![]() |
1 | Andersson, L., Beig, R. and Schmidt, B.G., “Static self-gravitating elastic bodies in Einstein
gravity”, Commun. Pure Appl. Math., 61, 988–1023, (2008). [![]() |
![]() |
2 | Andersson, L., Beig, R. and Schmidt, B.G., “Rotating elastic bodies in Einstein gravity”,
Commun. Pure Appl. Math., 63, 559–589, (2009). [![]() |
![]() |
3 | Andréasson, H., “Controlling the propagation of the support for the relativistic Vlasov
equation with a selfconsistent Lorentz invariant field”, Indiana Univ. Math. J., 45, 617–642,
(1996). [![]() |
![]() |
4 | Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for
the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386–1405, (1996). [![]() |
![]() |
5 | Andréasson, H., “Global existence of smooth solutions in three dimensions for the
semiconductor Vlasov–Poisson–Boltzmann equation”, Nonlinear Anal., 28, 1193–1211, (1997).
[![]() |
![]() |
6 | Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun.
Math. Phys., 206, 337–365, (1999). [![]() ![]() |
![]() |
7 | Andréasson, H., “On global existence for the spherically symmetric Einstein-Vlasov system
in Schwarzschild coordinates”, Indiana Univ. Math. J., 56, 523–552, (2007). [![]() |
![]() |
8 | Andréasson, H., “On static shells and the Buchdahl inequality for the spherically symmetric
Einstein-Vlasov system”, Commun. Math. Phys., 274, 409–425, (2007). [![]() ![]() |
![]() |
9 | Andréasson, H., “On the Buchdahl inequality for spherically symmetric static shells”,
Commun. Math. Phys., 274, 399–408, (2007). [![]() ![]() |
![]() |
10 | Andréasson, H., “Sharp bounds on 2m∕r of general spherically symmetric static objects”, J.
Differ. Equations, 245, 2243–2266, (2008). [![]() |
![]() |
11 | Andréasson, H., “Sharp bounds on the critical stability radius for relativistic charged spheres”,
Commun. Math. Phys., 288, 715–730, (2009). [![]() ![]() |
![]() |
12 | Andréasson, H., “Regularity results for the spherically symmteric Einstein-Vlasov system”,
Ann. Henri Poincare, 11, 781–803, (2010). [![]() ![]() |
![]() |
13 | Andréasson, H. and Böhmer, C.G., “Bounds on M∕R for static objects with a positive
cosmological constant”, Class. Quantum Grav., 26, 195007, 1–11, (2009). [![]() |
![]() |
14 | Andréasson, H., Calogero, S. and Illner, R., “On Blowup for Gain-Term-Only classical and
relativistic Boltzmann equations”, Math. Method. Appl. Sci., 27, 2231–2240, (2004). [![]() |
![]() |
15 | Andréasson, H., Calogero, S. and Rein, G., “Global classical solutions to the spherically
symmetric Nordström-Vlasov system”, Math. Proc. Camb. Phil. Soc., 138, 533–539, (2005).
[![]() ![]() |
![]() |
16 | Andréasson, H., Eklund, M. and Rein, G., “A numerical investigation of the steady states
of the spherically symmetric Einstein-Vlasov-Maxwell system”, Class. Quantum Grav., 26,
145003, (2009). [![]() |
![]() |
17 | Andréasson, H., Kunze, M. and Rein, G., “Global existence for the spherically symmetric
Einstein-Vlasov system with outgoing matter”, Commun. Part. Diff. Eq., 33, 656–668, (2008).
[![]() |
![]() |
18 | Andréasson, H., Kunze, M. and Rein, G., “Existence of axially symmetric static solutions of
the Einstein-Vlasov system”, Commun. Math. Phys., accepted, (2010). [![]() |
![]() |
19 | Andréasson, H., Kunze, M. and Rein, G., “Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system”, Quart. Appl. Math., 68, 17–42, (2010). |
![]() |
20 | Andréasson, H., Kunze, M. and Rein, G., “The formation of black holes in spherically
symmetric gravitational collapse”, Math. Ann., in press, (2011). [![]() ![]() |
![]() |
21 | Andréasson, H. and Rein, G., “A numerical investigation of the stability of steady states and
critical phenomena for the spherically symmetric Einstein–Vlasov system”, Class. Quantum
Grav., 23, 3659–3677, (2006). [![]() |
![]() |
22 | Andréasson, H and Rein, G., “On the steady states of the spherically symmetric
Einstein-Vlasov system”, Class. Quantum Grav., 24, 1809–1832, (2007). [![]() |
![]() |
23 | Andréasson, H. and Rein, G., “The asymptotic behaviour in Schwarzschild time of Vlasov
matter in spherically symmetric gravitational collapse”, Math. Proc. Camb. Phil. Soc., 149,
173–188, (2010). [![]() |
![]() |
24 | Andréasson, H. and Rein, G., “Formation of trapped surfaces for the spherically symmetric
Einstein-Vlasov system”, J. Hyperbol. Differ. Equations, 7, 707–731, (2010). [![]() |
![]() |
25 | Andréasson, H., Rein, G. and Rendall, A.D., “On the Einstein–Vlasov system with hyperbolic
symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529–549, (2003). [![]() |
![]() |
26 | Andréasson, H., Rendall, A.D. and Weaver, M., “Existence of CMC and constant areal time
foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29,
237–262, (2004). [![]() ![]() |
![]() |
27 | Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the
Inhomogeneous Conformal Einstein–Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395–419,
(2000). [![]() |
![]() |
28 | Anguige, K. and Tod, K.P., “Isotropic Cosmological Singularities II. The Einstein–Vlasov
System”, Ann. Phys. (N.Y.), 276, 294–320, (1999). [![]() |
![]() |
29 | Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283–288, (1992). |
![]() |
30 | Bancel, D. and Choquet-Bruhat, Y., “Existence, Uniqueness and Local Stability for the
Einstein–Maxwell–Boltzmann System”, Commun. Math. Phys., 33, 83–96, (1973). [![]() |
![]() |
31 | Bardeen, J.M., “Rapidly rotating stars, disks, and black holes”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 241–289, (Gordon and Breach, New York, 1973). |
![]() |
32 | Bardos, C. and Degond, P., “Global existence for the Vlasov–Poisson equation in three space variables with small initial data”, Ann. Inst. Henri Poincare, 2, 101–118, (1985). |
![]() |
33 | Bardos, C., Degond, P. and Ha, T.N., “Existence globale des solutions des équations de Vlasov–Poisson relativistes en dimension 3”, C. R. Acad. Sci., 301, 265–268, (1985). |
![]() |
34 | Batt, J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J.
Differ. Equations, 25, 342–364, (1977). [![]() |
![]() |
35 | Batt, J., Faltenbacher, W. and Horst, E., “Stationary Spherically Symmetric Models in Stellar
Dynamics”, Arch. Ration. Mech. Anal., 93, 159–183, (1986). [![]() |
![]() |
36 | Bauer, S., Kunze, M., Rein, G. and Rendall, A.D., “Multipole radiation in a collisionless gas
coupled to electromagnetism or scalar gravitation”, Commun. Math. Phys., 266, 267–288,
(2006). [![]() |
![]() |
37 | Berger, B.K., Chruściel, P.T., Isenberg, J. and Moncrief, V., “Global Foliations of Vacuum
Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [![]() ![]() |
![]() |
38 | Binney, J. and Tremaine, S., Galactic Dynamics, Princeton Series in Astrophysics, (Princeton
University Press, Princeton, NJ, 1987). [![]() |
![]() |
39 | Bouchut, F., Golse, F. and Pallard, C., “Classical solutions and the Glassey–Strauss theorem
for the 3D Vlasov–Maxwell system”, Arch. Ration. Mech. Anal., 170, 1–15, (2003). [![]() |
![]() |
40 | Brauer, U., Rendall, A.D. and Reula, O., “The cosmic no-hair theorem and the non-linear
stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11,
2283–2296, (1994). [![]() ![]() |
![]() |
41 | Buchdahl, H.A., “General relativistic fluid spheres”, Phys. Rev., 116, 1027–1034, (1959). [![]() |
![]() |
42 | Burnett, G.A. and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically
symmetric spacetimes”, Class. Quantum Grav., 13, 111–123, (1996). [![]() |
![]() |
43 | Calogero, S., “Spherically symmetric steady states of galactic dynamics in scalar gravity”,
Class. Quantum Grav., 20, 1729–1741, (2003). [![]() |
![]() |
44 | Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys.,
45, 4042–4052, (2004). [![]() |
![]() |
45 | Calogero, S., “Global classical solutions to the 3D Nordström-Vlasov system”, Commun.
Math. Phys., 266, 343–353, (2006). [![]() |
![]() |
46 | Calogero, S. and Heinzle, J.M., “Dynamics of Bianchi type I solutions of the Einstein equations
with anisotropic matter”, Ann. Henri Poincare, 10, 225–274, (2009). [![]() |
![]() |
47 | Calogero, S. and Heinzle, J.M., “Oscillations toward the singularity of LRS Bianchi type IX
cosmological models with Vlasov matter”, SIAM J. Appl. Dyn. Syst., 9, 1244–1262, (2010).
[![]() |
![]() |
48 | Calogero, S. and Heinzle, J.M., “Bianchi Cosmologies with Anisotropic Matter: Locally
Rotationally Symmetric Models”, Physica D, 240, 636–669, (2011). [![]() |
![]() |
49 | Calogero, S. and Lee, H., “The non-relativistic limit of the Nordström–Vlasov system”, Commun. Math. Sci., 2, 19–34, (2004). |
![]() |
50 | Calogero, S. and Rein, G., “On classical solutions of the Nordström–Vlasov system”, Commun.
Part. Diff. Eq., 28, 1863–1885, (2003). [![]() |
![]() |
51 | Calogero, S. and Rein, G., “Global weak solutions to the Nordström–Vlasov system”, J. Differ.
Equations, 204, 323–338, (2004). [![]() |
![]() |
52 | Calogero, S., Sanchez, O. and Soler, J., “Asymptotic behavior and orbital stability of galactic
dynamics in relativistic scalar gravity”, Arch. Ration. Mech. Anal., 194, 743–773, (2009). [![]() |
![]() |
53 | Cercignani, C., Illner, R. and Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, (Springer, Berlin; New York, 1988). |
![]() |
54 | Cercignani, C. and Kremer, G.M., The Relativistic Boltzmann Equation: Theory and Applications, Progress in Mathematical Physics, 22, (Birkhäuser, Basel, 2002). |
![]() |
55 | Choquet-Bruhat, Y., “Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville”, Ann. Inst. Fourier, 21, 181–201, (1971). |
![]() |
56 | Choquet-Bruhat, Y. and Noutchegueme, N., “Systéme de Yang–Mills–Vlasov en jauge temporelle”, Ann. Inst. Henri Poincare, 55, 759–787, (1991). |
![]() |
57 | Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys.,
109, 613–647, (1987). [![]() |
![]() |
58 | Christodoulou, D., “The formation of black holes and singularities in spherically symmetric
gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [![]() |
![]() |
59 | Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse
of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [![]() |
![]() |
60 | Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a
scalar field”, Ann. Math. (2), 149, 183–217, (1999). [![]() |
![]() |
61 | Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class.
Quantum Grav., 16, A23–A35, (1999). [![]() |
![]() |
62 | Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, Class. Quantum
Grav., 22, 2221–2232, (2005). [![]() ![]() |
![]() |
63 | Dafermos, M., “A note on the collapse of small data self-gravitating massless collisionless matter”, J. Hyperbol. Differ. Equations, 3, 589–598, (2006). |
![]() |
64 | Dafermos, M. and Rendall, A.D., “An extension principle for the Einstein–Vlasov system in
spherical symmetry”, Ann. Henri Poincare, 6, 1137–1155, (2005). [![]() ![]() |
![]() |
65 | Dafermos, M. and Rendall, A.D., “Inextendibility of expanding cosmological models with
symmetry”, Class. Quantum Grav., 22, L143–L147, (2005). [![]() ![]() |
![]() |
66 | Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for T2-symmetric cosmological
spacetimes with collisionless matter”, arXiv e-print, (2006). [![]() |
![]() |
67 | Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for surface-symmetric cosmological
spacetimes with collisionless matter”, arXiv e-print, (2007). [![]() |
![]() |
68 | de Groot, S.R., van Leeuwen, W.A. and van Weert, C.G., Relativistic Kinetic Theory: Principles and Applications, (North-Holland; Elsevier, Amsterdam; New York, 1980). |
![]() |
69 | Desvillettes, L. and Villani, C., “On the trend to global equilibrium for spatially inhomogeneous
kinetic systems: The Boltzmann equation”, Invent. Math., 159, 245–316, (2005). [![]() |
![]() |
70 | DiPerna, R.J. and Lions, P.L., “Global weak solutions of Vlasov-Maxwell systems”, Commun.
Pure Appl. Math., 42, 729–757, (1989). [![]() |
![]() |
71 | DiPerna, R.J. and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global
existence and weak stability”, Ann. Math., 130, 321–366, (1989). [![]() |
![]() |
72 | Dudyński, M. and Ekiel-Jeżewska, M., “Global existence proof for the relativistic Boltzmann
equation”, J. Stat. Phys., 66, 991–1001, (1992). [![]() |
![]() |
73 | Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the summer school held 14 – 26 August 1972 at the Banff Centre, Banff, Alberta, Atrophysics and Space Science Library, 38, pp. 1–125, (Reidel, Dordrecht; Boston, 1973). |
![]() |
74 | Fiřt, R. and Rein, G., “Stability of disk-like galaxies – Part I: Stability via reduction”,
Analysis, 26, 507–525, (2007). [![]() ![]() |
![]() |
75 | Fjällborg, M., “On the cylindrically symmetric Einstein-Vlasov system”, Commun. Part. Diff.
Eq., 31, 1381–1405, (2006). [![]() ![]() |
![]() |
76 | Fjällborg, M., Heinzle, M. and Uggla, C., “Self-gravitating stationary spherically symmetric
systems in relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 143, 731–752, (2007).
[![]() |
![]() |
77 | Ganguly, K. and Victory, H., “On the convergence for particle methods for multidimensional
Vlasov–Poisson systems”, SIAM J. Numer. Anal., 26, 249–288, (1989). [![]() |
![]() |
78 | Giuliani, A. and Rothman, T., “Absolute stability limit for relativistic charged spheres”, Gen.
Relativ. Gravit., 40, 1427–1447, (2008). [![]() |
![]() |
79 | Glassey, R.T., The Cauchy Problem in Kinetic Theory, (SIAM, Philadelphia, 1996). [![]() |
![]() |
80 | Glassey, R., “Global solutions to the Cauchy problem for the relativistic Boltzmann equation
with near-vacuum data”, Commun. Math. Phys., 264, 705–724, (2006). [![]() |
![]() |
81 | Glassey, R.T. and Schaeffer, J., “On symmetric solutions to the relativistic Vlasov–Poisson
system”, Commun. Math. Phys., 101, 459–473, (1985). [![]() |
![]() |
82 | Glassey, R.T. and Schaeffer, J., “The ‘Two and One–Half Dimensional’ Relativistic
Vlasov–Maxwell System”, Commun. Math. Phys., 185, 257–284, (1997). [![]() |
![]() |
83 | Glassey, R.T. and Schaeffer, J., “The Relativistic Vlasov–Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355–374, (1998). |
![]() |
84 | Glassey, R.T. and Schaeffer, J., “On global symmetric solutions to the relativistic
Vlasov–Poisson equation in three space dimensions”, Math. Method. Appl. Sci., 24, 143–157,
(2001). [![]() |
![]() |
85 | Glassey, R.T. and Strauss, W., “Singularity formation in a collisionless plasma could only occur
at high velocities”, Arch. Ration. Mech. Anal., 92, 56–90, (1986). [![]() |
![]() |
86 | Glassey, R.T. and Strauss, W., “Absence of shocks in an initially dilute collisionless plasma”,
Commun. Math. Phys., 113, 191–208, (1987). [![]() |
![]() |
87 | Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res.
Inst. Math. Sci., 29, 301–347, (1993). [![]() |
![]() |
88 | Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Transp.
Theor. Stat. Phys., 24, 657–678, (1995). [![]() |
![]() |
89 | Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2,
1–49, (1998). [![]() |
![]() |
90 | Guo, Y., “The Vlasov-Maxwell-Boltzmann system near Maxwellians”, Invent. Math., 153,
593–630, (2003). [![]() |
![]() |
91 | Guven, J. and ÓMurchadha, N., “Bounds on 2m∕R for static spherical objects”, Phys. Rev.
D, 60, 084020, (1999). [![]() |
![]() |
92 | Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys.,
166, 457–493, (1995). [![]() |
![]() |
93 | Heinzle, J.M. and Uggla, C., “Dynamics of the spatially homogeneous Bianchi type I
Einstein-Vlasov equations”, Class. Quantum Grav., 23, 3463–3490, (2006). [![]() |
![]() |
94 | Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. I”, J.
Math. Phys., 43, 2439–2465, (2002). [![]() |
![]() |
95 | Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. II”, J.
Math. Phys., 43, 2466–2485, (2002). [![]() |
![]() |
96 | Horst, E., “On the classical solutions of the initial value problem for the unmodified non-linear
Vlasov equation (Parts I and II)”, Math. Method. Appl. Sci., 6, 262–279, (1982). [![]() |
![]() |
97 | Horst, E., “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math.
Method. Appl. Sci., 16, 75–86, (1993). [![]() |
![]() |
98 | Illner, R. and Rein, G., “Time decay of the solutions of the Vlasov–Poisson system in the
plasma physical case”, Math. Method. Appl. Sci., 19, 1409–1413, (1996). [![]() |
![]() |
99 | Illner, R. and Shinbrot, M., “The Boltzmann equation, global existence for a rare gas in an
infinite vacuum”, Commun. Math. Phys., 95, 217–226, (1984). [![]() |
![]() |
100 | Ipser, J.R., “Relativistic, spherically symmetric star clusters: III. Stability of compact isotropic
models”, Astrophys. J., 158, 17–43, (1969). [![]() |
![]() |
101 | Isenberg, J.A. and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean
curvature slicing”, Class. Quantum Grav., 15, 3679–3688, (1998). [![]() |
![]() |
102 | Jiang, Z., “Global existence proof for relativistic Boltzmann equation with hard interactions”,
J. Stat. Phys., 130, 535–544, (2008). [![]() |
![]() |
103 | Karageorgis, P. and Stalker, J., “Sharp bounds on 2m∕r for static spherical objects”, Class.
Quantum Grav., 25, 195021, (2008). [![]() |
![]() |
104 | Klainerman, S. and Staffilani, G., “A new approach to study the Vlasov–Maxwell system”, Commun. Pure Appl. Anal., 1, 103–125, (2002). |
![]() |
105 | Kunze, M. and Rendall, A.D., “The Vlasov–Poisson system with radiation damping”, Ann.
Henri Poincare, 2, 857–886, (2001). [![]() |
![]() |
106 | Lee, H., “Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological
constant”, Math. Proc. Camb. Phil. Soc., 137, 495–509, (2004). [![]() |
![]() |
107 | Lee, H., “The Einstein–Vlasov System with a Scalar Field”, Ann. Henri Poincare, 6, 697–723,
(2005). [![]() ![]() |
![]() |
108 | Lee, H., “Global existence of solutions of the Nordström-Vlasov system in two space
dimensions”, Commun. Part. Diff. Eq., 30, 663–687, (2005). [![]() ![]() |
![]() |
109 | Lee, H., “Classical solutions to the Vlasov–Poisson system in an accelerating cosmological
setting”, J. Differ. Equations, 249, 1111–1130, (2010). [![]() |
![]() |
110 | Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933). |
![]() |
111 | Lemou, M., Méhats, F. and Raphaël, P., “Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system”, J. Amer. Math. Soc., 21, 1019–1063, (2008). |
![]() |
112 | Lions, P.L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications. I”, J. Math. Kyoto Univ., 34, 391–427, (1994). |
![]() |
113 | Lions, P.L. and Perthame, B., “Propagation of moments and regularity for the 3-dimensional
Vlasov-Poisson system”, Invent. Math., 105, 415–430, (1991). [![]() |
![]() |
114 | Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55–69, (1998). |
![]() |
115 | Martín-García, J.M. and Gundlach, C., “Self-similar spherically symmetric solutions
of the massless Einstein–Vlasov system”, Phys. Rev. D, 65, 084026, 1–18, (2002). [![]() ![]() |
![]() |
116 | Moncrief, V. and Eardley, D.M., “The Global Existence Problem and Cosmic Censorship in
General Relativity”, Gen. Relativ. Gravit., 13, 887–892, (1981). [![]() |
![]() |
117 | Mucha, P.B., “The Cauchy Problem for the Einstein-Boltzmann System”, J. Appl. Anal., 4,
129–141, (1998). [![]() |
![]() |
118 | Mucha, P.B., “The Cauchy Problem for the Einstein-Vlasov System”, J. Appl. Anal., 4,
111–126, (1998). [![]() |
![]() |
119 | Nishida, T. and Imai, K., “Global solutions to the initial value problem for the nonlinear
Boltzmann equation”, Publ. Res. Inst. Math. Sci., 12, 229–239, (1976). [![]() |
![]() |
120 | Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”,
Ann. Phys. (Leipzig), 42, 533–554, (1913). [![]() |
![]() |
121 | Noundjeu, P., “The Einstein-Vlasov-Maxwell(EVM) System with Spherical Symmetry”, Class.
Quantum Grav., 22, 5365–5384, (2005). [![]() |
![]() |
122 | Noundjeu, P. and Noutchegueme, N., “Local existence and continuation criterion for solutions
of the spherically symmetric Einstein–Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36,
1373–1398, (2004). [![]() ![]() |
![]() |
123 | Noundjeu, P., Noutchegueme, N. and Rendall, A.D., “Existence of initial data satisfying the
constraints for the spherically symmetric Einstein–Vlasov–Maxwell system”, J. Math. Phys.,
45, 668–676, (2004). [![]() |
![]() |
124 | Noutchegueme, N. and Dongo, D., “Global existence of solutions for the Einstein-Boltzmann
system in a Bianchi type I spacetime for arbitrarily large initial data”, Class. Quantum Grav.,
23, 2979–3003, (2006). [![]() |
![]() |
125 | Noutchegueme, N. and Takou, E., “Global existence of solutions for the Einstein-Boltzmann system with cosmological constant in the Robertson-Walker space-time”, Commun. Math. Sci., 4, 291–314, (2006). |
![]() |
126 | Noutchegueme, N. and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann
equation in the homogeneous case on the Minkowski space-time”, arXiv e-print, (2003).
[![]() |
![]() |
127 | Nungesser, E., “Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter
at late times assuming small data”, Class. Quantum Grav., 27, 235025, (2010). [![]() |
![]() |
128 | Olabarrieta, I. and Choptuik, M.W., “Critical phenomena at the threshold of black hole
formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007, 1–10,
(2001). [![]() ![]() |
![]() |
129 | Pallard, C., “On the boundedness of the momentum support of solutions to the relativistic
Vlasov-Maxwell system”, Indiana Univ. Math. J., 54, 1395–1409, (2005). [![]() |
![]() |
130 | Pallard, C., “A pointwise bound on the electromagnetic field generated by a collisionless
plasma”, Math. Mod. Meth. Appl. Sci., 15, 1371–1391, (2005). [![]() |
![]() |
131 | Pallard, C., “On global smooth solutions to the 3D Vlasov-Nordström system”, Ann. Inst.
Henri Poincare C, 23, 85–96, (2006). [![]() |
![]() |
132 | Perthame, B., “Time decay, propagation of low moments and dispersive effects for kinetic equations”, Commun. Part. Diff. Eq., 21, 659–686, (1996). |
![]() |
133 | Pfaffelmoser, K., “Global classical solutions of the Vlasov–Poisson system in three dimensions
for general initial data”, J. Differ. Equations, 95, 281–303, (1992). [![]() |
![]() |
134 | Rein, G., “Static solutions of the spherically symmetric Vlasov–Einstein system”, Math. Proc.
Camb. Phil. Soc., 115, 559–570, (1994). [![]() |
![]() |
135 | Rein, G., The Vlasov-Einstein system with surface symmetry, Habilitation,
(Ludwig-Maximilians-Universität, München, 1995). Online version (accessed 02 March
2011): ![]() |
![]() |
136 | Rein, G., “Cosmological solutions of the Vlasov–Einstein system with spherical, plane and
hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739–762, (1996). [![]() |
![]() |
137 | Rein, G., “Growth estimates for the Vlasov–Poisson system in the plasma physics case”, Math.
Nachr., 191, 269–278, (1998). [![]() |
![]() |
138 | Rein, G., “Static shells for the Vlasov–Poisson and Vlasov–Einstein systems”, Indiana Univ.
Math. J., 48, 335–346, (1999). [![]() |
![]() |
139 | Rein, G., “Global weak solutions of the relativistic Vlasov–Maxwell system revisited”, Commun. Math. Sci., 2, 145–148, (2004). |
![]() |
140 | Rein, G., “On future completeness for the Einstein–Vlasov system with hyperbolic symmtery”,
Math. Proc. Camb. Phil. Soc., 137, 237–244, (2004). [![]() |
![]() |
141 | Rein, G., “Collisionless Kinetic Equations from Astrophysics – The Vlasov–Poisson System”,
in Dafermos, C.M. and Feireisl, E., eds., Handbook of Differential Equations: Evolutionary
Equations, Vol. 3, pp. 383–476, (Elsevier/North-Holland, Amsterdam, 2006). [![]() |
![]() |
142 | Rein, G. and Rendall, A.D., “Global existence of solutions of the spherically symmetric
Vlasov–Einstein system with small initial data”, Commun. Math. Phys., 150, 561–583, (1992).
[![]() |
![]() |
143 | Rein, G. and Rendall, A.D., “The Newtonian limit of the spherically symmetric Vlasov–Einstein
system”, Commun. Math. Phys., 150, 585–591, (1992). [![]() |
![]() |
144 | Rein, G. and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov–Einstein system”, Ann. Inst. Henri Poincare A, 59, 383–397, (1993). |
![]() |
145 | Rein, G. and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic
and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363–380, (2000).
[![]() |
![]() |
146 | Rein, G., Rendall, A.D. and Schaeffer, J., “A regularity theorem for solutions of the spherically
symmetric Vlasov–Einstein system”, Commun. Math. Phys., 168, 467–478, (1995). [![]() |
![]() |
147 | Rein, G., Rendall, A.D. and Schaeffer, J., “Critical collapse of collisionless matter: A numerical
investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [![]() ![]() |
![]() |
148 | Rein, G. and Rodewis, T., “Convergence of a particle-in-cell scheme for the spherically
symmetric Vlasov–Einstein system”, Indiana Univ. Math. J., 52, 821–862, (2003). [![]() |
![]() |
149 | Rendall, A.D., “Cosmic censorship and the Vlasov equation”, Class. Quantum Grav., 9,
L99–L104, (1992). [![]() |
![]() |
150 | Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Einstein-Vlasov
system”, Commun. Math. Phys., 163, 89–112, (1994). [![]() |
![]() |
151 | Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic
symmetry”, Class. Quantum Grav., 12, 1517–1533, (1995). [![]() |
![]() |
152 | Rendall, A.D., “Global properties of locally spatially homogeneous cosmological models with
matter”, Math. Proc. Camb. Phil. Soc., 118, 511–526, (1995). [![]() |
![]() |
153 | Rendall, A.D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi
type I.”, J. Math. Phys., 37, 438–451, (1996). [![]() |
![]() |
154 | Rendall, A.D., “Existence and non-existence results for global constant mean curvature
foliations”, Nonlinear Anal., 30, 3589–3598, (1997). [![]() |
![]() |
155 | Rendall, A.D., “Existence of constant mean curvature foliations in spacetimes with
two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). [![]() |
![]() |
156 | Rendall, A.D., “An introduction to the Einstein–Vlasov system”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 – March 30, 1996, Banach Center Publications, 41, pp. 35–68, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997). |
![]() |
157 | Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34,
1277–1294, (2002). [![]() |
![]() |
158 | Rendall, A.D., Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, (Oxford University Press, Oxford; New York, 2008). |
![]() |
159 | Rendall, A.D. and Tod, K.P., “Dynamics of spatially homogeneous solutions of the
Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav.,
16, 1705–1726, (1999). [![]() |
![]() |
160 | Rendall, A.D. and Uggla, C., “Dynamics of spatially homogeneous locally rotationally
symmetric solutions of the Einstein-Vlasov equations”, Class. Quantum Grav., 17, 4697–4713,
(2000). [![]() |
![]() |
161 | Rendall, A.D. and Velazquez, J.J.L., “A class of dust-like self-similar solutions of the massless
Einstein-Vlasov system”, arXiv e-print, (2010). [![]() |
![]() |
162 | Ringström, H., “Future stability of some models of the universe - with an introduction to the Einstein-Vlasov system”, unpublished manuscript. |
![]() |
163 | Ringström, H., “Future stability of the Einstein-non-linear scalar field system”, Invent. Math.,
173, 123–208, (2008). [![]() |
![]() |
164 | Ringström, H., “Power law inflation”, Commun. Math. Phys., 290, 155–218, (2009). [![]() |
![]() |
165 | Rodnianski, I. and Speck, J., “The stability of the irrotational Euler–Einstein system with a
positive cosmological constant”, arXiv e-print, (2009). [![]() |
![]() |
166 | Schaeffer, J., “The classical limit of the relativistic Vlasov–Maxwell system”, Commun. Math.
Phys., 104, 403–421, (1986). [![]() |
![]() |
167 | Schaeffer, J., “Discrete approximation of the Poisson–Vlasov system”, Quart. Appl. Math., 45, 59–73, (1987). |
![]() |
168 | Schaeffer, J., “Global existence of smooth solutions to the Vlasov-Poisson system in three
dimensions”, Commun. Part. Diff. Eq., 16, 1313–1335, (1991). [![]() |
![]() |
169 | Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov–Einstein system”,
Commun. Math. Phys., 204, 313–327, (1999). [![]() |
![]() |
170 | Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit
nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl.,
1916(III), 424–434, (1916). [![]() |
![]() |
171 | Shapiro, S.L. and Teukolsky, S.A., “Relativistic stellar dynamics on the computer: II. Physical
applications”, Astrophys. J., 298, 58–79, (1985). [![]() |
![]() |
172 | Shizuta, Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl.
Math., 36, 705–754, (1983). [![]() |
![]() |
173 | Smulevici, J., “Strong cosmic censorship for T2-symmetric spacetimes with cosmological
constant and matter”, Ann. Henri Poincare, 9, 1425–1453, (2008). [![]() ![]() |
![]() |
174 | Smulevici, J., “On the area of the symmetry orbits of cosmological spacetimes with toroidal or
hyperbolic symmetry”, arXiv e-print, (2009). [![]() |
![]() |
175 | Speck, J., “The nonlinear future-stability of the FLRW family of solutions to the Euler–Einstein
system with a positive cosmological constant”, arXiv e-print, (2011). [![]() |
![]() |
176 | Stewart, J.M., Non-equilibrium relativistic kinetic theory, Lecture Notes in Physics, 10, (Springer, Berlin; New York, 1971). |
![]() |
177 | Strain, R.M., “Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft
Potentials”, Commun. Math. Phys., 300, 529–597, (2010). [![]() ![]() |
![]() |
178 | Strain, R.M., “Global Newtonian limit for the relativistic Boltzmann equation near vacuum”,
SIAM J. Math. Anal., 42, 1568–1601, (2010). [![]() |
![]() |
179 | Strain, R.M., “Coordinates in the relativistic Boltzmann theory”, Kinet. Relat. Mod., 4,
345–359, (2011). [![]() ![]() |
![]() |
180 | Strain, R.M. and Guo, Y., “Stability of the relativistic Maxwellien in a collisional plasma”,
Commun. Math. Phys., 251, 263–320, (2004). [![]() |
![]() |
181 | Synge, J.L., The Relativistic Gas, (North-Holland; Interscience, Amsterdam; New York, 1957). |
![]() |
182 | Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric
Einstein–Vlasov system”, Class. Quantum Grav., 21, 5333–5346, (2004). [![]() ![]() |
![]() |
183 | Tchapnda, S.B., “On surface-symmetric spacetimes with collisionless and charged matter”,
Ann. Henri Poincare, 8, 1221–1253, (2007). [![]() |
![]() |
184 | Tchapnda, S.B. and Noutchegueme, N., “The surface-symmetric Einstein–Vlasov system
with cosmological constant”, Math. Proc. Camb. Phil. Soc., 18, 541–553, (2005). [![]() ![]() |
![]() |
185 | Tchapnda, S.B. and Rendall, A.D., “Global existence and asymptotic behaviour in the future
for the Einstein–Vlasov system with positive cosmological constant”, Class. Quantum Grav.,
20, 3037–3049, (2003). [![]() |
![]() |
186 | Tegankong, D., “Global existence and future asymptotic behaviour for solutions of the
Einstein–Vlasov-scalar field system with surface symmetry”, Class. Quantum Grav., 22,
2381–2391, (2005). [![]() ![]() |
![]() |
187 | Tegankong, D., Noutchegueme, N. and Rendall, A.D., “Local existence and continuation criteria
for solutions of the Einstein–Vlasov-scalar field system with surface symmetry”, J. Hyperbol.
Differ. Equations, 1, 691–724, (2004). [![]() ![]() |
![]() |
188 | Tegankong, D. and Rendall, A.D., “On the nature of initial singularities for solutions of the
Einstein-Vlasov-scalar field system with surface symmetry”, Math. Proc. Camb. Phil. Soc.,
141, 547–562, (2006). [![]() |
![]() |
189 | Ukai, S., “On the existence of global solutions of a mixed problem for the nonlinear Boltzmann
equation”, Proc. Japan Acad., 50, 179–184, (1974). [![]() |
![]() |
190 | Villani, C., “A review of mathematical topics in collisional kinetic theory”, in Friedlander, S.
and Serre, D., eds., Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 71–305, (Elsevier,
Amsterdam; Boston, 2002). Online version (accessed 11 February 2011): ![]() |
![]() |
191 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() |
![]() |
192 | Weaver, M., “On the area of the symmetry orbits in T2 symmetric pacetimes with Vlasov
matter”, Class. Quantum Grav., 21, 1079–1097, (2004). [![]() ![]() |
![]() |
193 | Wennberg, B., “Regularity in the Boltzmann equation and the Radon transform”, Commun.
Part. Diff. Eq., 19, 2057–2074, (1994). [![]() |
![]() |
194 | Wennberg, B., “The geometry of binary collisions and generalized Radon transforms”, Arch.
Ration. Mech. Anal., 139, 291–302, (1997). [![]() |
![]() |
195 | Wolansky, G., “Static Solutions of the Vlasov–Einstein System”, Arch. Ration. Mech. Anal.,
156, 205–230, (2001). [![]() |
![]() |
196 | Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics, 1, (University of Chicago Press, Chicago, 1971). |
![]() |
197 | Zel’dovich, Y.B. and Podurets, M.A., “The evolution of a system of gravitationally interacting point masses”, Sov. Astron., 9, 742–749, (1965). Translated from Astron. Zh. 42, 963–973 (1965). |
http://www.livingreviews.org/lrr-2011-4 |
Living Rev. Relativity 14, (2011), 4
![]() This work is licensed under a Creative Commons License. E-mail us: |