![]() |
1 | Abadie, J. et al. (LIGO Scientific Collaboration), “Calibration of the LIGO Gravitational Wave
Detectors in the Fifth Science Run”, Nucl. Instrum. Methods A, 624, 223–240, (2010). [![]() ![]() |
![]() |
2 | Abbott, B.P. et al. (LIGO Scientific Collaboration), “LIGO: the Laser Interferometer
Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901, (2009). [![]() |
![]() |
3 | Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo dector during
its second science run”, Class. Quantum Grav., 28, 025005, (2011). [![]() ![]() |
![]() |
4 | Acernese, F. et al. (Virgo Collaboration), “Status of VIRGO”, Class. Quantum Grav., 25,
114045, (2008). [![]() |
![]() |
5 | Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes:
Nonspinning binaries”, Phys. Rev. D, 77, 104017, (2008). [![]() ![]() |
![]() |
6 | Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.,
Palenzuela, C. and Tohline, J.E., “Simulating binary neutron stars: Dynamics and gravitational
waves”, Phys. Rev. D, 77, 024006, (2008). [![]() ![]() |
![]() |
7 | Anderson, M., Hirschmann, E.W., Liebling, S.L. and Neilsen, D., “Relativistic MHD with
adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). [![]() |
![]() |
8 | Ansorg, M., “A multi-domain spectral method for initial data of arbitrary binaries in general
relativity”, Class. Quantum Grav., 24, S1–S14, (2007). [![]() ![]() |
![]() |
9 | Asada, H., “Formulation for the internal motion of quasiequilibrium configurations in general
relativity”, Phys. Rev. D, 57, 7292–7298, (1998). [![]() |
![]() |
10 | Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”,
Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 20 December 2010): http://www.livingreviews.org/lrr-2004-10. |
![]() |
11 | Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Analytic modelling
of tidal effects in the relativistic inspiral of binary neutron stars”, arXiv, e-print, (2010).
[![]() |
![]() |
12 | Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Accurate numerical
simulations of inspiralling binary neutron stars and their comparison with effective-one-body
analytical models”, arXiv, e-print, (2011). [![]() |
![]() |
13 | Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiraling neutron-star
binaries: Prompt and delayed collapse to a black hole”, Phys. Rev. D, 78, 084033, (2008). [![]() ![]() |
![]() |
14 | Baiotti, L., Shibata, M. and Yamamoto, T., “Binary neutron-star mergers with Whisly
and SACRA: First quantitative comparison of results from independent general-relativistic
hydrodynamics codes”, Phys. Rev. D, 82, 064015, (2010). [![]() |
![]() |
15 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J., “Gravitational-Wave
Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96,
111102, (2006). [![]() |
![]() |
16 | Bardeen, J.M., Press, W.H. and Teukolsky, S.A., “Rotating Black Holes: Locally Nonrotating
Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J., 178, 347–369,
(1972). [![]() ![]() |
![]() |
17 | Baumgarte, T.W., Ó Murchadha, N. and Pfeiffer, H.P., “Einstein constraints: uniqueness and
nonuniqueness in the conformal thin sandwich approach”, Phys. Rev. D, 75, 044009, (2007).
[![]() |
![]() |
18 | Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equation”, Phys.
Rev. D, 59, 024007, (1998). [![]() ![]() ![]() |
![]() |
19 | Baumgarte, T.W., Skoge, M.L. and Shapiro, S.L., “Black hole-neutron star binaries in general
relativity: quasiequilibrium formulation”, Phys. Rev. D, 70, 064040, (2004). [![]() |
![]() |
20 | Belczynski, K., Taam, R.E., Kalogera, V., Rasio, F.A. and Bulik, T., “On the rarity of double
black hole binaries: consequences for gravitational wave detection”, Astrophys. J., 662, 504,
(2007). [![]() |
![]() |
21 | Belczynski, K., Taam, R.E., Rantsiou, E. and van der Sluys, M., “Black hole spin evolution:
implications on short-hard gamma-ray bursts and gravitational wave detection”, Astrophys. J.,
682, 474, (2008). [![]() |
![]() |
22 | Benz, W., Bowers, R.L., Cameron, A.G.W. and Press, W.H., “Dynamic mass exchange in
doubly degenerate binaries”, Astrophys. J., 348, 647, (1990). [![]() |
![]() |
23 | Berger, M. and Oliger, J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations”, J. Comput. Phys., 53, 484, (1984). [![]() |
![]() |
24 | Bildsten, L. and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J.,
400, 175–180, (1992). [![]() |
![]() |
25 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [![]() http://www.livingreviews.org/lrr-2006-4. |
![]() |
26 | Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Relativistic formalism to compute
quasiequilibrium configurations of nonsynchronized neutron star binaries”, Phys. Rev. D, 56,
7740–7749, (1997). [![]() |
![]() |
27 | Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical approach for high presicion 3D
relativistic star models”, Phys. Rev. D, 58, 104020, (1998). [![]() ![]() |
![]() |
28 | Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Spectral methods in general astrophysics”,
J. Comput. Appl. Math., 109, 433–473, (1999). [![]() ![]() |
![]() |
29 | Bowen, J.M. and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole
collisions”, Phys. Rev. D, 21, 2047–2056, (1980). [![]() |
![]() |
30 | Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook,
G.B. and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with
post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [![]() ![]() |
![]() |
31 | Boyle, M., Buonanno, A., Kidder, L.E., Mroué, A.H., Pan, Y., Pfeiffer, H.P. and Scheel, M.A.,
“High-accuracy numerical simulation of black-hole binaries: computation of gravitational-wave
energy flux and comparisons with post-Newtonian approximants”, Phys. Rev. D, 78, 104020,
(2008). [![]() |
![]() |
32 | Brandt, S. and Brügmann, B., “A simple construction of initial data for multiple black holes”,
Phys. Rev. Lett., 78, 3606–3609, (1997). [![]() |
![]() |
33 | Brill, D.R. and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131,
471–476, (1963). [![]() ![]() |
![]() |
34 | Brown, D., Sarbach, O., Schnetter, E., Tiglio, M., Diener, P., Hawke, I. and Pollney, D.,
“Excision without excision”, Phys. Rev. D, 76, 081503, (2007). [![]() |
![]() |
35 | Brügmann, B., González, J.A., Hannam, M., Husa, S., Sperhake, U. and Tichy, W., “Calibration of moving puncture simulations”, Phys. Rev. D, 77, 024027, (2008). |
![]() |
36 | Buonanno, A., Cook, G.B. and Pretorius, F., “Inspiral, merger, and ring-down of equal-mass
black-hole binaries”, Phys. Rev. D, 75, 124018, (2007). [![]() |
![]() |
37 | Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body
dynamics”, Phys. Rev. D, 59, 084006, (1999). [![]() ![]() |
![]() |
38 | Cameron, A.G.W. and Iben Jr, I., “On the behavior of double degenerate binaries associated
with Type I supernovae”, Astrophys. J., 305, 228, (1986). [![]() |
![]() |
39 | Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate evolutions of
orbiting black-hole binaries without excision”, Phys. Rev. Lett., 96, 111101, (2006). [![]() ![]() |
![]() |
40 | Caudill, M., Cook, G.B., Grigsby, J.D. and Pfeiffer, H.P., “Circular orbits and spin in black-hole
initial data”, Phys. Rev. D, 74, 064011, (2006). [![]() ![]() |
![]() |
41 | Chawla, S., Anderson, M., Besselman, M., Lehner, L., Liebling, S.L., Motl, P.M. and Neilsen,
D., “Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion
and Fallback”, Phys. Rev. Lett., 105, 111101, (2010). [![]() |
![]() |
42 | Christodoulou, D., “Reversible and irreversible transformations in black-hole physics”, Phys.
Rev. Lett., 25, 1596, (1970). [![]() |
![]() |
43 | Clark, J.P.A. and Eardley, D.M., “Evolution of close neutron star binaries”, Astrophys. J., 215,
311–322, (1977). [![]() |
![]() |
44 | Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5,
(2000). URL (accessed 20 December 2010): http://www.livingreviews.org/lrr-2000-5. |
![]() |
45 | Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev.
D, 65, 084003, (2002). [![]() ![]() |
![]() |
46 | Cook, G.B. and Baumgarte, T.W., “Excision boundary conditions for the conformal metric”,
Phys. Rev. D, 78, 104016, (2008). [![]() |
![]() |
47 | Cook, G.B. and Pfeiffer, H.P., “Excision boundary conditions for black hole initial data”, Phys.
Rev. D, 70, 104016, (2004). [![]() ![]() |
![]() |
48 | Cook, G.B. and Whiting, B.F., “Approximate Killing vectors on S2”, Phys. Rev. D, 76, 041501,
(2007). [![]() ![]() |
![]() |
49 | Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev.
D, 49, 2658–2697, (1994). [![]() ![]() |
![]() |
50 | Damour, T. and Nagar, A., “Effective one body description of tidal effects in inspiralling
compact binaries”, Phys. Rev. D, 81, 084016, (2010). [![]() |
![]() |
51 | Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E. and Hessels, J.W.T., “Shapiro
delay measurement of a two solar mass neutron star”, Nature, 467, 1081, (2010). [![]() |
![]() |
52 | Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M. and Müller, E., “Combining spectral
and shock-capturing methods: A new numerical approach for 3D relativistic core collapse
simulations”, Phys. Rev. D, 71, 064023, (2005). [![]() ![]() ![]() |
![]() |
53 | Dimmelmeier, H., Ott, C.D., Janka, H.-T., Marek, A. and Müller, E., “Generic
gravitational-wave signals from the collapse of rotating stellar cores”, Phys. Rev. Lett., 98,
251101, (2007). [![]() ![]() ![]() |
![]() |
54 | Dimmelmeier, H., Ott, C.D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal
from the core collapse of rotating stars”, Phys. Rev. D, 78, 064056, (2008). [![]() ![]() ![]() |
![]() |
55 | Dreyer, O., Krishnan, B., Shoemaker, D. and Schnetter, E., “Introduction to isolated horizon
in numerical relativity”, Phys. Rev. D, 67, 024018, (2003). [![]() |
![]() |
56 | Duez, M.D., “Numerical relativity confronts compact neutron star binaries: a review and status
report”, Class. Quantum Grav., 27, 114002, (2010). [![]() |
![]() |
57 | Duez, M.D., Foucart, F., Kidder, L.E., Ott, C.D. and Teukolsky, S.A., “Equation of state effects
in black hole-neutron star mergers”, Class. Quantum Grav., 27, 114106, (2010). [![]() |
![]() |
58 | Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A. and Teukolsky, S.A.,
“Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite
difference methods”, Phys. Rev. D, 78, 104015, (2008). [![]() |
![]() |
59 | Duez, M.D., Marronetti, P., Shapiro, S.L. and Baumgarte, T.W., “Hydrodynamic simulations
in 3+1 general relativity”, Phys. Rev. D, 67, 024004, (2003). [![]() |
![]() |
60 | Eggleton, P.P., “Approximations to the radii of Roche lobes”, Astrophys. J., 268, 368–369,
(1983). [![]() |
![]() |
61 | Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Filling the holes:
evolving excised binary black hole initial data with puncture techniques”, Phys. Rev. D, 76,
101503, (2007). [![]() |
![]() |
62 | Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L., Taniguchi, K. and Baumgarte, T.W., “Fully
general relativistic simulations of black hole-neutron star mergers”, Phys. Rev. D, 77, 084002,
(2008). [![]() ![]() |
![]() |
63 | Etienne, Z.B., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Relativistic simulations of black
hole-neutron star mergers: effects of black hole spin”, Phys. Rev. D, 79, 044024, (2009). [![]() |
![]() |
64 | Faber, J.A., Baumgarte, T.W., Shapiro, S.L. and Taniguchi, K., “General Relativistic Binary
Merger Simulations and Short Gamma-Ray Bursts”, Astrophys. J. Lett., 641, L93–L96, (2006).
[![]() |
![]() |
65 | Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K. and Rasio, F., “Dynamical
evolution of black hole-neutron star binaries in general relativity: Simulations of tidal
disruption”, Phys. Rev. D, 73, 024012, (2006). [![]() ![]() |
![]() |
66 | Faber, J.A. and Rasio, F., “Post-Newtonian SPH calculations of binary neutron star
coalescence: Method and first results”, Phys. Rev. D, 62, 064012, (2000). [![]() |
![]() |
67 | Faber, J.A. and Rasio, F., “Post-Newtonian SPH calculations of binary neutron star
coalescence. III. Irrotational systems and gravitational wave spectra”, Phys. Rev. D, 65, 084042,
(2002). [![]() |
![]() |
68 | Faber, J.A., Rasio, F. and Manor, J.B., “Post-Newtonian smoothed particle hydrodynamics
calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and
spin dependence”, Phys. Rev. D, 63, 044012, (2001). [![]() |
![]() |
69 | Ferrari, V., Gualtieri, L. and Pannarale, F., “A semi-relativistic model for tidal interactions in
BH-NS coalescing binaries”, Class. Quantum Grav., 26, 125004, (2009). [![]() |
![]() |
70 | Ferrari, V., Gualtieri, L. and Pannarale, F., “Neutron star tidal disruption in mixed binaries:
The imprint of the equation of state”, Phys. Rev. D, 81, 064026, (2010). [![]() |
![]() |
71 | Fishbone, L.G., “The Relativistic Roche Problem. I. Equilibrium Theory for a Body in
Equatorial, Circular Orbit around a Kerr Black Hole”, Astrophys. J., 185, 43, (1973). [![]() |
![]() |
72 | Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with
gravitational wave detectors”, Phys. Rev. D, 77, 021502, (2008). [![]() |
![]() |
73 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (accessed 20 December 2010): http://www.livingreviews.org/lrr-2008-7. |
![]() |
74 | Foucart, F., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Black hole-neutron star mergers:
Effects of the orientation of the black hole spin”, Phys. Rev. D, 83, 024005, (2010). [![]() |
![]() |
75 | Foucart, F., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., “Initial data for black hole-neutron
star binaries: a flexible, high-accuracy spectral method”, Phys. Rev. D, 77, 124051, (2008).
[![]() |
![]() |
76 | Friedman, J.L., Uryū, K. and Shibata, M., “Thermodynamics of binary black holes and
neutron stars”, Phys. Rev. D, 65, 064035, (2002). [![]() |
![]() |
77 | Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev.
D, 65, 044029, (2002). [![]() ![]() |
![]() |
78 | Gourgoulhon, E., Grandclément, P. and Bonazzola, S., “Binary black holes in circular orbits.
I. A global spacetime approach”, Phys. Rev. D, 65, 044020, (2002). [![]() ![]() |
![]() |
79 | Gourgoulhon, E., Grandclément, P., Marck, J.-A. and Novak, J., “LORENE: Langage Objet
pour la RElativité NumériquE”, project homepage, L’Observatoire de Paris. URL (accessed
20 December 2010): ![]() |
![]() |
80 | Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A. and Bonazzola, S.,
“Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general
relativity. Methods and tests”, Phys. Rev. D, 63, 064029, (2001). [![]() ![]() |
![]() |
81 | Gourgoulhon, E. and Jaramillo, J.L., “A 3+1 perspective on null hypersurfaces and isolated
horizons”, Phys. Rep., 423, 159–294, (2006). [![]() ![]() |
![]() |
82 | Grandclément, P., “Accurate and realistic initial data for black hole-neutron star binaries”,
Phys. Rev. D, 74, 124002, (2006). [![]() ![]() |
![]() |
83 | Grandclément, P., “Erratum: Accurate and realistic initial data for black hole-neutron star
binaries [Phys. Rev. D 74, 124002 (2006)]”, Phys. Rev. D, 75, 129903(E), (2007). [![]() |
![]() |
84 | Grandclément, P., Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “A multidomain spectral
method for scalar and vectorial poisson equations with noncompact sources”, J. Comput. Phys.,
170, 231–260, (2001). [![]() ![]() |
![]() |
85 | Grandclément, P. and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev.
Relativity, 12, lrr-2009-1, (2009). URL (accessed 20 December 2010): http://www.livingreviews.org/lrr-2009-1. |
![]() |
86 | Gundlach, C., Calabrese, G., Hinder, I. and Martín-García, J.M., “Constraint damping in
the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3773, (2005). [![]() ![]() |
![]() |
87 | Haensel, P. and Potekhin, A.Y., “Analytical representations of unified equations of state of
neutron-star matter”, Astron. Astrophys., 428, 191, (2004). [![]() |
![]() |
88 | Hannam, M., Husa, S., Brügmann, B. and Ó Murchadha, N., “Geometry and Regularity of
Moving Punctures”, Phys. Rev. Lett., 99, 241102, (2007). [![]() |
![]() |
89 | Harten, A., Lax, P.D. and van Leer, B., “On upstream differencing and Godunov-type schemes
for hyperbolic conservation laws”, SIAM Rev., 25, 35–61, (1983). [![]() |
![]() |
90 | Hawley, J.F., “Three-dimensional simulations of black hole tori”, Astrophys. J., 381, 496–507,
(1991). [![]() ![]() |
![]() |
91 | Hild, S., Chelkowski, S. and Freise, A., “Pushing towards the ET sensitivity using ‘conventional’
technology”, arXiv, e-print, (2008). [![]() |
![]() |
92 | Hild, S. et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observatories”,
arXiv, e-print, (2010). [![]() |
![]() |
93 | Imbirba, B., Baker, J., Choi, D.-I., Centrella, J., Fiske, D.F., Brown, D. and van Meter, J.R.,
“Evolving a puncture black hole with fixed mesh refinement”, Phys. Rev. D, 70, 124025, (2004).
[![]() |
![]() |
94 | Ishii, M., Shibata, M. and Mino, Y., “Black hole tidal problem in the Fermi normal coordniates”,
Phys. Rev. D, 71, 044017, (2005). [![]() |
![]() |
95 | Janka, H.-T., Eberl, T., Ruffert, M. and Fryer, C.L., “Black Hole-Neutron Star Mergers as
Central Engines of Gamma-Ray Bursts”, Astrophys. J. Lett., 527, L39, (1999). [![]() |
![]() |
96 | Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample
Applications: The Gaussian Case”, Living Rev. Relativity, 8, lrr-2005-3, (2005). URL (accessed
20 December 2010): http://www.livingreviews.org/lrr-2005-3. |
![]() |
97 | Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy, R. and Willems, B., “Formation of
double compact objects”, Phys. Rep., 442, 75, (2007). [![]() |
![]() |
98 | Kalogera, V. et al., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”,
Astrophys. J. Lett., 601, L179–L182, (2004). [![]() |
![]() |
99 | Kaspi, V.M., Roberts, M.S.E. and Harding, A.K., “Isolated neutron stars”, in Lewin, W.H.G.
and van der Klis, M., eds., Compact Stellar X-ray Sources, Cambridge Astrophysics Series,
39, pp. 279–340, (Cambridge University Press, Cambridge, 2006). [![]() |
![]() |
100 | Kidder, L.E., “Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. V.
Spin effects”, Phys. Rev. D, 52, 821–847, (1995). [![]() ![]() |
![]() |
101 | Kidder, L.E., “Using full information when computing modes of post-Newtonian waveforms
from inspiraling compact binaries in circular orbit”, Phys. Rev. D, 77, 044016, (2008). [![]() ![]() |
![]() |
102 | Kidder, L.E., Will, C.M. and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact
binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). [![]() |
![]() |
103 | Kiuchi, K., Shibata, M., Montero, P.J. and Font, J.A., “Gravitational waves from the
Papaloizou-Pringle instability in black hole-torus systems”, Phys. Rev. Lett., 106, 251102,
(2011). [![]() ![]() |
![]() |
104 | Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992). [![]() |
![]() |
105 | Kurganov, A. and Tadmor, E., “New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations”, J. Comput. Phys., 160, 241–282, (2000). [![]() |
![]() |
106 | Kyutoku, K., Shibata, M. and Taniguchi, K., “Quasiequilibrium states of black hole-neutron
star binaries in moving-puncture framework”, Phys. Rev. D, 79, 124018, (2009). [![]() |
![]() |
107 | Kyutoku, K., Shibata, M. and Taniguchi, K., “Gravitational waves from nonspinning black
hole-neutron star binaries: Dependence on equations of state”, Phys. Rev. D, 82, 044049, (2010).
[![]() ![]() |
![]() |
108 | Kyutoku, K., Shibata, M. and Taniguchi, K., “Erratum: Gravitational waves from nonspinning
black hole-neutron star binaries: Dependence on equations of state [Phys. Rev. D 82, 044049
(2010)]”, arXiv, e-print, (2011). [![]() |
![]() |
109 | Kyutoku, K., Shibata, M. and Taniguchi, K., “Gravitational waves from spinning black
hole-neutron star binaries: Dependence on black hole spins and on neutron star equations of
state”, Phys. Rev. D, accepted, (2011). [![]() |
![]() |
110 | Lackey, B.D., Kyutoku, K., Shibata, M. and Brady, P.R. abd Friedman, J.L., “Extracting equation of state parameters from black hole-neutron star mergers. I. Nonspinning black holes”, Phys. Rev. D, in preparation, (2011). |
![]() |
111 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Ellipsoidal figures of equilibrium: compressible models”,
Astrophys. J. Suppl. Ser., 88, 205–252, (1993). [![]() |
![]() |
112 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Equilibrium, stability, and orbital evolution of close
binary systems”, Astrophys. J., 423, 344, (1994). [![]() |
![]() |
113 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Hydrodynamic instability and coalescence of binary
neutron stars”, Astrophys. J., 420, 811, (1994). [![]() |
![]() |
114 | Lai, D. and Wiseman, A.G., “Innermost stable circular orbit of inspiraling neutron-star binaries:
Tidal effects, post-Newtonian effects, and the neutron-star equation of state”, Phys. Rev. D,
54, 3958, (1996). [![]() |
![]() |
115 | Lattimer, J.M. and Prakash, M., “Neutron star structure and the equation of state”, Astrophys.
J., 550, 426–442, (2001). [![]() ![]() |
![]() |
116 | Lattimer, J.M. and Prakash, M., “The Physics of Neutron Stars”, Science, 304, 536–542,
(2004). [![]() ![]() |
![]() |
117 | Lattimer, J.M. and Prakash, M., “Neutron star observations: Prognosis for equation of state
constraints”, Phys. Rep., 442, 109–165, (2007). [![]() ![]() |
![]() |
118 | Lattimer, J.M. and Schramm, D.N., “Black-hole-neutron-star collisions”, Astrophys. J. Lett.,
192, L145, (1974). [![]() |
![]() |
119 | Lattimer, J.M. and Swesty, D.F., “A generalized equation of state for hot, dense matter”, Nucl.
Phys. A, 535, 331–376, (1991). [![]() |
![]() |
120 | “LCGT: Large-scale Cryogenic Gravitational wave Telescope”, project homepage, ICRR. URL
(accessed 20 December 2010): ![]() |
![]() |
121 | Lee, W.H., “Newtonian hydrodynamics of the coalescence of black holes with neutron stars –
III. Irrotational binaries with a stiff equation of state”, Mon. Not. R. Astron. Soc., 318, 606,
(2000). [![]() |
![]() |
122 | Lee, W.H., “Newtonian hydrodynamics of the coalescence of black holes with neutron stars –
IV. Irrotational binaries with a soft equation of state”, Mon. Not. R. Astron. Soc., 328, 583,
(2001). [![]() |
![]() |
123 | Lee, W.H. and Kluźniak, W., “Newtonian hydrodynamics of the coalescence of black holes
with neutron stars – II. Tidally locked binaries with a soft equation of state”, Mon. Not. R.
Astron. Soc., 308, 780, (1999). [![]() |
![]() |
124 | Lee, W.H. and Kluźniak, W., “Newtonian Hydrodynamics of the Coalescence of Black Holes
with Neutron Stars. I. Tidally Locked Binaries with a Stiff Equation of State”, Astrophys. J.
Lett., 526, L178, (1999). [![]() |
![]() |
125 | Lee, W.H., Ramirez-Ruiz, E. and van de Ven, G., “Short gamma-ray bursts from dynamically
assembled compact binaries in globular clusters: Pathways, rates, hydrodynamics, and
cosmological setting”, Astrophys. J., 720, 953, (2010). [![]() |
![]() |
126 | “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL
(accessed 20 December 2010): ![]() |
![]() |
127 | Lindblom, L., “Determining the nuclear equation of state from neutron-star masses and radii”,
Astrophys. J., 398, 569, (1992). [![]() |
![]() |
128 | Lindblom, L., “Spectral representations of neutron-star equations of state”, Phys. Rev. D, 82,
103011, (2010). [![]() |
![]() |
129 | Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A new generalized
harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [![]() ![]() |
![]() |
130 | Liu, Y.T., Etienne, Z.B. and Shapiro, S.L., “Evolution of near-extremal-spin black holes using the moving puncture technique”, Phys. Rev. D, 80, 121503(R), (2010). |
![]() |
131 | Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8, (2008).
URL (accessed 20 December 2010): http://www.livingreviews.org/lrr-2008-8. |
![]() |
132 | Lovelace, G., Owen, R., Pfeiffer, H.P. and Chu, T., “Binary-black-hole initial data with nearly
extremal spins”, Phys. Rev. D, 78, 084017, (2008). [![]() ![]() ![]() |
![]() |
133 | Lovelace, G., Scheel, M.A. and Szilágyi, B., “Simulating merging binary black holes with
nearly extremal spins”, Phys. Rev. D, 83, 024010, (2010). [![]() ![]() |
![]() |
134 | Manasse, F.K. and Misner, C.W., “Fermi Normal Coordinates and Some Basic Concepts in
Differential Geometry”, J. Math. Phys., 4, 735–745, (1963). [![]() |
![]() |
135 | Marck, J.-A., “Solution to the Equations of Parallel Transport in Kerr Geometry; Tidal
Tensor”, Proc. R. Soc. London, Ser. A, 385, 431, (1983). [![]() |
![]() |
136 | Marronetti, P., Tichy, W., Brügmann, B., González, J.A. and Sperhake, U., “High-spin binary
black hole mergers”, Phys. Rev. D, 77, 064010, (2008). [![]() ![]() |
![]() |
137 | Mashhoon, B., “On tidal phenomena in a strong gravitational field”, Astrophys. J., 197, 705,
(1975). [![]() |
![]() |
138 | Miller, M., “General Relativistic Initial Data for the Binary Black Hole / Neutron Star System
in Quasicircular Orbit”, arXiv, e-print, (2001). [![]() |
![]() |
139 | Nakamura, T. and Oohara, K., “Gravitational radiation emitted by N particles in circular
orbits”, Phys. Lett. A, 98, 483, (1983). [![]() |
![]() |
140 | Nakamura, T., Oohara, K. and Kojima, Y., “General Relativistic Collapse to Black Holes and
Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–218, (1987). [![]() |
![]() |
141 | Nakamura, T. and Sasaki, M., “Is collapse of a deformed star always effectual for gravitational
radiation?”, Phys. Lett. B, 106, 69–72, (1981). [![]() |
![]() |
142 | Nakar, E., “Short-hard gamma-ray bursts”, Phys. Rep., 442, 166, (2007). [![]() |
![]() |
143 | Narayan, R., Paczyński, B. and Piran, T., “Gamma-Ray Bursts as the Death Throes of
Massive Binary Stars”, Astrophys. J. Lett., 395, L83–L86, (1992). [![]() ![]() |
![]() |
144 | Narayan, R., Piran, T. and Shemi, A., “Neutron star and black hole binaries in the Galaxy”,
Astrophys. J. Lett., 379, L17–L20, (1991). [![]() ![]() |
![]() |
145 | Ó Murchadha, N. and York Jr, J.W., “Initial-value problem of general relativity. I. General formulation and physical interpretation”, Phys. Rev. D, 10, 428–436, (1974). |
![]() |
146 | Oechslin, R., Janka, H.-T. and Marek, A., “Relativistic neutron star merger simulations with
non-zero temperature equations of state. I. Variation of binary parameters and equation of
state”, Astron. Astrophys., 467, 395–409, (2007). [![]() |
![]() |
147 | O’Shaughnessy, R., Kalogera, V. and Belczynski, K., “Binary compact object coalescence rates:
the role of elliptical galaxies”, Astrophys. J., 715, 1453, (2010). [![]() |
![]() |
148 | O’Shaughnessy, R., Kim, C., Kalogera, V. and Belczynski, K., “Constraining Population
Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates”,
Astrophys. J., 672, 479–488, (2008). [![]() |
![]() |
149 | Ott, C.D. et al., “Dynamics and Gravitational Wave Signature of Collapsar Formation”, Phys.
Rev. Lett., 106, 161103, (2011). [![]() ![]() |
![]() |
150 | Özel, F. and Psaltis, D., “Reconstructing the neutron-star equation of state from astrophysical
measurements”, Phys. Rev. D, 80, 103003, (2009). [![]() ![]() |
![]() |
151 | Paczyński, B., “Evolutionary process in close binary systems”, Annu. Rev. Astron. Astrophys.,
9, 183, (1971). [![]() |
![]() |
152 | Paczyński, B. and Wiita, P.J., “Thick accretion disks and supercritical luminosities”, Astron.
Astrophys., 88, 23–31, (1980). [![]() |
![]() |
153 | Pannarale, F., Rezzolla, L., Ohme, F. and Read, J.S., “Will black hole-neutron star
binary inspirals tell us about the neutron star equation of state?”, arXiv, e-print, (2011).
[![]() |
![]() |
154 | Pannarale, F., Tonita, A. and Rezzolla, L., “Black hole-neutron star mergers and short GRBs:
a relativistic toy model to estimate the mass of the torus”, Astrophys. J., 95, (2010). [![]() ![]() |
![]() |
155 | Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136,
B1224–B1232, (1964). [![]() |
![]() |
156 | Peters, P.C. and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”,
Phys. Rev., 131, 435–440, (1963). [![]() |
![]() |
157 | Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G. and Scheel, M.A.,
“Reducing orbital eccentricity in binary black hole simulations”, Class. Quantum Grav., 24,
S59–S81, (2007). [![]() ![]() |
![]() |
158 | Pfeiffer, H.P., Teukolsky, S.A. and Cook, G.B., “Quasicircular orbits for spinning binary black
holes”, Phys. Rev. D, 62, 104018, (2000). [![]() ![]() ![]() |
![]() |
159 | Pfeiffer, H.P. and York Jr, J.W., “Uniqueness and Nonuniqueness in the Einstein Constraints”,
Phys. Rev. Lett., 95, 091101, (2005). [![]() |
![]() |
160 | Phinney, E.S., “The rate of neutron star binary mergers in the universe: Minimal predictions
for gravity wave detectors”, Astrophys. J. Lett., 380, L17–L21, (1991). [![]() |
![]() |
161 | Piran, T., “The physics of gamma-ray bursts”, Rev. Mod. Phys., 76, 1143, (2005). [![]() |
![]() |
162 | Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101,
(2005). [![]() ![]() |
![]() |
163 | Pretorius, F., “Simulation of binary black hole spacetimes with a harmonic evolution scheme”,
Class. Quantum Grav., 23, S529, (2006). [![]() |
![]() |
164 | Rantisou, E., Kobayashi, S., Rasio, F.A. and Laguna, P., “Mergers of Black Hole-Neutron Star
Binaries. I. Methods and First Results”, Astrophys. J., 680, 1326, (2008). [![]() |
![]() |
165 | Rasio, F.A. and Shapiro, S.L., “Hydrodynamic evolution of coalescing binary neutron stars”,
Astrophys. J., 401, 226, (1992). [![]() |
![]() |
166 | Rasio, F.A. and Shapiro, S.L., “Hydrodynamics of binary coalesce: Polytropes with stiff
equations of state”, Astrophys. J., 432, 242, (1994). [![]() |
![]() |
167 | Read, J.S., Lackey, B.D., Owen, B.J. and Friedman, J.L., “Constraints on a phenomenologically
parametrized neutron-star equation of state”, Phys. Rev. D, 79, 124032, (2009). [![]() |
![]() |
168 | Read, J.S., Markakis, C., Shibata, M., Uryū, K., Creighton, J.D.E. and Friedman, J.L.,
“Measuring the neutron star equation of state with gravitational wave observations”, Phys.
Rev. D, 79, 124033, (2009). [![]() |
![]() |
169 | Rosswog, S., “Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios:
Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients”, Astrophys. J., 634,
1202, (2005). [![]() |
![]() |
170 | Rosswog, S. and Liebendörfer, M., “High-resolution calculations of merging neutron stars –
II. Neutrino emission”, Mon. Not. R. Astron. Soc., 342, 673, (2003). [![]() |
![]() |
171 | Rosswog, S., Speith, R. and Wynn, G.A., “Accretion dynamics in neutron star-black hole
binaries”, Mon. Not. R. Astron. Soc., 351, 1121, (2004). [![]() |
![]() |
172 | Ruffert, M. and Janka, H.-T., “Colliding neutron stars: Gravitational waves, neutrino emission,
and gamma-ray bursts”, Astron. Astrophys., 338, 535–555, (1998). [![]() ![]() |
![]() |
173 | Ruffert, M. and Janka, H.-T., “Coalescing neutron stars – A step towards physical models. III.
Improved numerics and different neutron star masses and spins”, Astron. Astrophys., 380, 544,
(2001). [![]() ![]() |
![]() |
174 | Ruffert, M. and Janka, H.-T., “Polytropic neutron star-black hole merger simulations with a
Paczyński-Wiita potential”, Astron. Astrophys., 514, 66, (2010). [![]() |
![]() |
175 | Ruffert, M., Janka, H.-T. and Schäfer, G., “Coalescing neutron stars – a step towards physical
models. I. Hydrodynamic evolution and gravitational-wave emission”, Astron. Astrophys., 311,
532–566, (1996). [![]() |
![]() |
176 | Ruffert, M., Janka, H.-T., Takahashi, K. and Schäfer, G., “Coalescing neutron stars – a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts”, Astron. Astrophys., 319, 122, (1997). |
![]() |
177 | Saijo, M. and Nakamura, T., “Possible Direct Method to Determine the Radius of a Star from
the Spectrum of Gravitational Wave Signals”, Phys. Rev. Lett., 85, 2665, (2000). [![]() |
![]() |
178 | Saijo, M. and Nakamura, T., “Possible Direct Method to Determine the Radius of a Star from
the Spectrum of Gravitational Wave Signals”, Phys. Rev. D, 63, 064004, (2001). [![]() |
![]() |
179 | Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms:
Systematic errors and a new phenomenological model for nonprecessing black hole binaries”,
Phys. Rev. D, 82, 064016, (2010). [![]() ![]() |
![]() |
180 | Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with
Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [![]() http://www.livingreviews.org/lrr-2009-2. |
![]() |
181 | Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P.,
“High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev.
D, 79, 024003, (2009). [![]() ![]() |
![]() |
182 | Schnetter, E., Hawley, S.H. and Hawke, I., “Evolutions in 3D numerical relativity using fixed
mesh refinement”, Class. Quantum Grav., 21, 1465–1488, (2004). [![]() |
![]() |
183 | Sekiguchi, Y.-I., “An implementation of the microphysics in full general relativity: A general
relativistic neutrino leakage scheme”, Class. Quantum Grav., 27, 114107, (2010). [![]() |
![]() |
184 | Sekiguchi, Y.-I., “Stellar Core Collapse in Full General Relativity with Microphysics:
Formulation and Spherical Collapse Test”, Prog. Theor. Phys., 124, 331, (2010). [![]() |
![]() |
185 | Sekiguchi, Y.-I., Kiuchi, K., Kyutoku, K. and Shibata, M., “Gravitational waves and neutrino
emission from the merger of binary neutron stars”, Phys. Rev. Lett., 107, 051102, (2011). [![]() ![]() |
![]() |
186 | Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics
of Compact Objects, (Wiley, New York, 1983). [![]() |
![]() |
187 | Shapiro, S.L. and Wasserman, I., “Gravitational radiation from nonspherical infall into black
holes”, Astrophys. J., 260, 838–848, (1982). [![]() |
![]() |
188 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear
matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450, (1998). [![]() |
![]() |
189 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic Equation of State of Nuclear
Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031, (1998). [![]() |
![]() |
190 | Shibata, M., “Instability of synchronized binary neutron stars in the first post-Newtonian
approximation of general relativity”, Prog. Theor. Phys., 96, Binary neutron stars, (1996).
[![]() |
![]() |
191 | Shibata, M., “Relativistic Roche-Riemann problem around a black hole”, Prog. Theor. Phys.,
96, 917, (1996). [![]() |
![]() |
192 | Shibata, M., “Relativistic formalism for computation of irrotational binary stars in
quasiequilibrium states”, Phys. Rev. D, 58, 024012, (1998). [![]() |
![]() |
193 | Shibata, M., “Fully General Relativistic Simulation of Coalescing Binary Neutron Stars:
Preparatory Tests”, Phys. Rev. D, 60, 104052, (1999). [![]() ![]() |
![]() |
194 | Shibata, M., Kyutoku, K., Yamamoto, T. and Taniguchi, K., “Gravitational waves from black
hole-neutron star binaries: classification of waveforms”, Phys. Rev. D, 79, 044030, (2009). [![]() |
![]() |
195 | Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: harmonic
slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [![]() ![]() |
![]() |
196 | Shibata, M. and Taniguchi, K., “Merger of binary neutron stars to a black hole: Disk mass,
short gamma-ray bursts, and quasinormal mode ringing”, Phys. Rev. D, 73, 064027, (2006).
[![]() |
![]() |
197 | Shibata, M. and Taniguchi, K., “Merger of black hole and neutron star in general relativity:
Tidal disruption, torus mass, and gravitational waves”, Phys. Rev. D, 77, 084015, (2008). [![]() ![]() |
![]() |
198 | Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars of unequal mass in
full general relativity”, Phys. Rev. D, 68, 084020, (2003). [![]() ![]() |
![]() |
199 | Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars with realistic
equations of state in full general relativity”, Phys. Rev. D, 71, 084021, (2005). [![]() |
![]() |
200 | Shibata, M. and Uryū, K., “Simulation of merging binary neutron stars in full general
relativity: Γ = 2 case”, Phys. Rev. D, 61, 064001, (2000). [![]() |
![]() |
201 | Shibata, M. and Uryū, K., “Gravitational waves from the merger of binary neutron stars in a
fully general relativistic simulation”, Prog. Theor. Phys., 107, 265–303, (2002). [![]() |
![]() |
202 | Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries: nonspinning black
hole case”, Phys. Rev. D, 74, 121503(R), (2006). [![]() ![]() |
![]() |
203 | Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries in full general
relativity”, Class. Quantum Grav., 24, S125–S137, (2007). [![]() |
![]() |
204 | Shibata, M., Uryū, K. and Friedman, J.L., “Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits”, Phys. Rev. D, 70, 044044, (2004). |
![]() |
205 | Stairs, I.H., “Pulsars in Binary Systems: Probing Binary Stellar Evolution and General
Relativity”, Science, 304, 547–552, (2004). [![]() |
![]() |
206 | Szilágyi, B., Lindblom, L. and Scheel, M.A., “Simulations of binary black hole mergers using
spectral methods”, Phys. Rev. D, 80, 124010, (2009). [![]() |
![]() |
207 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Black hole-neutron star
binaries in general relativity: Effects of neutron star spin”, Phys. Rev. D, 72, 044008, (2005).
[![]() ![]() |
![]() |
208 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium sequences
of black-hole–neutron-star binaries in general relativity”, Phys. Rev. D, 74, 041502(R), (2006).
[![]() ![]() |
![]() |
209 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium black
hole-neutron star binaries in general relativity”, Phys. Rev. D, 75, 084005, (2007). [![]() ![]() |
![]() |
210 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Relativistic black
hole-neutron star binaries in quasiequilibrium: effects of the black hole excision boundary
condition”, Phys. Rev. D, 77, 044003, (2008). [![]() ![]() |
![]() |
211 | Taniguchi, K. and Gourgoulhon, E., “Quasiequilibrium sequences of synchronized and
irrotational binary neutron stars in general relativity. III. Identical and different mass stars
with γ = 2”, Phys. Rev. D, 66, 104019, (2002). [![]() ![]() |
![]() |
212 | Taniguchi, K. and Gourgoulhon, E., “Various features of quasiequilibrium sequences of binary
neutron stars in general relativity”, Phys. Rev. D, 68, 124025, (2003). [![]() ![]() |
![]() |
213 | Taniguchi, K. and Nakamura, T., “Innermost stable circular orbit od coalescing neutron star-black hole binary – Generalized pseudo-Newtonian potential approach –”, Prog. Theor. Phys., 96, 693, (1996). |
![]() |
214 | Taniguchi, K. and Shibata, M., “Binary neutron stars in quasi-equilibrium”, Astrophys. J.
Suppl. Ser., 188, 187, (2010). [![]() |
![]() |
215 | Teukolsky, S.A., “Irrotational binary neutron stars in quasi-equilibrium in general relativity”,
Astrophys. J., 504, 442–449, (1998). [![]() |
![]() |
216 | Tsokaros, A.A. and Uryū, K., “Numerical method for binary black hole/neutron star initial
data: Code test”, Phys. Rev. D, 75, 044026, (2007). [![]() |
![]() |
217 | Uryū, K. and Eriguchi, Y., “Newtonian models for black hole-gaseous star close binary
systems”, Mon. Not. R. Astron. Soc., 303, 329, (1999). [![]() |
![]() |
218 | Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Binary Neutron
Stars: Equilibrium Models beyond Spatial Conformal Flatness”, Phys. Rev. Lett., 97, 171101,
(2006). [![]() ![]() |
![]() |
219 | Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Nonconformally
flat initial data for binary compact objects”, Phys. Rev. D, 80, 124004, (2009). [![]() |
![]() |
220 | Vallisneri, M., “Prospects for Gravitational-Wave Observations of Neutron-Star Tidal
Disruption in Neutron-Star-Black-Hole Binaries”, Phys. Rev. Lett., 84, 3519, (2000). [![]() |
![]() |
221 | van Meters, J.R., Baker, J.G., Koppitz, M. and Choi, D-I., “How to move a black hole without
excision: Gauge conditions for the numerical evolution of a moving puncture”, Phys. Rev. D,
73, 124011, (2006). [![]() |
![]() |
222 | “Virgo”, project homepage, INFN. URL (accessed 20 December 2010): ![]() |
![]() |
223 | Voss, R. and Tauris, T.M., “Galactic distribution of merging neutron stars and black holes –
prospects for short gamma-ray burst progenitors and LIGO/VIRGO”, Mon. Not. R. Astron.
Soc., 342, 1169–1184, (2003). [![]() ![]() ![]() |
![]() |
224 | Walsh, D.M., “Non-uniqueness in conformal formulations of the Einstein constraints”, Class.
Quantum Grav., 24, 1911, (2007). [![]() |
![]() |
225 | Wiggins, P. and Lai, D., “Tidal interaction between a fluid star and a Kerr black hole in circular
orbit”, Astrophys. J., 532, 530, (2000). [![]() |
![]() |
226 | Will, C.M., “Gravitational Waves from Inspiralling Compact Binaries:
A Post-Newtonian Approach”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the
8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo,
Japan, 28 – 29 October, 1993, NYMSS, 8, pp. 83–98, (Universal Academy Press, Tokyo, 1993).
[![]() |
![]() |
227 | Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press,
Cambridge; New York, 1993), 2nd edition. [![]() |
![]() |
228 | Yamamoto, T., Shibata, M. and Taniguchi, K., “Simulating coalescing compact binaries by a
new code (SACRA)”, Phys. Rev. D, 78, 064054, (2008). [![]() |
![]() |
229 | York Jr, J.W., “Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity”, J. Math. Phys., 14, 456–464, (1973). |
![]() |
230 | York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources
of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4,
1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [![]() |
![]() |
231 | York Jr, J.W., “Conformal ‘Thin-Sandwich’ Data for the Initial-Value Problem of General
Relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). [![]() |
![]() |
232 | Zhang, B. and Mészáros, P., “Gamma-ray bursts: Progress, problems, and prospects”, Int.
J. Mod. Phys. A, 19, 2385–2472, (2004). [![]() ![]() |
http://www.livingreviews.org/lrr-2011-6 |
Living Rev. Relativity 14, (2011), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |