i) First of all, the logarithmic terms are universal and do not depend on the way the entropy was calculated and on the scheme in which the UV divergences have been regularized. This is in contrast to the power UV divergences in the entropy that depend both on the calculation procedure and on the regularization scheme.
ii) The logarithmic terms are related to the conformal anomalies. As the conformal anomalies play an important role in the modern theoretical models, any new manifestation of the anomalies merits our special attention. This may be even more important in view of ideas that the conformal symmetry may play a more fundamental role in nature than is usually thought. As is advocated by ’t Hooft in a number of recent papers [217, 218, 216] a crucial ingredient for understanding Hawking radiation and entropy is to realize that gravity itself is a spontaneously-broken conformal theory.
iii) For a large class of extremal black-hole solutions, which arise in supergravity theories considered
as low energy approximations of string theory, there exists a microscopic calculation of the
entropy. This calculation requires a certain amount of unbroken supersymmetry, so that the
black holes in question are the Bogomol’nyi–Prasad–Sommerfeld (BPS) type solutions and
use the conformal field theory tools, such as the Cardy formula. The Cardy formula predicts
certain logarithmic corrections to the entropy (these corrections are discussed, in particular,
in [35] and [201]). One may worry whether exactly the same corrections are reproduced in the
macroscopic, field theoretical, computation of the entropy. This aspect was studied recently in [8] for
black holes in supergravity and at least some partial (for the entropy due to matter
multiplet of the supergravity) agreement with the microscopic calculation has indeed been
observed.
iv) Speaking about the already renormalized entropy of black holes and taking into account the
backreaction of the quantum matter on the geometry, the black-hole entropy can be represented as a series
expansion in powers of Newton’s constant, (the quantity
, where
is the size of a
black hole, is the scale of the curvature at the horizon; thus, the ratio
measures the strength
of gravitational self-interaction at the horizon) or, equivalently, in powers of
. In
particular, for the Schwarzschild black hole of mass
in four spacetime dimensions, one finds
v) Although the logarithmic term is still negligibly small compared to the classical entropy for macroscopic
black holes, it becomes important for small black holes especially at the latest stage of black hole
evaporation. In particular, it manifests itself in a modification of the Hawking temperature as a
function of mass [103]. Indeed, neglecting the terms
in the entropy (300
) one finds
http://www.livingreviews.org/lrr-2011-8 |
Living Rev. Relativity 14, (2011), 8
![]() This work is licensed under a Creative Commons License. E-mail us: |