 617, 174–181, (2005). [External LinkDOI], [External Linkgr-qc/0410074].
393 Liberati, S., Quantum vacuum effects in gravitational fields: Theory and detectability, Ph.D. Thesis, (International School for Advanced Studies, Trieste, 2000). [External Linkgr-qc/0009050].
394 Liberati, S., “Quantum gravity phenomenology via Lorentz violations”, in Bonora, L., Iengo, R., Klabucar, D., Pallua, S. and Picek, I., eds., School on Particle Physics, Gravity and Cosmology, 21 August – 2 September 2006, Dubrovnik, Croatia, Proceedings of Science, P2GC, (SISSA, Trieste, 2007). [External LinkarXiv:0706.0142 [gr-qc]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(P2GC)018.
395 Liberati, S., Girelli, F. and Sindoni, L., “Analogue Models for Emergent Gravity”, arXiv e-print, (2009). [External LinkarXiv:0909.3834 [gr-qc]].
396 Liberati, S. and Maccione, L., “Lorentz Violation: Motivation and new constraints”, Annu. Rev. Nucl. Part. Sci., 59, 245–267, (2009). [External LinkDOI], [External LinkarXiv:0906.0681 [astro-ph.HE]].
397 Liberati, S., Sindoni, L. and Sonego, S., “Linking the trans-Planckian and the information loss problems in black hole physics”, Gen. Relativ. Gravit., 42, 1139–1152, (2009). [External LinkDOI], [External LinkarXiv:0904.0815 [gr-qc]].
398 Liberati, S., Sonego, S. and Visser, M., “Unexpectedly large surface gravities for acoustic horizons?”, Class. Quantum Grav., 17, 2903–2923, (2000). [External LinkDOI], [External Linkgr-qc/0003105].
399 Liberati, S., Sonego, S. and Visser, M., “Scharnhorst effect at oblique incidence”, Phys. Rev. D, 63, 085003, 1–10, (2001). [External LinkDOI], [External Linkquant-ph/0010055].
400 Liberati, S., Sonego, S. and Visser, M., “Faster-than-c signals, special relativity, and causality”, Ann. Phys. (N.Y.), 298, 167–185, (2002). [External LinkDOI], [External Linkgr-qc/0107091].
401 Liberati, S., Visser, M. and Weinfurtner, S., “Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate”, Class. Quantum Grav., 23, 3129–3154, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0510125].
402 Liberati, S., Visser, M. and Weinfurtner, S., “Naturalness in emergent spacetime”, Phys. Rev. Lett., 96, 151301, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0512139].
403 Lidsey, J.E., “Cosmic dynamics of Bose–Einstein condensates”, Class. Quantum Grav., 21, 777–786, (2004). [External LinkDOI], [External Linkgr-qc/0307037].
404 Loebbert, F., “The Weinberg-Witten theorem on massless particles: An Essay”, Ann. Phys. (Berlin), 17, 803–829, (2008). [External LinkDOI].
405 Lubo, M., “Quantum minimal length and trans-Planckian photons”, Phys. Rev. D, 61, 124009, 1–1, (2000). [External LinkDOI], [External Linkhep-th/9911191].
406 Lubo, M., “Ultraviolet cut off, black hole-radiation equilibrium and big bang”, Phys. Rev. D, 68, 125005, (2003). [External LinkDOI], [External Linkhep-th/0306187].
407 Lubo, M., “Ultraviolet cutoff and bosonic dominance”, Phys. Rev. D, 68, 125004, 1–9, (2003). [External LinkDOI], [External Linkhep-th/0305216].
408 Maccione, L. and Liberati, S., “GZK photon constraints on Planck scale Lorentz violation in QED”, J. Cosmol. Astropart. Phys., 2008(08), 027, (2008). [External LinkDOI], [External LinkarXiv:0805.2548 [astro-ph]].
409 Maccione, L., Liberati, S., Celotti, A. and Kirk, J.G., “New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula”, J. Cosmol. Astropart. Phys., 2007(10), 013, (2007). [External LinkDOI], [External LinkarXiv:0707.2673 [astro-ph]].
410 Maccione, L., Liberati, S., Celotti, A., Kirk, J.G. and Ubertini, P., “Gamma-ray polarization constraints on Planck scale violations of special relativity”, Phys. Rev. D, 78, 103003, (2008). [External LinkDOI], [External LinkarXiv:0809.0220 [astro-ph]].
411 Maccione, L., Taylor, A.M., Mattingly, D.M. and Liberati, S., “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays”, J. Cosmol. Astropart. Phys., 2009(04), 022, (2009). [External LinkDOI], [External LinkarXiv:0902.1756 [astro-ph.HE]].
412 Macher, J. and Parentani, R., “Black-hole radiation in Bose-Einstein condensates”, Phys. Rev. A, 80, 043601, (2009). [External LinkDOI], [External LinkarXiv:0905.3634 [cond-mat.quant-gas]].
413 Macher, J. and Parentani, R., “Black/White hole radiation from dispersive theories”, Phys. Rev. D, 79, 124008, (2009). [External LinkDOI], [External LinkarXiv:0903.2224 [hep-th]].
414 Maia, C. and Schützhold, R., “Quantum toy model for black-hole back-reaction”, Phys. Rev. D, 76, 101502, (2007). [External LinkDOI], [External LinkarXiv:0706.4010 [gr-qc]].
415 Mannarelli, M. and Manuel, C., “Transport theory for cold relativistic superfluids from an analogue model of gravity”, Phys. Rev. D, 77, 103014, (2008). [External LinkDOI], [External LinkarXiv:0802.0321 [hep-ph]].
416 Mannarelli, M. and Manuel, C., “Dissipative superfluids, from cold atoms to quark matter”, Acta Phys. Pol. B (Proc. Suppl.), 3, 621, (2010). [External LinkarXiv:0910.4326 [hep-ph]].
417 Mannarelli, M., Manuel, C. and Sa’d, Basil A., “Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars”, Phys. Rev. Lett., 101, 241101, (2008). [External LinkDOI], [External LinkarXiv:0807.3264 [hep-ph]].
418 Manuel, C., “Hydrodynamics of the CFL superfluid”, in 8th Conference Quark Confinement and the Hadron Spectrum, Proceedings of Science, (SISSA, Trieste, 2008). [External LinkarXiv:0811.4512 [hep-ph]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(Confinement8)140.
419 Manuel, C. and Llanes-Estrada, F.J., “Bulk viscosity in a cold CFL superfluid”, J. Cosmol. Astropart. Phys., 2007(08), 001, (2007). [External LinkDOI], [External LinkarXiv:0705.3909 [hep-ph]].
420 Marino, F., “Acoustic black holes in a two-dimensional ‘photon-fluid”’, Phys. Rev. A, 78, 063804, (2008). [External LinkDOI], [External LinkarXiv:0808.1624 [gr-qc]].
421 Markopoulou, F., “Towards gravity from the quantum”, arXiv e-print, (2006). [External LinkarXiv:hep-th/0604120].
422 Martin, J., “Inflationary cosmological perturbations of quantum-mechanical origin”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, 40th Karpacz Winter School of Theoretical Physics, Ladek Zdrój, Poland, 4 – 14 February 2004, Lecture Notes in Physics, 669, (Springer, Berlin; New York, 2004). [External Linkhep-th/0406011].
423 Martin, J. and Brandenberger, R.H., “A Cosmological Window on Trans-Planckian Physics”, arXiv e-print, (2001). [External Linkastro-ph/0012031].
424 Martin, J. and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501, 1–16, (2001). [External LinkDOI], [External Linkhep-th/0005209].
425 Martin, J. and Brandenberger, R.H., “Corley–Jacobson dispersion relation and trans-Planckian inflation”, Phys. Rev. D, 65, 103514, 1–5, (2002). [External LinkDOI], [External Linkhep-th/0201189].
426 Martin, J. and Brandenberger, R.H., “Dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics”, Phys. Rev. D, 68, 063513, 1–16, (2003). [External LinkDOI], [External Linkhep-th/0305161].
427 Martín-Martínez, E., Garay, L.J. and León, J., “Quantum entanglement produced in the formation of a black hole”, Phys. Rev. D, 82, 064028, (2010). [External LinkarXiv:1007.2858 [quant-ph]].
428 Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857–5864, (1995). [External LinkDOI], [External Linkgr-qc/9411039].
429 Massar, S. and Parentani, R., “From vacuum fluctuations to radiation: Accelerated detectors and black holes”, Phys. Rev. D, 54, 7426–7443, (1996). [External Linkgr-qc/9502024].
430 Massar, S. and Parentani, R., “From vacuum fluctuations to radiation. II. Black holes”, Phys. Rev. D, 54, 7444–7458, (1996). [External LinkDOI], [External Linkgr-qc/9502024].
431 Massar, S. and Parentani, R., “How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333–356, (2000). [External LinkDOI], [External Linkgr-qc/9903027].
432 Matarrese, S., “On the classical and quantum irrotational motions of a relativistic perfect fluid: I. Classical Theory”, Proc. R. Soc. London, Ser. A, 401, 53–66, (1985).
433 Matarrese, S., “Perturbations of an irrotational perfect fluid”, in Fabbri, R. and Modugno, M., eds., Atti del VI Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Proceedings of the 4th Italian Conference on General Relativity and the Physics of Gravitation, Florence, Italy, 10 – 13 October 1984, pp. 283–287, (Pitagora Editrice, Bologna, 1986).
434 Matarrese, S., “Phonons in a relativistic perfect fluid”, in Ruffini, R, ed., The Fourth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at the University of Rome ‘La Sapienza’, 17 – 21 June, 1985, pp. 1591–1595, (North-Holland; Elsevier, Amsterdam; New York, 1986).
435 Mattingly, D., “Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5, (2005). URL (accessed 31 May 2005):
http://www.livingreviews.org/lrr-2005-5.
436 Mattingly, D., “Causal sets and conservation laws in tests of Lorentz symmetry”, Phys. Rev. D, 77, 125021, (2008). [External LinkDOI], [External LinkarXiv:0709.0539 [gr-qc]].
437 Mattingly, D.M., Maccione, L., Galaverni, M., Liberati, S. and Sigl, G., “Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation”, J. Cosmol. Astropart. Phys., 2010(02), 007, (2010). [External LinkDOI], [External LinkarXiv:0911.0521 [hep-ph]].
438 Mayoral, C., Fabbri, A. and Rinaldi, M., “Step-like discontinuities in Bose-Einstein condensates and Hawking radiation: dispersion effects”, arXiv e-print, (2010). [External LinkarXiv:1008.2125 [gr-qc]].
439 McCall, M.W., Favaro, A., Kinsler, P. and Boardman, A., “A spacetime cloak, or a history editor”, J. Opt., 13, 024003, (2011). [External LinkDOI].
440 Mersini, L., “Dark energy from the trans-Planckian regime”, in Khalil, S., Shafi, Q. and Tallat, H., eds., International Conference on High Energy Physics, January 9 – 14, 2001, Cairo, Egypt, pp. 289–294, (Rinton Press, Princeton, NJ, 2001). [External Linkhep-ph/0106134].
441 Mersini, L., Bastero-Gil, M. and Kanti, P., “Relic dark energy from trans-Planckian regime”, Phys. Rev. D, 64, 043508, 1–9, (2001). [External LinkDOI], [External Linkhep-ph/0101210].
442 Milgrom, M., “Massive particles in acoustic space-times emergent inertia and passive gravity”, Phys. Rev. D, 73, 084005, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601034].
443 Milne-Thomson, L.M., Theoretical Hydrodynamics, (Macmillan, London, New York, 1968), 5th edition.
444 Minic, D. and Heremans, J.J., “High Temperature Superconductivity and Effective Gravity”, Phys. Rev. B, 78, 214501, (2008). [External LinkDOI], [External LinkarXiv:0804.2880 [hep-th]].
445 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
446 Møller, C., The Theory of Relativity, (Clarendon, Oxford, 1972), 2nd edition.
447 Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [External LinkDOI], [External LinkADS].
448 Moncrief, V., “Stability of stationary, spherical accretion onto a Schwarzschild black hole”, Astrophys. J., 235, 1038–1046, (1980). [External LinkDOI], [External LinkADS].
449 Nachman, A.I., “Reconstructions from boundary measurements”, Ann. Math., 128, 531–576, (1988). [External LinkDOI].
450 Naddeo, A. and Scelza, G., “Wave equation of the scalar field and superfluids”, Mod. Phys. Lett. A, 24, 3249–3256, (2009). [External LinkDOI], [External LinkarXiv:0910.0794 [cond-mat.other]].
451 Naddeo, A. and Scelza, G., “A note on the analogy between superfluids and cosmology”, Mod. Phys. Lett. B, 24, 513–520, (2010). [External LinkDOI], [External LinkarXiv:0910.0790 [cond-mat.other]].
452 Nakano, H., Kurita, Y., Ogawa, K. and Yoo, C.-M., “Quasinormal ringing for acoustic black holes at low temperature”, Phys. Rev. D, 71, 084006, 1–7, (2005). [External LinkDOI], [External Linkgr-qc/0411041].
453 Nandi, K.K. and Xu, D.H., “Unruh model for the Einstein–Rosen charge: Squealing wormholes?”, arXiv e-print, (2004). [External Linkgr-qc/0410052].
454 Nandi, K.K., Zhang, Y.-Z., Alsing, P.M., Evans, J.C. and Bhadra, A., “Analogue of the Fizeau effect in an effective optical medium”, Phys. Rev. D, 67, 025002, 1–11, (2003). [External LinkDOI], [External Linkgr-qc/0208035].
455 Nandi, K.K., Zhang, Y.-Z. and Cai, R.-G., “Acoustic Wormholes”, arXiv e-print, (2004). [External Linkgr-qc/0409085].
456 Nielsen, A.B. and Visser, M., “Production and decay of evolving horizons”, Class. Quantum Grav., 23, 4637–4658, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0510083].
457 Niemeyer, J.C., “Inflation with a Planck-scale frequency cutoff”, Phys. Rev. D, 63, 123502, 1–7, (2001). [External LinkDOI], [External Linkastro-ph/0005533].
458 Niemeyer, J.C., “Cosmological consequences of short distance physics”, arXiv e-print, (2002). [External Linkastro-ph/0201511].
459 Niemeyer, J.C. and Parentani, R., “Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301, 1–4, (2001). [External LinkDOI], [External Linkastro-ph/0101451].
460 Niemeyer, J.C., Parentani, R. and Campo, D., “Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff”, Phys. Rev. D, 66, 083510, (2002). [External LinkDOI], [External LinkarXiv:hep-th/0206149].
461 Nikolić, H., “Time in quantum gravity by weakening the Hamiltonian constraint”, arXiv e-print, (2003). [External Linkgr-qc/0312063].
462 Nikolić, H., “Black holes radiate but do not evaporate”, Int. J. Mod. Phys. D, 14, 2257–2261, (2005). [External LinkDOI], [External Linkhep-th/0402145].
463 Nikolić, H., “Would Bohr be born if Bohm were born before Born?”, Am. J. Phys., 76, 143–146, (2008). [External LinkDOI], [External LinkarXiv:physics/0702069].
464 Novello, M., “Effective geometry in nonlinear electrodynamics”, Int. J. Mod. Phys. A, 17, 4187–4196, (2002). [External LinkDOI].
465 Novello, M., De Lorenci, V.A., Salim, J.M. and Klippert, R., “Geometrical aspects of light propagation in nonlinear electrodynamics”, Phys. Rev. D, 61, 045001, 1–10, (2000). [External LinkDOI], [External Linkgr-qc/9911085].
466 Novello, M. and Perez Bergliaffa, S.E., “Effective Geometry”, in Novello, M. and Perez Bergliaffa, S.E., eds., Cosmology and Gravitation, Xth Brazilian School of Cosmology and Gravitation, 25th Anniversary (1977–2002), Mangaratiba, Rio de Janeiro, Brazil, 29 July – 9 August 2002, AIP Conference Proceedings, 668, pp. 288–300, (American Institute of Physics, Melville, NY, 2003). [External Linkgr-qc/0302052].
467 Novello, M., Perez Bergliaffa, S.E. and Salim, J.M., “Nonlinear electrodynamics and the acceleration of the Universe”, Phys. Rev. D, 69, 127301, 1–4, (2004). [External LinkDOI], [External Linkastro-ph/0312093].
468 Novello, M., Perez Bergliaffa, S.E., Salim, J.M., De Lorenci, V.A. and Klippert, R., “Analog black holes in flowing dielectrics”, Class. Quantum Grav., 20, 859–871, (2003). [External LinkDOI], [External Linkgr-qc/0201061].
469 Novello, M. and Salim, J.M., “Effective electromagnetic geometry”, Phys. Rev. D, 63, 083511, 1–4, (2001). [External LinkDOI].
470 Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, (World Scientific, Singapore; River Edge, NJ, 2002).
471 Obadia, N. and Parentani, R., “Notes on moving mirrors”, Phys. Rev. D, 64, 044019, 1–17, (2001). [External LinkDOI], [External Linkgr-qc/0103061].
472 Obadia, N. and Parentani, R., “Uniformly accelerated mirrors. II: Quantum correlations”, Phys. Rev. D, 67, 024022, 1–18, (2003). [External LinkDOI], [External Linkgr-qc/0209057].
473 Obukhov, Y.N., “Black hole hydrodynamics”, arXiv e-print, (2003). [External Linkgr-qc/0309114].
474 Obukhov, Y.N. and Hehl, F.W., “Spacetime metric from linear electrodynamics”, Phys. Lett. B, 458, 466–470, (1999). [External LinkDOI], [External Linkgr-qc/9904067].
475 Okninski, A., “Towards a self-consistent model of analogue gravity”, arXiv e-print, (2005). [External LinkarXiv:gr-qc/0509045].
476 Okuzumi, S. and Sakagami, Masa-aki, “Quasinormal ringing of acoustic black holes in Laval nozzles: Numerical simulations”, Phys. Rev. D, 76, 084027, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703070].
477 Oliveira, E.S., Dolan, S.R. and Crispino, L.C.B., “Absorption of planar waves in a draining bathtub”, Phys. Rev. D, 81, 124013, (2010). [External LinkDOI].
478 Oppenheim, J., “Thermodynamics with long-range interactions: From Ising models to black holes”, Phys. Rev. E, 68, 016108, 1–17, (2003). [External LinkDOI], [External Linkgr-qc/0212066].
479 Oron, O. and Horwitz, L.P., “Eikonal approximation to 5D wave equations as geodesic motion in a curved 4D spacetime”, Gen. Relativ. Gravit., 37, 491–506, (2005). [External LinkDOI], [External Linkhep-ph/0205018].
480 Padmanabhan, T., “Gravity and the thermodynamics of horizons”, Phys. Rep., 406, 49–125, (2003). [External Linkgr-qc/0311036].
481 Padmanabhan, T., “Entropy of Horizons, Complex Paths and Quantum Tunneling”, Mod. Phys. Lett. A, 19, 2637–2643, (2004). [External LinkDOI], [External Linkgr-qc/0405072].
482 Padmanabhan, T., “Surface Density of Spacetime Degrees of Freedom from Equipartition Law in theories of Gravity”, Phys. Rev. D, 81, 124040, (2010). [External LinkDOI], [External LinkarXiv:1003.5665 [gr-qc]].
483 Padmanabhan, T., “Thermodynamical Aspects of Gravity: New insights”, Rep. Prog. Phys., 73, 046901, (2010). [External LinkDOI], [External LinkarXiv:0911.5004 [gr-qc]].
484 Painlevé, P., “La mécanique classique et la theorie de la relativité”, C. R. Acad. Sci., 173, 677–680, (1921).
485 Parentani, R., “The Recoils of the accelerated detector and the decoherence of its fluxes”, Nucl. Phys. B, 454, 227–249, (1995). [External LinkDOI], [External Linkgr-qc/9502030].
486 Parentani, R., “The Recoils of a Dynamical Mirror and the Decoherence of its Fluxes”, Nucl. Phys. B, 465, 175–214, (1996). [External LinkDOI], [External Linkhep-th/9509104].
487 Parentani, R., “Time dependent perturbation theory in quantum cosmology”, Nucl. Phys. B, 492, 501–525, (1997). [External Linkgr-qc/9610045].
488 Parentani, R., “The validity of the background field approximation”, in Burko, L.M. and Ori, A., eds., Internal Structure of Black Holes and Space Time Singularities, June 29 – July 3, 1997, Haifa, Israel, Annals of the Israel Physical Society,  13, (Institute of Physics Publishing, Bristol; Philadelphia, 1997). [External Linkgr-qc/9710059].
489 Parentani, R., “Hawking radiation from Feynman diagrams”, Phys. Rev. D, 61, 027501, 1–4, (2000). [External Linkgr-qc/9904024].
490 Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503, 1–4, (2001). [External LinkDOI], [External Linkgr-qc/0009011].
491 Parentani, R., “Beyond the semi-classical description of black hole evaporation”, Int. J. Theor. Phys., 41, 2175–2200, (2002). [External LinkDOI], [External LinkarXiv:0704.2563 [hep-th]].
492 Parentani, R., “What did we learn from studying acoustic black holes?”, Int. J. Mod. Phys. A, 17, 2721–2726, (2002). [External LinkDOI], [External Linkgr-qc/0204079].
493 Parentani, R., “The inflationary paradigm: predictions for CMB”, C. R. Physique, 4, 935–943, (2003). [External Linkastro-ph/0404022].
494 Parentani, R., “Constructing QFT’s wherein Lorentz Invariance is broken by dissipative effects in the UV”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [External LinkarXiv:0709.3943 [hep-th]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)039.
495 Parentani, R., “Confronting the trans-Planckian question of inflationary cosmology with dissipative effects”, Class. Quantum Grav., 25, 154015, (2008). [External LinkDOI], [External LinkarXiv:0710.4664 [hep-th]].
496 Parentani, R., “From vacuum fluctuations across an event horizon to long distance correlations”, Phys. Rev. D, 82, 025008, (2010). [External LinkDOI], [External LinkarXiv:1003.3625 [gr-qc]].
497 Pashaev, O.K. and Lee, J.-H., “Resonance Solitons as Black Holes in Madelung Fluid”, Mod. Phys. Lett. A, 17, 1601–1619, (2002). [External LinkDOI], [External Linkhep-th/9810139].
498 Pendry, J.B., Schurig, D. and Smith, D.R., “Controlling Electromagnetic Fields”, Science, 312(5781), 1780–1782, (2006). [External LinkDOI].
499 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [External LinkDOI], [External LinkADS].
500 Pereira, E.R. and Moraees, F., “Flowing Liquid Crystal Simulating the Schwarzschild Metric”, arXiv e-print, (2009). [External LinkarXiv:0910.1314 [gr-qc]].
501 Perez Bergliaffa, S.E., “Effective geometry in Astrophysics”, Int. J. Mod. Phys. D, 13, 1469–1476, (2004). [External LinkDOI], [External Linkastro-ph/0401577].
502 Perez Bergliaffa, S.E., Hibberd, K., Stone, M. and Visser, M., “Wave Equation for Sound in Fluids with Vorticity”, Physica D, 191, 121–136, (2001). [External Linkcond-mat/0106255].
503 Pham, Q.M., “Sur les équations de l’electromagné dans la materie”, C. R. Hebd. Seanc. Acad. Sci., 242, 465–467, (1956).
504 Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F. and Leonhardt, U., “Fiber-optical analogue of the event horizon: Appendices”, arXiv e-print, (2007). [External LinkarXiv:0711.4797 [gr-qc]].
505 Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., König, F. and Leonhardt, U., “Fiber-optical analogue of the event horizon”, Science, 319, 1367–1370, (2008). [External LinkDOI], [External LinkarXiv:0711.4796 [gr-qc]].
506 Philips, D.F., Fleischhauer, A., Mair, A. and Walsworth, R.L., “Storage of Light in Atomic Vapor”, Phys. Rev. Lett., 86, 783–786, (2001). [External LinkDOI].
507 Piazza, F., “Glimmers of a pre-geometric perspective”, Found. Phys., 40, 239–266, (2010). [External LinkDOI], [External LinkarXiv:hep-th/0506124].
508 Pines, D., The Many-Body Problem: A Lecture Note and Reprint Volume, Frontiers in Physics,  6, (W.A. Benjamin, New York, 1962), 2nd edition.
509 Piwnicki, P., “Geometrical approach to light in inhomogeneous media”, Int. J. Mod. Phys. A, 17, 1543–1558, (2002). [External LinkDOI], [External Linkgr-qc/0201007].
510 Plebański, J., “Electromagnetic waves in gravitational fields”, Phys. Rev., 118, 1396–1408, (1960). [External LinkDOI].
511 Plebański, J., Lectures on Nonlinear Electrodynamics, (Nordita, Copenhagen, 1970).
512 Prain, A., Fagnocchi, S. and Liberati, S., “Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates”, Phys. Rev. D, 82, 105018, (2010). [External LinkDOI], [External LinkarXiv:1009.0647 [gr-qc]].
513 Press, W.H. and Teukolsky, S.A., “Floating Orbits, Superradiant Scattering and the Black-Hole Bomb”, Nature, 238, 211–212, (1972). [External LinkDOI].
514 Radu, E., “On the Euclidean approach to quantum field theory in Gödel space-time”, Phys. Lett. A, 247, 207–210, (1998). [External LinkDOI].
515 Raval, A., Hu, B.L. and Koks, D., “Near-thermal radiation in detectors, mirrors and black holes: A stochastic approach”, Phys. Rev. D, 55, 4795–4812, (1997). [External LinkDOI], [External Linkgr-qc/9606074].
516 Ray, A.K., “Linearized perturbation on stationary inflow solutions in an inviscid and thin accretion disc”, Mon. Not. R. Astron. Soc., 344, 83–88, (2003). [External LinkDOI], [External Linkastro-ph/0212515].
517 Ray, A.K. and Bhattacharjee, J.K., “Dynamical Systems Approach to an Inviscid and Thin Accretion Disc”, arXiv e-print, (2003). [External Linkastro-ph/0307447].
518 Ray, A.K. and Bhattacharjee, J.K., “Evolution of transonicity in an accretion disc”, Class. Quantum Grav., 24, 1479, (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0703251].
519 Ray, A.K. and Bhattacharjee, J.K., “Standing and travelling waves in the shallow-water circular hydraulic jump”, Phys. Lett. A, 371, 241–248, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:cond-mat/0409315].
520 Recati, A., Pavloff, N. and Carusotto, I., “Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates”, Phys. Rev. A, 80, 043603, (2009). [External LinkDOI], [External LinkarXiv:0907.4305 [cond-mat.quant-gas]].
521 Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI], [External LinkADS].
522 Reznik, B., “Trans-Planckian tail in a theory with a cutoff”, Phys. Rev. D, 55, 2152–2158, (1997). [External LinkDOI], [External Linkgr-qc/9606083].
523 Reznik, B., “Origin of the thermal radiation in a solid-state analogue of a black hole”, Phys. Rev. D, 62, 044044, 1–7, (2000). [External LinkDOI], [External Linkgr-qc/9703076].
524 Richartz, M., Weinfurtner, S., Penner, A.J. and Unruh, W.G., “Generalized superradiant scattering”, Phys. Rev. D, 80, 124016, (2009). [External LinkDOI], [External LinkarXiv:0909.2317 [gr-qc]].
525 Rosquist, K., “Letter: A Moving Medium Simulation of Schwarzschild Black Hole Optics”, Gen. Relativ. Gravit., 36, 1977–1982, (2004). [External LinkDOI], [External Linkgr-qc/0309104].
526 Rosu, H.C., “Towards measuring Hawking-like effects in the laboratory. I”, unpublished, (1989). Online version (accessed 31 May 2005):
External Linkhttp://www.slac.stanford.edu/spires/find/hep/www?key=2056828.
527 Rosu, H.C., “On the circular vacuum noise in electron storage rings”, Nuovo Cimento B, 109, 423–430, (1994). [External LinkDOI], [External Linkphysics/9711015].
528 Rosu, H.C., “Superoscillations and trans-Planckian frequencies”, Nuovo Cimento B, 112, 131–132, (1997). [External Linkgr-qc/9606070].
529 Rosu, H.C., “Classical and quantum inertia: A matter of principles”, Grav. and Cosmol., 5, 81–91, (1999). [External Linkgr-qc/9412012].
530 Rosu, H.C., “Relativistic quantum field inertia and vacuum field noise spectra: By quest of the lost universality to high energy radiometric standards”, Int. J. Theor. Phys., 39, 285–295, (2000). [External Linkgr-qc/9905049].
531 Rousseaux, G., Maïssa, P., Mathis, C., Coullet, P., Philbin, T.G. and Leonhardt, U., “Horizon effects with surface waves on moving water”, New J. Phys., 12, 095018, (2010). [External LinkDOI], [External LinkarXiv:1004.5546 [gr-qc]]. URL (accessed 24 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095018.
532 Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T.G. and Leonhardt, U., “Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?”, New J. Phys., 10, 053015, (2008). [External LinkDOI], [External LinkarXiv:0711.4767 [gr-qc]]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/10/i=5/a=053015.
533 Rovelli, C., “Loop quantum gravity”, Phys. World, 16, 37–41, (November 2003).
534 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2004). [External LinkGoogle Books].
535 Rovelli, C. and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593–619, (1995). [External LinkDOI], [External Linkgr-qc/9411005].
536 Russo, J.G., “Model of black hole evolution”, Phys. Rev. D, 55, 871–877, (1997). [External LinkDOI], [External Linkhep-th/9602124].
537 Saavedra, J., “Quasinormal modes of Unruh’s acoustic black hole”, Mod. Phys. Lett. A, 21, 1601–1608, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0508040].
538 Saida, H. and Sakagami, M., “Black hole radiation with high frequency dispersion”, Phys. Rev. D, 61, 084023, 1–8, (2000). [External LinkDOI], [External Linkgr-qc/9905034].
539 Sakagami, M. and Ohashi, A., “Hawking Radiation in Laboratories”, Prog. Theor. Phys., 107, 1267–1272, (2002). [External LinkDOI], [External Linkgr-qc/0108072].
540 Sakharov, A.D., “Vacuum quantum fluctuations in curved space and the theory of gravitation”, Sov. Phys. Dokl., 12, 1040–1041, (1968).
541 Salehi, H., “Evaporating Black Holes And An Entropic Scale-Hierarchy”, arXiv e-print, (1994). [External Linkgr-qc/9409023].
542 Salehi, H., “Evaporating black holes and long range scaling”, Gen. Relativ. Gravit., 35, 1679–1690, (2003). [External LinkDOI], [External Linkhep-th/0302178].
543 Samuel, J. and Sinha, S., “Surface tension and the cosmological constant”, Phys. Rev. Lett., 97, 161302, (2006). [External LinkDOI], [External LinkarXiv:cond-mat/0603804].
544 Saul, L.A., “The Dynamic Space of General Relativity in Second Atomization”, in Reimer, A., ed., General Relativity Research Trends, Horizons in World Physics, 249, pp. 153–172, (Nova Science, New York, 2005). [External Linkgr-qc/0405132].
545 Schmelzer, I., “General Ether Theory”, arXiv e-print, (2000). [External Linkgr-qc/0001101].
546 Schmelzer, I., “A metric theory of gravity with condensed matter interpretation”, arXiv e-print, (2000). [External Linkgr-qc/0001096].
547 Schmelzer, I., “Derivation of the Einstein Equivalence Principle in a Class of Condensed Matter Theories”, arXiv e-print, (2001). [External Linkgr-qc/0104013].
548 Schmelzer, I., “A generalization of the Lorentz ether to gravity with general-relativistic limit”, arXiv e-print, (2002). [External Linkgr-qc/0205035].
549 Schützhold, R., “On the Hawking effect”, Phys. Rev. D, 64, 024029, 1–14, (2001). [External LinkDOI], [External Linkgr-qc/0011047].
550 Schützhold, R., “Particle definition in the presence of black holes”, Phys. Rev. D, 63, 024014, (2001). [External Linkgr-qc/0003020].
551 Schützhold, R., “Dynamical zero-temperature phase transitions and cosmic inflation / deflation”, Phys. Rev. Lett., 95, 135703, (2005). [External LinkDOI], [External LinkarXiv:quant-ph/0505196].
552 Schützhold, R., “Emergent horizons in the laboratory”, Class. Quantum Grav., 25, 114011, (2008). [External LinkDOI], [External LinkarXiv:1004.2586 [gr-qc]].
553 Schützhold, R., “‘Exotic’ quantum effects in the laboratory?”, Philos. Trans. R. Soc. London, Ser. A, 36, 2895, (2008). [External LinkarXiv:1004.2590 [quant-ph]].
554 Schützhold, R., “Recreating Fundamental Effects in the Laboratory?”, Adv. Sci. Lett., 2, 121, (2009). [External LinkarXiv:1004.2394 [gr-qc]].
555 Schützhold, R., “Fundamental Quantum Effects from a Quantum-Optics Perspective”, arXiv e-print, (2010). [External LinkarXiv:1004.2397 [quant-ph]].
556 Schützhold, R. and Maia, C., “Black-hole back-reaction – a toy model”, J. Phys. A: Math. Gen., 41, 164065, (2008). [External LinkDOI].
557 Schützhold, R., Plunien, G. and Soff, G., “Dielectric Black Hole Analogs”, Phys. Rev. Lett., 88, 061101, 1–4, (2002). [External LinkDOI], [External Linkquant-ph/0104121].
558 Schützhold, R., Uhlmann, M., Petersen, L., Schmitz, H., Friedenauer, A. and Schätz, T., “Analogue of Cosmological Particle Creation in an Ion Trap”, Phys. Rev. Lett., 99, 201301, (2007). [External LinkDOI], [External LinkarXiv:0705.3755 [quant-ph]].
559 Schützhold, R., Uhlmann, M., Xu, Y. and Fischer, U.R., “Quantum backreaction in dilute Bose–Einstein condensates”, Phys. Rev. D, 72, 105005, 1–8, (2005). [External LinkDOI], [External Linkcond-mat/0503581].
560 Schützhold, R. and Unruh, W.G., “Gravity wave analogues of black holes”, Phys. Rev. D, 66, 044019, 1–13, (2002). [External LinkDOI], [External Linkgr-qc/0205099].
561 Schützhold, R. and Unruh, W.G., “Problems of doubly special relativity with variable speed of light”, J. Exp. Theor. Phys. Lett., 78, 431, (2003). [External Linkgr-qc/0308049].
562 Schützhold, R. and Unruh, W.G., “Hawking Radiation in an Electromagnetic Waveguide?”, Phys. Rev. Lett., 95, 031301, 1–4, (2005). [External LinkDOI], [External Linkquant-ph/0408145].
563 Schützhold, R. and Unruh, W.G., “On the origin of the particles in black hole evaporation”, Phys. Rev. D, 78, 041504, (2008). [External LinkDOI], [External LinkarXiv:0804.1686 [gr-qc]].
564 Schützhold, R. and Unruh, W.G., “On Quantum Correlations across the Black Hole Horizon”, Phys. Rev. D, 81, 124033, (2010). [External LinkDOI], [External LinkarXiv:1002.1844 [gr-qc]].
565 Scully, M.O. and Zubairy, M.S., Quantum Optics, (Cambridge University Press, Cambridge; New York, 1997). [External LinkGoogle Books].
566 Shankaranarayanan, S., “Is there an imprint of Planck-scale physics on inflationary cosmology?”, Class. Quantum Grav., 20, 75–83, (2003). [External LinkDOI], [External Linkgr-qc/0203060].
567 Shankaranarayanan, S., Padmanabhan, T. and Srinivasan, K., “Hawking radiation in different coordinate settings: complex paths approach”, Class. Quantum Grav., 19, 2671–2687, (2002). [External LinkDOI], [External Linkgr-qc/0010042].
568 Siemieniec-Ozieblo, G. and Woszczyna, A., “Acoustic instabilities at the transition from the radiation-dominated to the matter-dominated universe”, Astron. Astrophys., 419, 801–810, (2004). [External LinkDOI], [External Linkastro-ph/0106562].
569 Sindoni, L., “The Higgs mechanism in Finsler spacetimes”, Phys. Rev. D, 77, 124009, (2008). [External LinkDOI], [External LinkarXiv:0712.3518 [gr-qc]].
570 Sindoni, L., “A note on particle kinematics in Hořava–Lifshitz scenarios”, arXiv e-print, (2009). [External LinkarXiv:0910.1329 [gr-qc]].
571 Sindoni, L., Girelli, F. and Liberati, S., “Emergent Gravitational Dynamics in Bose–Einstein Condensates”, in Kowalski-Glikman, J., Durka, R. and Szczachor, M., eds., The Planck Scale, Proceedings of the XXV Max Born Symposium, Wroclaw, Poland, 29 June – 03 July 2009, AIP Conference Proceedings, 1196, pp. 258–265, (American Institute of Physics, Melville, NY, 2009). [External LinkDOI], [External LinkarXiv:0909.5391 [gr-qc]].
572 Singha, S.B., Bhattacharjee, J.K. and Ray, A.K., “Hydraulic jump in one-dimensional flow”, Eur. Phys. J. B, 48, 417–426, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:cond-mat/0508388].
573 Skákala, J. and Visser, M., “Birefringence in pseudo-Finsler spacetimes”, J. Phys.: Conf. Ser., 189, 012037, (2009). [External LinkDOI], [External LinkarXiv:0810.4376 [gr-qc]].
574 Skákala, J. and Visser, M., “Pseudo-Finslerian Space-Times and Multirefringence”, Int. J. Mod. Phys. D, 19, 1119–1146, (2010). [External LinkDOI], [External LinkarXiv:0806.0950 [gr-qc]].
575 Skákala, J. and Visser, M., “Bi-metric pseudo-Finslerian spacetimes”, J. Geom. Phys., 61, 1396–1400, (2011). [External LinkDOI], [External LinkarXiv:1008.0689 [gr-qc]].
576 Skrotskii, G.V., “The influence of gravitation on the propagation of light”, Sov. Phys. Dokl., 2, 226–229, (1957).
577 Skudrzyk, E., The Foundations of Acoustics, (Springer, New York, 1971).
578 Slatyer, T.R. and Savage, C.M., “Superradiant scattering from a hydrodynamic vortex”, Class. Quantum Grav., 22, 3833–3839, (2005). [External LinkDOI], [External Linkcond-mat/0501182].
579 Smolin, L., “Experimental signatures of quantum gravity”, arXiv e-print, (1995). [External Linkgr-qc/9503027].
580 Smolin, L., “How far are we from the quantum theory of gravity?”, arXiv e-print, (2003). [External Linkhep-th/0303185].
581 Smolyaninov, I.I., “Linear and nonlinear optics of surface plasmon toy-models of black holes and wormholes”, arXiv e-print, (2003). [External Linkgr-qc/0311062].
582 Smolyaninov, I.I. and Davis, C.C., “Surface plasmon toy model of a rotating black hole”, arXiv e-print, (2003). [External Linkgr-qc/0306089].
583 Sorkin, R.D., “Causal Sets: Discrete Gravity”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, 2002 Pan-American Advanced Studies Institute School, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Científicos, pp. 305–328, (Springer, New York, 2005). [External Linkgr-qc/0309009].
584 Sotiriou, T.P., Visser, M. and Weinfurtner, S., “Phenomenologically viable Lorentz-violating quantum gravity”, Phys. Rev. Lett., 102, 251601, (2009). [External LinkDOI], [External LinkarXiv:0904.4464 [hep-th]].
585 Sotiriou, T.P., Visser, M. and Weinfurtner, S., “Quantum gravity without Lorentz invariance”, J. High Energy Phys., 2009(10), 033, (2009). [External LinkDOI], [External LinkarXiv:0905.2798 [hep-th]].
586 Srinivasan, K. and Padmanabhan, T., “Particle production and complex path analysis”, Phys. Rev. D, 60, 24007, (1999). [External LinkDOI], [External Linkgr-qc/9812028].
587 Sriramkumar, L. and Padmanabhan, T., “Initial state of matter fields and trans-Planckian physics: Can CMB observations disentangle the two?”, Phys. Rev. D, 71, 103512, 1–11, (2005). [External LinkDOI], [External Linkgr-qc/0408034].
588 Starobinsky, A.A., “Robustness of the inflationary perturbation spectrum to trans-Planckian physics”, J. Exp. Theor. Phys. Lett., 73, 415–418, (2001). [External LinkDOI], [External Linkastro-ph/0104043].
589 Starobinsky, A.A. and Tkachev, I.I., “Trans-Planckian Particle Creation in Cosmology and Ultrahigh Energy Cosmic Rays”, J. Exp. Theor. Phys. Lett., 76, 235–239, (2002). [External LinkDOI], [External Linkastro-ph/0207572].
590 Steinacker, H., “Emergent Geometry and Gravity from Matrix Models: an Introduction”, Class. Quantum Grav., 27, 133001, (2010). [External LinkDOI], [External LinkarXiv:1003.4134 [hep-th]].
591 Stephens, G.J. and Hu, B.L., “Notes on black hole phase transitions”, Int. J. Theor. Phys., 40, 2183–2200, (2001). [External LinkDOI], [External Linkgr-qc/0102052].
592 Stone, M., “Magnus and other forces on vortices in superfluids and superconductors”, arXiv e-print, (1997). [External Linkcond-mat/9708017].
593 Stone, M., “Acoustic energy and momentum in a moving medium”, Phys. Rev. E, 62, 1341–1350, (2000). [External LinkDOI], [External Linkcond-mat/9909315].
594 Stone, M., “Iordanskii force and the gravitational Aharonov–Bohm effect for a moving vortex”, Phys. Rev. B, 61, 11780–11786, (2000). [External LinkDOI], [External Linkcond-mat/9909313].
595 Stone, M., “Phonons and Forces: Momentum versus Pseudomomentum in Moving Fluids”, arXiv e-print, (2000). [External Linkcond-mat/0012316].
596 Sudarshan, E.C.G., “Massless particles of high spin”, Phys. Rev. D, 24, 1591–1594, (1981). [External LinkDOI].
597 Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, 1960).
598 Takeuchi, H., Tsubota, M. and Volovik, G.E., “Zel’dovich-Starobinsky Effect in Atomic Bose-Einstein Condensates: Analogy to Kerr Black Hole”, J. Low Temp. Phys., 150, 624–629, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.2178 [cond-mat.other]].
599 Tamaki, T., Harada, T., Miyamoto, U. and Torii, T., “Particle velocity in noncommutative space-time”, Phys. Rev. D, 66, 105003, 1–6, (2002). [External LinkDOI], [External Linkgr-qc/0208002].
600 Tanaka, T., “A comment on trans-Planckian physics in inflationary universe”, arXiv e-print, (2001). [External Linkastro-ph/0012431].
601 Thorne, K.S., Price, R.H. and Macdonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, CT; London, 1986).
602 Trautman, A., “Comparison of Newtonian and relativistic theories of space-time”, in Hoffman, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, pp. 413–425, (Indiana University Press, Bloomington, IN, 1966).
603 Turukhin, A.V., Sudarshanam, V.S., Shahriar, M.S., Musser, J.A., Ham, B.S. and Hemmer, P.R., “Observation of Ultraslow and Stored Light Pulses in a Solid”, Phys. Rev. Lett., 88, 023602, 1–4, (2002).
604 Uhlmann, M., “Time-resolved density correlations as probe of squeezing in toroidal Bose–Einstein condensates”, New J. Phys., 12, 095016, (2010). [External LinkDOI], [External LinkarXiv:1005.2645 [cond-mat.quant-gas]]. URL (accessed 13 December 2010):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095016.
605 Uhlmann, M., Xu, Y. and Schützhold, R., “Aspects of cosmic inflation in expanding Bose–Einstein condensates”, New J. Phys., 7, 248, (2005). [External LinkDOI], [External LinkarXiv:quant-ph/0509063]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/7/i=1/a=248.
606 Unruh, W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14, 870–892, (1976). [External LinkDOI].
607 Unruh, W.G., “Experimental black hole evaporation”, Phys. Rev. Lett., 46, 1351–1353, (1981). [External LinkDOI].
608 Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827–2838, (1995). [External LinkDOI], [External Linkgr-qc/9409008].
609 Unruh, W.G., “The Analogue Between Rimfall and Black Holes”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ‘Quantum Simulations via Analogues’, held in Dresden, Germany, July 25 – 28, 2005, Lecture Notes in Physics, 718, pp. 1–4, (Springer, Berlin; New York, 2007). [External LinkDOI].
610 Unruh, W.G., “Where are the particles created in black hole evaporation?”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)039.
611 Unruh, W.G., “Dumb holes: Analogues for black holes”, Philos. Trans. R. Soc. London, Ser. A, 366, 2905–2913, (2008). [External LinkDOI].
612 Unruh, W.G. and Schützhold, R., “On slow light as a black hole analogue”, Phys. Rev. D, 68, 024008, 1–14, (2003). [External LinkDOI], [External Linkgr-qc/0303028].
613 Unruh, W.G. and Schützhold, R., “Universality of the Hawking effect”, Phys. Rev. D, 71, 024028, 1–11, (2005). [External LinkDOI], [External Linkgr-qc/0408009].
614 Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ‘Quantum Simulations via Analogues’, held in Dresden, Germany, July 25 – 28, 2005, Lecture Notes in Physics, 718, (Springer, Berlin; New York, 2007). [External LinkDOI].
615 Vachaspati, T., “Propagating phase boundaries as sonic horizons”, arXiv e-print, (2003). [External Linkgr-qc/0312069].
616 Vachaspati, T., “Cosmic Problems for Condensed Matter Experiment”, J. Low Temp. Phys., 136, 361–377, (2004). [External LinkDOI], [External Linkcond-mat/0404480].
617 Vestergaard Hau, L., Harris, S.E., Dutton, Z. and Behroozi, C.H., “Light speed reduction to 17 metres per second in ultracold atomic gas”, Nature, 397, 594–598, (1999). [External LinkDOI].
618 Vikman, A., K-essence: cosmology, causality and emergent geometry, Ph.D. Thesis, (LMU, Munich, 2007). URL (accessed 17 March 2011):
External Linkhttp://edoc.ub.uni-muenchen.de/7761/.
619 Vishveshwara, C.V., “Scattering of gravitational radiation by a Schwarzschild black-hole”, Nature, 227, 936–938, (1970). [External LinkDOI].
620 Vishveshwara, C.V., “Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870–2879, (1970). [External LinkDOI].
621 Visser, M., “Dirty black holes: Thermodynamics and horizon structure”, Phys. Rev. D, 46, 2445–2451, (1992). [External LinkDOI], [External Linkhep-th/9203057].
622 Visser, M., “Acoustic propagation in fluids: An unexpected example of Lorentzian geometry”, arXiv e-print, (1993). [External Linkgr-qc/9311028].
623 Visser, M., Lorentzian Wormholes: From Einstein to Hawking, AIP Series in Computational and Applied Mathematical Physics, (American Institute of Physics, Woodbury, NY, 1995).
624 Visser, M., “Acoustic black holes: Horizons, ergospheres, and Hawking radiation”, Class. Quantum Grav., 15, 1767–1791, (1998). [External LinkDOI], [External Linkgr-qc/9712010].
625 Visser, M., “Hawking radiation without black hole entropy”, Phys. Rev. Lett., 80, 3436–3439, (1998). [External LinkDOI], [External Linkgr-qc/9712016].
626 Visser, M., “Acoustic black holes”, arXiv e-print, (1999). [External Linkgr-qc/9901047].
627 Visser, M., “Comment on “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity””, Phys. Rev. Lett., 85, 5252, (2000). [External LinkDOI], [External Linkgr-qc/0002011].
628 Visser, M., “Sakharov’s induced gravity: A modern perspective”, Mod. Phys. Lett. A, 17, 977–992, (2002). [External LinkDOI], [External Linkgr-qc/0204062].
629 Visser, M., “Essential and inessential features of Hawking radiation”, Int. J. Mod. Phys. D, 12, 649–661, (2003). [External LinkDOI], [External Linkhep-th/0106111].
630 Visser, M., “The quantum physics of chronology protection”, in Gibbons, G.W., Shellard, E.P.S. and Rankin, S.J., eds., The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s 60th Birthday, pp. 161–175, (Cambridge University Press, Cambridge; New York, 2003). [External Linkgr-qc/0204022], [External LinkGoogle Books].
631 Visser, M., “Heuristic approach to the Schwarzschild geometry”, Int. J. Mod. Phys. D, 14, 2051–2067, (2005). [External LinkDOI], [External Linkgr-qc/0309072].
632 Visser, M., “Emergent rainbow spacetimes: Two pedagogical examples”, arXiv e-print, (2007). [External LinkarXiv:0712.0810 [gr-qc]].
633 Visser, M., “The Kerr spacetime: A brief introduction”, arXiv e-print, (2007). [External LinkarXiv:0706.0622 [gr-qc]].
634 Visser, M., “Lorentz symmetry breaking as a quantum field theory regulator”, Phys. Rev. D, 80, 025011, (2009). [External LinkDOI], [External LinkarXiv:0902.0590 [hep-th]].
635 Visser, M., “Power-counting renormalizability of generalized Hořava gravity”, arXiv e-print, (2009). [External LinkarXiv:0912.4757 [hep-th]].
636 Visser, M., Barceló, C. and Liberati, S., “Acoustics in Bose–Einstein Condensates as an Example of Broken Lorentz Symmetry”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry, Proceedings of the Second Meeting, Bloomington, USA, 15 – 18 August 2001, pp. 336–340, (World Scientific, Singapore; River Edge, NJ, 2002). [External LinkDOI], [External Linkhep-th/0109033]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812778123/9789812778123_0043.html.
637 Visser, M., Barceló, C. and Liberati, S., “Analogue models of and for gravity”, Gen. Relativ. Gravit., 34, 1719–1734, (2002). [External LinkDOI], [External Linkgr-qc/0111111].
638 Visser, M., Barceló, C. and Liberati, S., “Bi-refringence versus bi-metricity”, arXiv e-print, (2002). [External Linkgr-qc/0204017].
639 Visser, M. and Molina-París, C., “Acoustic geometry for general relativistic barotropic irrotational fluid flow”, New J. Phys., 12, 095014, (2010). [External LinkDOI], [External LinkarXiv:1001.1310 [gr-qc]]. URL (accessed 20 March 2011):
External Linkhttp://stacks.iop.org/1367-2630/12/i=9/a=095014.
640 Visser, M. and Weinfurtner, S., “Massive phonon modes from a BEC-based analog model”, arXiv e-print, (2004). [External Linkcond-mat/0409639].
641 Visser, M. and Weinfurtner, S., “Vortex analogue for the equatorial geometry of the Kerr black hole”, Class. Quantum Grav., 22, 2493–2510, (2004). [External LinkDOI], [External Linkgr-qc/0409014].
642 Visser, M. and Weinfurtner, S., “Massive Klein-Gordon equation from a BEC-based analogue spacetime”, Phys. Rev. D, 72, 044020, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506029].
643 Visser, M. and Weinfurtner, S., “Analogue spacetimes: Toy models for ‘quantum gravity”’, in From Quantum to Emergent Gravity: Theory and Phenomenology, Proceedings of Science, (SISSA, Trieste, 2007). [External LinkarXiv:0712.0427 [gr-qc]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)042.
644 Volovik, G.E., “Is there analogy between quantized vortex and black hole?”, arXiv e-print, (1995). [External Linkgr-qc/9510001].
645 Volovik, G.E., “AB interface in superfluid 3He and Casimir effect”, J. Exp. Theor. Phys. Lett., 63, 483–489, (1996). [External LinkDOI], [External Linkcond-mat/9602129].
646 Volovik, G.E., “Cosmology, particle physics and superfluid 3He”, Czech. J. Phys., 46, 3048, (1996). [External LinkDOI], [External Linkcond-mat/9607212].
647 Volovik, G.E., “Induced gravity in superfluid 3He”, J. Low Temp. Phys., 113, 667–680, (1997). [External Linkcond-mat/9806010].
648 Volovik, G.E., “Energy-momentum tensor of quasiparticles in the effective gravity in superfluids”, arXiv e-print, (1998). [External Linkgr-qc/9809081].
649 Volovik, G.E., “Gravity of monopole and string and gravitational constant in 3He-A”, J. Exp. Theor. Phys. Lett., 67, 698–704, (1998). [External LinkDOI], [External Linkcond-mat/9804078].
650 Volovik, G.E., “Vortex vs. spinning string: Iordanskii force and gravitational Aharonov–Bohm effect”, J. Exp. Theor. Phys. Lett., 67, 841–846, (1998). [External Linkcond-mat/9804308].
651 Volovik, G.E., “Simulation of Painlevé–Gullstrand black hole in thin 3He-A film”, J. Exp. Theor. Phys. Lett., 69, 662–668, (1999). [External LinkDOI], [External Linkgr-qc/9901077].
652 Volovik, G.E., “3He and Universe parallelism”, in Bunkov, Y.M. and Godfrin, H., eds., Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions, pp. 353–387, (Kluwer Academic, Dordrecht; Boston, 2000). [External Linkcond-mat/9902171], [External LinkGoogle Books].
653 Volovik, G.E., “Links between gravity and dynamics of quantum liquids”, Grav. and Cosmol., 6, 187–203, (2000). [External Linkgr-qc/0004049].
654 Volovik, G.E., “Fermion Zero Modes in Painlevé–Gullstrand Black Hole”, J. Exp. Theor. Phys. Lett., 73, 721–725, (2001). [External LinkDOI], [External Linkgr-qc/0104088].
655 Volovik, G.E., “Superfluid analogies of cosmological phenomena”, Phys. Rep., 351, 195–348, (2001). [External LinkDOI], [External Linkgr-qc/0005091].
656 Volovik, G.E., “Vacuum Energy and Cosmological Constant: View from Condensed Matter”, J. Low Temp. Phys., 124, 25–39, (2001). [External LinkDOI], [External Linkgr-qc/0101111].
657 Volovik, G.E., “Black-hole horizon and metric singularity at the brane separating two sliding superfluids”, J. Exp. Theor. Phys. Lett., 76, 296–300, (2002). [External LinkDOI], [External Linkgr-qc/0208020].
658 Volovik, G.E., “Effective gravity and quantum vacuum in superfluids”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 127–177, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkgr-qc/0104046], [External LinkGoogle Books].
659 Volovik, G.E., “Momentum space topology of fermion zero modes on brane”, J. Exp. Theor. Phys. Lett., 75, 63–66, (2002). [External LinkDOI], [External Linkgr-qc/0112016].
660 Volovik, G.E., The Universe in a Helium Droplet, International Series of Monographs on Physics, 117, (Clarendon Press; Oxford University Press, Oxford; New York, 2003). [External LinkGoogle Books].
661 Volovik, G.E., “What can the quantum liquid say on the brane black hole, the entropy of extremal black hole and the vacuum energy?”, Found. Phys., 33, 349–368, (2003). [External LinkDOI], [External Linkgr-qc/0301043].
662 Volovik, G.E., “The hydraulic jump as a white hole”, J. Exp. Theor. Phys. Lett., 82, 624–627, (2005). [External LinkDOI], [External LinkarXiv:physics/0508215].
663 Volovik, G.E., “Black-hole and white-hole horizons in superfluids”, J. Low Temp. Phys., 145, 337–356, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603093].
664 Volovik, G.E., “From quantum hydrodynamics to quantum gravity”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany , 23 – 29 July 2006, pp. 1451–1470, (World Scientific, River Edge, NJ; Singapore, 2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612134]. Online version (accessed 22 March 2011):
External Linkhttp://eproceedings.worldscinet.com/9789812834300/9789812834300_0170.html.
665 Volovik, G.E., “Twenty years of magnon Bose condensation and spin current superfluidity in 3He-B”, J. Low Temp. Phys., 153, 266–284, (2008). [External LinkDOI], [External LinkarXiv:cond-mat/0701180].
666 Volovik, G.E., “z = 3 Lifshitz-Hořava model and Fermi-point scenario of emergent gravity”, J. Exp. Theor. Phys. Lett., 89, 525–528, (2009). [External LinkDOI], [External LinkarXiv:0904.4113 [gr-qc]].
667 Volovik, G.E. and Vachaspati, T., “Aspects of 3He and the Standard Electroweak Model”, Int. J. Mod. Phys. B, 10, 471–521, (1996). [External LinkDOI], [External Linkcond-mat/9510065].
668 Volovik, G.E. and Zelnikov, A.I., “Universal temperature corrections to the free energy for the gravitational field”, J. Exp. Theor. Phys. Lett., 78, 751–756, (2003). [External LinkDOI], [External Linkgr-qc/0309066].
669 Vozmediano, M.A.H., de Juan, F. and Cortijo, A., “Gauge fields and curvature in graphene”, J. Phys.: Conf. Ser., 129, 012001, (2008). [External LinkDOI].
670 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkGoogle Books].
671 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (accessed 31 May 2005):
http://www.livingreviews.org/lrr-2001-6.
672 Wallace, P.R., “The Band Theory of Graphite”, Phys. Rev., 71, 622–634, (1947). [External LinkDOI].
673 Weinberg, S. and Witten, E., “Limits on massless particles”, Phys. Lett. B, 96, 59–62, (1980). [External LinkDOI].
674 Weinfurtner, S., Simulation of gravitational objects in Bose–Einstein condensates, Diploma Thesis, (Technical University of Munich and Max Planck Institute of Quantum Optics, Garching, Munich, 2004). [External Linkgr-qc/0404022]. in German.
675 Weinfurtner, S., “Analog model for an expanding universe”, Gen. Relativ. Gravit., 37, 1549–1554, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0404063].
676 Weinfurtner, S., “Emergent spacetimes”, arXiv e-print, (2007). [External LinkarXiv:0711.4416 [gr-qc]].
677 Weinfurtner, S., Jain, P., Visser, M. and Gardiner, C.W., “Cosmological particle production in emergent rainbow spacetimes”, Class. Quantum Grav., 26, 065012, (2009). [External LinkDOI], [External LinkarXiv:0801.2673 [gr-qc]].
678 Weinfurtner, S., Liberati, S. and Visser, M., “Analogue model for quantum gravity phenomenology”, J. Phys. A: Math. Gen., 39, 6807–6814, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511105].
679 Weinfurtner, S., Liberati, S. and Visser, M., “Modelling Planck-scale Lorentz violation via analogue models”, J. Phys.: Conf. Ser., 33, 373–385, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0512127].
680 Weinfurtner, S., Liberati, S. and Visser, M., “Analogue Space-time Based on 2-Component Bose–Einstein Condensates”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ‘Quantum Simulations via Analogues’, held in Dresden, Germany, July 25 – 28, 2005, Lecture Notes in Physics, 718, pp. 115–163, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:gr-qc/0605121].
681 Weinfurtner, S., Sotiriou, T.P. and Visser, M., “Projectable Hořava–Lifshitz gravity in a nutshell”, J. Phys.: Conf. Ser., 222, 012054, (2010). [External LinkDOI], [External LinkarXiv:1002.0308 [gr-qc]].
682 Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G. and Lawrence, G.A., “Measurement of stimulated Hawking emission in an analogue system”, Phys. Rev. Lett., 106, 021302, (2011). [External LinkDOI], [External LinkarXiv:1008.1911 [gr-qc]].
683 Weinfurtner, S., Visser, M., Jain, P. and Gardiner, C.W., “On the phenomenon of emergent spacetimes: An instruction guide for experimental cosmology”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [External LinkarXiv:0804.1346 [gr-qc]]. URL (accessed 13 December 2010):
External Linkhttp://pos.sissa.it/contribution?id=PoS(QG-Ph)044.
684 Weinfurtner, S., White, A. and Visser, M., “Trans-Planckian physics and signature change events in Bose gas hydrodynamics”, Phys. Rev. D, 76, 124008, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703117].
685 Weinfurtner, S., White, A. and Visser, M., “Signature-change events in emergent spacetimes with anisotropic scaling”, J. Phys.: Conf. Ser., 189, 012046, (2009). [External LinkDOI], [External LinkarXiv:0905.4530 [gr-qc]].
686 White, A., Weinfurtner, S. and Visser, M., “Signature change events: A challenge for quantum gravity?”, Class. Quantum Grav., 27, 045007, (2010). [External LinkDOI], [External LinkarXiv:0812.3744 [gr-qc]].
687 White, R.W., “Acoustic ray tracing in moving inhomogeneous fluids”, J. Acoust. Soc. Am., 53, 1700–1704, (1973). [External LinkDOI].
688 Winicour, J., “A New Way to Make Waves”, arXiv e-print, (2000). [External Linkgr-qc/0003029].
689 Winterberg, F., “Detection of gravitational waves by stellar scintillation in space”, Nuovo Cimento B, 53, 264–279, (1968). [External LinkDOI].
690 Wolf, E. and Habashy, T., “Invisible bodies and uniqueness of the inverse scattering problem”, J. Mod. Opt., 40, 785–792, (1993). [External LinkDOI].
691 Wu, X.-N., Huang, C.-G. and Sun, J.-R., “On Gravitational anomaly and Hawking radiation near weakly isolated horizon”, Phys. Rev. D, 77, 124023, (2008). [External LinkDOI], [External LinkarXiv:0801.1347 [gr-qc]].
692 Xi, P. and Li, X.-Z., “Quasinormal Modes and Late-Time Tails of Canonical Acoustic Black Holes”, Int. J. Mod. Phys. D, 16, 1211–1218, (2007). [External LinkDOI], [External LinkarXiv:0709.3714 [gr-qc]].
693 Xu, C., “Novel Algebraic Boson Liquid phase with soft Graviton excitations”, arXiv e-print, (2006). [External LinkarXiv:cond-mat/0602443].
694 Xu, C. and Hořava, P., “Emergent Gravity at a Lifshitz Point from a Bose Liquid on the Lattice”, Phys. Rev. D, 81, 104033, (2010). [External LinkDOI], [External LinkarXiv:1003.0009 [hep-th]].
695 Zaslavsky, O.B., “Geometry and thermodynamics of quantum-corrected acceleration horizons”, Class. Quantum Grav., 17, 497–512, (2000). [External LinkDOI], [External Linkgr-qc/9812052].
696 Zel’dovich, Y.B., “The Generation of Waves by a Rotating Body”, J. Exp. Theor. Phys. Lett., 14, 180, (1971).
697 Zel’dovich, Y.B., “Amplification of cylindrical electromagnetic waves reflected from a rotating body”, Sov. Phys. JETP, 35, 1085, (1972).
698 Zerilli, F.J., “Effective potential for even parity Regge–Wheeler gravitational perturbation equations”, Phys. Rev. Lett., 24, 737–738, (1970). [External LinkDOI].
699 Zhang, P.-M., Cao, L.-M., Duan, Y.-S. and Zhong, C.-K., “Transverse force on a moving vortex with the acoustic geometry”, Phys. Lett. A, 326, 375, (2004). [External LinkDOI], [External Linkhep-th/0501073].
700 Zhidenko, A., Linear perturbations of black holes: stability, quasi-normal modes and tails, Ph.D. Thesis, (Universidade de São Paolo, São Paolo, 2009). [External LinkarXiv:0903.3555 [gr-qc]].
701 Zloshchastiev, K.G., “Acoustic phase lenses in superfluid He as models of composite spacetimes in general relativity: Classical and quantum properties with provision for spatial topology”, Acta Phys. Pol. B, 30, 897–905, (1999). [External Linkgr-qc/9802060].
702 Zloshchastiev, K.G., “Non-linear phenomena in electrical circuits: Simulation of non-linear relativistic field theory and possible applications”, arXiv e-print, (1999). [External Linkcond-mat/9912149].