Figure 1 displays contours of the conformal factor
for a BH-NS binary with mass ratio
and NS compactness
. This contour plot shows the configuration at the
smallest orbital separation, for which Taniguchi’s code can achieve a converged solution. The
thick solid circle on the left-hand side denotes the position of the excised surface (the apparent
horizon), while that on the right-hand side denotes the position of the NS surface. A saddle point
presents between the BH and NS, and for this close orbit, it is located in the vicinity of the NS
surface, suggesting that the orbit of the binary is close to the mass-shedding limit. The value of
on the excised surface is not constant because a Neumann boundary condition (47
) is
imposed.
Figure 2 shows the binding energy (
) and the total angular momentum (
) as functions of
the orbital angular velocity (
) for a NS with baryon rest mass
(
) and for
mass ratio
. All the quantities shown are normalized to be dimensionless. The solid curves with the
filled circles denote the numerical results, and the dashed curves, the results in the 3PN approximation [25
].
The numerical sequences terminate at an orbit of cusp formation (i.e., at an orbit of the mass-shedding
limit) before the ISCO is encountered, i.e., before a turning point (minimum) of the binding energy
appears.
From the qualitative argument described in Section 1.1, the binary separation at the onset of
mass shedding of a NS can be approximately derived as (see Equation (5
))
Figure 3 shows that the turning points in the binding energy and the total angular momentum appear
simultaneously to within numerical accuracy. This fact is more clearly seen in Figure 4
in which the binding
energy versus total angular momentum for sequences of mass ratio
but with different NS
compactness is plotted. A simultaneous turning point in the binding energy and total angular momentum
leads to a cusp in these curves. As suggested by Equation (100
), turning points are not found for small
compactness (e.g., the case of
), since the sequences terminate at mass shedding
before encountering an ISCO. However, for larger compactness, these curves indeed form a cusp.
Note that 3PN sequences cannot identify mass shedding and therefore always exhibit turning
points.
http://www.livingreviews.org/lrr-2011-6 |
Living Rev. Relativity 14, (2011), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |