As mentioned in Section 1, broadly speaking, the final fates of BH-NS binaries are divided into two
classes. One in which the NS is tidally disrupted before it is swallowed by the companion BH and
the other is that the NS is simply swallowed by the BH. Figures 11 and 12
display snapshots
of the rest-mass density profiles and the location of the apparent horizon on the equatorial
plane at selected time slices for two typical cases [107
]. For these results, the NS are modeled
by the piecewise polytropic EOS described in Table 4. Figure 11
illustrates the process in
which the NS is tidally disrupted before the binary reaches the ISCO and then a disk is formed
surrounding the companion BH. For this model,
,
,
, and
(EOS 2H); the mass ratio (
) is small and the NS radius is large. For this
setting, the NS is significantly tidally deformed in close orbits, and eventually, mass shedding
from an inner cusp of the NS sets in far outside the ISCO. After a substantial fluid element
is removed from the inner cusp, the NS is tidally disrupted outside the ISCO. It should be
emphasized that tidal disruption does not occur immediately after the onset of mass shedding in this
case. Tidal disruption occurs for an orbital separation smaller than that for the onset of mass
shedding.
After tidal disruption occurs, the material of the NS forms a one-armed spiral. As a result of angular
momentum transport in the arm, a large amount of material spreads outward, and after the spiral arm is
wound from the differential rotation, a disk of approximately axisymmetric configuration is formed around
the BH located approximately at the center. However, because of the presence of a non-axisymmetric
structure at its formation, however, the disk does not completely relax to an axisymmetric state in
the rotational period 10 ms. Rather, a one-armed spiral of small amplitude is present
for a long time, and helps gradually transporting angular momentum outward, resulting in a
gradual mass infall into the BH. However, the mass accretion time scale is much longer than the
rotational period, and hence, the disk remains quasi-stationary for
10 ms. This evolution
process agrees qualitatively with that found in the study of the longterm evolution of BH-disk
systems [90, 103].
The tidal disruption process as illustrated in Figure 11 is qualitatively common for the model with a
low-mass BH or a large-radius NS or a high-spin BH. However, quantitative details depend on the
parameters of the binary. For a small mass ratio (
) with
, the typical size of the disk (the
region with
) is 50 – 100 km with maximum density
for a disk of mass
as shown in Figure 11
. Thus, the disk is rather compact. The disk relaxes to a nearly
axisymmetric configuration in a short time duration, approximately equal to the rotational period around
the BH. We note that these properties depend on the parameter of the binary. For example, for a
large mass ratio with a high BH spin (e.g.,
and
), the typical size is also
100 km, but the maximum density is smaller than those for the smaller value of
; the time
scale until the disk relaxes to an axisymmetric configuration is relatively long. A remarkable
point is that the tidal debris of relatively low density
1010 g/cm3 could be ejected to a
distance of
100 km [63
, 57
, 41
, 109
], i.e., a wider but less dense disk is formed (see also
Section 3.3.3).
Figure 12 illustrates the case in which the NS is not tidally disrupted before it is swallowed by the BH.
For this model,
,
,
, and
(EOS B in Table 4).
In this case, the NS is tidally deformed only in a close orbit. Then, mass shedding sets in for a too
close orbit to induce subsequent tidal disruption outside the ISCO. As a result, most of the
NS material falls into the BH approximately simultaneously. Also, the infall occurs from a
narrow region of the BH horizon. These processes help exciting a non-axisymmetric fundamental
quasi-normal mode (QNM) of the remnant BH. The mass of the disk formed after the onset of
the merger is negligible (much smaller than
), because the BH simply engulfs the
NS.
Generally speaking, the final fate depends on the location where mass shedding of the NS sets in. If the location is in the vicinity of or inside the ISCO, most of the NS material falls into the companion BH, and a BH with negligible surrounding material is the outcome. With the increase of the orbital separation at the onset of mass shedding, the mass of the material surrounding the BH increases. Note again that the mass shedding has to set in sufficiently outside the ISCO to induce tidal disruption, because tidal disruption occurs only after substantial mass is removed from the NS.
The effect of the BH spin significantly modifies the orbital evolution process in the late inspiral phase
and merger dynamics, as first demonstrated by the UIUC group [63]. Figure 13
shows the
trajectories of the BH and NS for models with
,
, and
(left) and
(right) [63
]. The NS is modeled by the
-law EOS with
. The initial orbital
angular velocity is the same for two models. For the binary composed of a non-spinning (
)
BH and NS, the merger occurs after about 4 orbits, whereas for the case with a spinning BH
(
), it occurs after about 6 orbits. For the case with a spinning BH, the decreased rate of
the orbital separation appears to be small. Qualitatively, these differences may be explained
primarily by the presence of a spin-orbit coupling effect, which is accompanied by an additional
repulsive force for
(and attractive force for
), and thus, reduces the attractive
force between two objects (see the equations of motion for two-body systems in the context
of the PN approximation [102, 226, 100]). In the presence of this additional repulsive force,
centrifugal forces should be reduced for a given orbital separation. This slows down the orbital
velocity, and therefore, the luminosity of gravitational waves is decreased and orbital evolution due
to gravitational radiation reaction is delayed (the lifetime of the binary becomes longer). In
addition, the orbital radius at the ISCO around the BH is decreased (and the absolute value of the
binding energy at the ISCO around the BH is increased) due to the spin-orbit coupling effect
(e.g., [16]). This further helps to increase the lifetime of the binary because it evolves as a result of
gravitational radiation reaction and hence has to emit more gravitational waves to reach the
ISCO.
This longer lifetime for a binary with a spinning BH enhances the possibility of tidal disruption, and the
final outcome is modified. Figure 14 displays the contour curves and the location of the remnant BH for the
same models as in Figure 13
. For both models, the NS is tidally disrupted outside the ISCO and a
disk is formed. For the spinning BH case (
), a more extended, more massive, and
denser disk is the outcome. For the non-spinning case (
), the disk mass is only
4%
of the total rest mass whereas for
, it is
13% (see Section 3.4 for details of
the remnant disk). This is probably due to the effect that the physical radius of the ISCO
(or specific angular momentum of a particle orbiting the ISCO) around the spinning BH is
smaller than that for the non-spinning BH and also that the radial approaching velocity at tidal
disruption is smaller for a spinning BH because of the repulsive nature of the spin-orbit coupling
effect.
The CCCW group subsequently studied the effects of BH spin on the final remnant with several
EOS [57]. They reached a similar conclusion about the orbital evolution and final outcome to that of the
UIUC group even for the case in which BH spin is slightly smaller,
. This conclusion
was reconfirmed also by the KT group [109
] for a wide variety of piecewise polytropic EOS
and mass ratios. Therefore, a moderately large BH spin,
, is substantial enough for
modifying the merger process and enhancing the disk formation. The CCCW group also performed
a simulation with
and
[74
] and found that tidal disruption occurs far
outside the ISCO and the resulting disk mass is very high,
36% of the total rest mass (see
Section 3.4).
The KT group also found that [109] for binaries composed of a high-spin BH (
) and
NS, tidal disruption may occur for a large value of mass ratio,
, for a wide variety
of NS EOS as far as it gives
. This implies that tidal disruption of a NS may be
possible for a large BH mass over a wide area. In such case, the material of the tidally-elongated
NS is swallowed from a relatively narrow region of the BH surface. As will be discussed in
Section 3.6, this helps excite a non-axisymmetric fundamental QNM of the remnant BH. On the
other hand, for the non-spinning BH case for which tidal disruption occurs only for a small
BH, the material of a tidally-elongated NS is always swallowed by a wide region of the BH
surface. This suppresses the excitation of non-axisymmetric QNM. This difference is reflected in
gravitational waveforms and spectra, as predicted in [177, 178] (in which a BH perturbation study was
performed).
To clarify the fact described above, Kyutoku et al. [109] generated Figures 15
– 17
, which show the
evolution of the rest-mass density profile for
,
, and EOS HB (cf. Table 4) with
, and
, respectively. The evolution processes shown in Figures 15
and 17
are
similar to those in Figures 11
and 12
, respectively. Figure 15
shows the case in which mass
shedding of the NS occurs at an orbit sufficiently far from the BH. Subsequently, the NS is
extensively elongated, a one-armed spiral is formed, and then the spiral arm composed of dense
material is wound around the BH. The material located in the outer region of the spiral arm
forms a disk, while that in the inner region falls into the BH. The infall of the dense material
proceeds from a wide region of the BH surface as seen in the fourth panel of Figure 11
. By
contrast, for
(see Figure 17
), tidal disruption does not occur and more than 99.99% of
the NS matter falls into the BH from a narrow region of the BH horizon and in a short time
scale.
The type of merger process for shown in Figure 16
is qualitatively new. Tidal disruption
occurs in a relatively close orbit (in the vicinity of the BH ISCO). The subsequent evolution process is
similar to that for
, but the infall of dense NS material to the BH occurs from a relatively narrow
region (see the second to fourth panels of Figure 16
). Eventually, the infall proceeds from a wide region of
the BH surface, but the density of the infalling material seems to be too low to enhance a QNM oscillation
of the BH significantly (see the fifth panel of Figure 16
). This feature is often found for a binary of
high-mass ratio and high BH spin.
To date, three types of merger process have been found. Type-I: the BH mass is low or the BH spin is
high, and the NS is tidally disrupted for an orbit far from the BH ISCO; Type-II: the BH mass is not low,
the BH spin is small (or ), and the NS is not tidally disrupted; Type-III: the BH mass is not low,
the BH spin (
) is high, and the NS is tidally disrupted for an orbit close to the BH ISCO. Their
merger processes are schematically described in Figure 18
. These differences in the infall process are well
reflected in gravitational waveforms and spectra.
In the latest work of the CCCW group [74], the effect of spin orientation, which is misaligned with that
of the orbit rotation axis, was studied for the first time. They performed simulations for
, and
, and
with
-law EOS (
), and found that the remnant disk mass decreases
sensitively with increase of the inclination (misalignment) angle for given values of
and
(see
Figure 20
). This is quite natural because the spin-orbit coupling force is proportional to
, where
and
denote BH spin and orbital angular momentum vectors, respectively, and the radius of the
ISCO around the BH approaches that for
with increasing of the inclination angle.
Thus, the BH spin effect becomes less important with the increase of the inclination angle.
They also found that the inclination angle is significantly decreased after a substantial mass
of the NS falls into the companion BH, implying that the angular momentum vector of the
remnant disk misaligns only modestly with the BH spin vector (by
). This is also quite
natural because the orbital angular momentum is as large as or larger than the spin angular
momentum of the BH for small mass ratios like
. However, for a high value of
for which the fraction of the BH spin angular momentum in the total angular momentum is
large, this conclusion will be modified. The initial inclination angle will not be significantly
modified and an inclined disk, which subsequently precesses around the spinning BH, may be the
outcome.
A tail of a one-armed spiral formed at tidal disruption often extends far away from the BH, in particular for
the case in which the BH spin is high. The CCCW group reported that for ,
, and
(i.e., for realistic values of the compactness), a tidal tail of mass
goes to
a distance
away from the BH before falling back to the central region [57
]. They also
reported that the fall-back time scale was
200 ms for
assuming that the material obeys
geodesic motion. Here, 200 ms agrees roughly with the dynamic infall time scale
. This
indicates that the time scale of mass accretion from the disk onto the BH is much longer than the
rotational period of the disk in the vicinity of the BH
10 ms. The typical duration of
SGRB is 0.1 – 1 s [142]. Such a time scale may be explained by the time scale of the fall-back
motion.
The LBPLI group also estimated the fall-back time for their simulation with ,
, and
[41]. In their simulation, the compactness of the NS was assumed to be smaller than that for a
realistic NS, and thus, the formation of the tidal tail can be significantly enhanced. They reported that for a
large fraction of the material
, the fall-back time may be longer than 1 s. However, they
followed the motion of the tidal tail only for a short time duration (16.3 ms; i.e., they did not show that the
material really went far away,
), and in addition, did not describe the detail of the method for
estimating the fall-back time. (Note that a fall-back time longer than 1 s is realized only for an element,
which reaches a distance from the BH of
.) Hence, their conclusion should be confirmed by a
longer-term simulation in the future. Their finding in the framework of numerical relativity that
the disk can extend to a large distance
for a high BH spin was qualitatively
new.
The KT group performed simulations for ,
,
with several
piecewise polytropic EOS [109
]. They found that even for a binary with a NS of realistic compactness
, the disk can extend to
500 km (which is approximately the location of the outer
boundary of the computational domain in their simulations). This conclusion agrees qualitatively with the
previous results by CCCW and LBPLI. Thus, for the merger of a rapidly-spinning BH and a NS, it may be
concluded that a widely-spread disk is formed, and the lifetime of the accretion disk will be
fairly long
0.1 s. The KT groups also found that the density of the disk decreases with
increase of
(or the BH mass); for a high-mass BH, a widely spread but less dense disk is
formed.
The dependence of the merger process on the NS EOS comes primarily from the fact that the NS radius
depends sensitively on the EOS. For a NS with a large radius, tidal disruption (and subsequent disk
formation) is more likely. This fact was clearly shown in the works by the KT group [107, 109
], performed
employing a variety of the piecewise polytropic EOS.
The EOS also determines the density profile of a NS. Even if the radius is the same for a given
mass, the density profiles for two NS may be different if the hypothetical EOS is different.
The KT group showed that a NS with a small adiabatic index for the core region, with which
the density is concentrated in the central region, is less subject to tidal disruption than that
with a larger adiabatic index (with relatively uniform density profile), even if the radius and
mass are identical; e.g., for the piecewise polytropic EOS listed in Table 4, a NS with a smaller
value of is less subject to tidal disruption. The reason for this is that the star with a
high degree of central density concentration is less subject to tidal deformation, as reviewed in
Section 1.2.
The CCCW group performed a simulation incorporating a tabulated finite-temperature EOS for the first
time [57]. The advantage of this approach is that one can determine the temperature and composition, such
as electron fraction in the disk formed after tidal disruption occurs. This will be useful for discussing the
possibility that the remnant BH-disk system could be a central engine of an SGRB. To avoid taking into
account the effects of neutrino emission, they assumed that the system is in
-equilibrium or that the
electron fraction is unchanged in the fluid-moving frame. In the former and latter, they assumed that
the system is in either of the following two limiting cases; the weak interaction time scale is
either much shorter or much longer than the dynamic time scale, respectively. They performed
simulations focusing on the case
and
. Irrespective of the EOS, they found that the
remnant disk is neutron rich with
and the temperature is only moderately
high (maximum is
10 MeV with the average
3 MeV) with the maximum density
and disk mass
. Perhaps, because of the relatively low mass and density of the
disk, the temperature is not as high as that found in a Newtonian simulation with detailed
microphysics [95].
http://www.livingreviews.org/lrr-2011-6 |
Living Rev. Relativity 14, (2011), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |