![]() |
1 | Adamo, T.M., Bullimore, M., Mason, L. and Skinner, D., “Scattering amplitues and Wilson
loops in twistor space”, J. Phys. A: Math. Theor., 44, 454008, (2011). [![]() ![]() |
![]() |
2 | Adamo, T.M. and Newman, E.T., “The gravitational field of a radiating electromagnetic dipole”,
Class. Quantum Grav., 25, 245005, (2008). [![]() ![]() |
![]() |
3 | Adamo, T.M. and Newman, E.T., “Asymptotically stationary and static spacetimes and
shear free null geodesic congruences”, Class. Quantum Grav., 26, 155003, (2009). [![]() ![]() |
![]() |
4 | Adamo, T.M. and Newman, E.T., “Electromagnetically induced gravitational perturbations”,
Class. Quantum Grav., 26, 015004, (2009). [![]() ![]() |
![]() |
5 | Adamo, T.M. and Newman, E.T., “Vacuum non-expanding horizons and shear-free null geodesic
congruences”, Class. Quantum Grav., 26, 235012, (2009). [![]() ![]() |
![]() |
6 | Adamo, T.M. and Newman, E.T., “The Generalized Good Cut Equation”, Class. Quantum
Grav., 27, 245004, (2010). [![]() ![]() |
![]() |
7 | Adamo, T.M. and Newman, E.T., “The real meaning of complex Minkowski-space world-lines”,
Class. Quantum Grav., 27, 075009, (2010). [![]() ![]() |
![]() |
8 | Adamo, T.M. and Newman, E.T., “Light cones in relativity: Real, complex and virtual, with
applications”, Phys. Rev. D, 83, 044023, (2011). [![]() ![]() |
![]() |
9 | Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H. and Oz, Y., “Large N field theories,
string theory and gravity”, Phys. Rep., 323, 183–386, (2000). [![]() ![]() |
![]() |
10 | Arcioni, G. and Dappiaggi, C., “Exploring the holographic principle in asymptotically flat
spacetimes via the BMS group”, Nucl. Phys. B, 674, 553–592, (2003). [![]() ![]() |
![]() |
11 | Arnowitt, R., Deser, S. and Misner, C.W., “Energy and the Criteria for Radiation in General
Relativity”, Phys. Rev., 118, 1100–1104, (1960). [![]() ![]() |
![]() |
12 | Aronson, B. and Newman, E.T., “Coordinate systems associated with asymptotically shear-free
null congruences”, J. Math. Phys., 13, 1847–1851, (1972). [![]() |
![]() |
13 | Ashtekar, A., Beetle, C. and Lewandowski, J., “Geometry of generic isolated horizons”, Class.
Quantum Grav., 19, 1195–1225, (2002). [![]() ![]() |
![]() |
14 | Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”,
Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 28 April 2011): http://www.livingreviews.org/lrr-2004-10. |
![]() |
15 | Bergmann, P.G., “Non-Linear Field Theories”, Phys. Rev., 75, 680–685, (1949). [![]() ![]() |
![]() |
16 | Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General
Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A,
269, 21–52, (1962). [![]() ![]() |
![]() |
17 | Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825–874, (2002). [![]() ![]() |
![]() |
18 | Bramson, B.D., “Relativistic Angular Momentum for Asymptotically Flat Einstein-Maxwell
Manifolds”, Proc. R. Soc. London, Ser. A, 341, 463–490, (1975). [![]() |
![]() |
19 | Bramson, B., “Do electromagnetic waves harbour gravitational waves?”, Proc. R. Soc. London,
Ser. A, 462, 1987–2000, (2006). [![]() |
![]() |
20 | ChruĊciel, P.T. and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior
of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, (Birkhäuser,
Basel; Boston, 2004). [![]() |
![]() |
21 | Corvino, J. and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint
equations”, J. Differ. Geom., 73, 185–217, (2006). [![]() |
![]() |
22 | Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds,
(Birkhäuser, Boston; Basel; Berlin, 2006). [![]() |
![]() |
23 | Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL
(accessed 31 July 2009): http://www.livingreviews.org/lrr-2004-1. |
![]() |
24 | Friedrich, H., “On the Existence of n-Geodesically Complete or Future Complete Solutions of
Einstein’s Field Equations with Smooth Asymptotic Structure”, Commun. Math. Phys., 107,
587–609, (1986). [![]() |
![]() |
25 | Frittelli, S., Kozameh, C.N., Newman, E.T., Rovelli, C. and Tate, R.S., “Fuzzy spacetime from a
null-surface version of general relativity”, Class. Quantum Grav., 14, A143–A154, (1997). [![]() ![]() |
![]() |
26 | Frittelli, S. and Newman, E.T., “Pseudo-Minkowskian coordinates in asymptotically flat
space-times”, Phys. Rev. D, 55, 1971–1976, (1997). [![]() ![]() |
![]() |
27 | Gel’fand, I.M., Graev, M.I. and Vilenkin, N.Y., Generalized Functions, Vol. 5: Integral geometry and representation theory, (Academic Press, New York; London, 1966). |
![]() |
28 | Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F. and Sudarshan, E.C.G., “Spin-s
Spherical Harmonics and ∂”, J. Math. Phys., 8, 2155–2161, (1967). [![]() |
![]() |
29 | Goldberg, J.N. and Sachs, R.K., “A Theorem on Petrov Types”, Acta Phys. Pol., 22, 13–23, (1962). Republished as DOI:10.1007/s10714-008-0722-5. |
![]() |
30 | Hallidy, W. and Ludvigsen, M., “Momentum and Angular Momentum in the H-Space of
Asymptotically Flat, Einstein-Maxwell Space-Times”, Gen. Relativ. Gravit., 10, 7–30, (1979).
[![]() |
![]() |
31 | Hansen, R.O. and Newman, E.T., “A complex Minkowski space approach to twistors”, Gen.
Relativ. Gravit., 6, 361–385, (1975). [![]() |
![]() |
32 | Hansen, R.O., Newman, E.T., Penrose, R. and Tod, K.P., “The Metric and Curvature Properties
of â-Space”, Proc. R. Soc. London, Ser. A, 363, 445–468, (1978). [![]() ![]() |
![]() |
33 | Held, A., Newman, E.T. and Posadas, R., “The Lorentz Group and the Sphere”, J. Math. Phys.,
11, 3145–3154, (1970). [![]() |
![]() |
34 | Hill, C. D., Lewandowski, J. and Nurowski, P, “Einstein’s equations and the embedding
of 3-dimensional CR manifolds”, Indiana Univ. Math. J., 57, 3131–3176, (2008). [![]() ![]() |
![]() |
35 | Hugget, S.A. and Tod, K.P., An Introduction to Twistor Theory, London Mathematical Society
Student Texts, 4, (Cambridge University Press, Cambridge; New York, 1994), 2nd edition.
[![]() |
![]() |
36 | Ivancovich, J., Kozameh, C.N. and Newman, E.T., “Green’s functions of the edh operators”, J.
Math. Phys., 30, 45–52, (1989). [![]() |
![]() |
37 | Ko, M., Newman, E.T. and Tod, K.P., “â-Space and Null Infinity”, in Esposito, F.P. and Witten, L., eds., Asymptotic Structure of Space-Time, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 227–271, (Plenum Press, New York, 1977). |
![]() |
38 | Kozameh, C.N. and Newman, E.T., “Electromagnetic dipole radiation fields, shear-free
congruences and complex centre of charge world lines”, Class. Quantum Grav., 22, 4667–4678,
(2005). [![]() ![]() |
![]() |
39 | Kozameh, C.N. and Newman, E.T., “The large footprints of H-space on asymptotically flat
spacetimes”, Class. Quantum Grav., 22, 4659–4665, (2005). [![]() ![]() |
![]() |
40 | Kozameh, C.N., Newman, E.T., Santiago-Santiago, J.G. and Silva-Ortigoza, G., “The universal
cut function and type II metrics”, Class. Quantum Grav., 24, 1955–1979, (2007). [![]() ![]() |
![]() |
41 | Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On the physical meaning of the
Robinson–Trautman–Maxwell fields”, Class. Quantum Grav., 23, 6599–6620, (2006). [![]() ![]() |
![]() |
42 | Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On extracting physical content from
asymptotically flat spacetime metrics”, Class. Quantum Grav., 25, 145001, (2008). [![]() ![]() |
![]() |
43 | Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press; Addison-Wesley, Oxford; Reading, MA, 1962), 2nd edition. |
![]() |
44 | Lewandowski, J. and Nurowski, P., “Algebraically special twisting gravitational fields and CR
structures”, Class. Quantum Grav., 7, 309–328, (1990). [![]() |
![]() |
45 | Lewandowski, J., Nurowski, P. and Tafel, J., “Einstein’s equations and realizability of CR
manifolds”, Class. Quantum Grav., 7, L241–L246, (1990). [![]() |
![]() |
46 | Lind, R.W., “Shear-free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism”,
Gen. Relativ. Gravit., 5, 25–47, (1974). [![]() |
![]() |
47 | Maldacena, J.M., “The Large-N Limit of Superconformal Field Theories and Supergravity”,
Adv. Theor. Math. Phys., 2, 231–252, (1998). [![]() ![]() |
![]() |
48 | Mason, L. J. and Skinner, D., “Gravity, Twistors and the MHV Formalism”, Commun. Math.
Phys., 294, 827–862, (2010). [![]() ![]() |
![]() |
49 | Newman, E.T., “Heaven and Its Properties”, Gen. Relativ. Gravit., 7, 107–111, (1976). [![]() |
![]() |
50 | Newman, E.T., “Maxwell fields and shear-free null geodesic congruences”, Class. Quantum
Grav., 21, 3197–3221, (2004). [![]() |
![]() |
51 | Newman, E.T., “Asymptotic twistor theory and the Kerr theorem”, Class. Quantum Grav., 23,
3385–3392, (2006). [![]() ![]() |
![]() |
52 | Newman, E.T., “Newton’s second law, radiation reaction and type II Einstein–Maxwell fields”,
Class. Quantum Grav., 28, 245003, (2011). [![]() ![]() |
![]() |
53 | Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R., “Metric
of a Rotating, Charged Mass”, J. Math. Phys., 6, 918–919, (1965). [![]() |
![]() |
54 | Newman, E.T. and Nurowski, P., “CR structures and asymptotically flat spacetimes”, Class.
Quantum Grav., 23, 3123–3127, (2006). [![]() ![]() |
![]() |
55 | Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin
Coefficients”, J. Math. Phys., 3, 566–578, (1962). [![]() ![]() |
![]() |
56 | Newman, E.T. and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys.,
7, 863–870, (1966). [![]() ![]() |
![]() |
57 | Newman, E.T. and Penrose, R., “Spin-coefficient formalism”, Scholarpedia, 4(6), 7445, (2009).
URL (accessed 30 July 2009): ![]() |
![]() |
58 | Newman, E.T. and Posadas, R., “Motion and Structure of Singularities in General Relativity”,
Phys. Rev., 187, 1784–1791, (1969). [![]() ![]() |
![]() |
59 | Newman, E.T. and Silva-Ortigoza, G., “Tensorial spin-s harmonics”, Class. Quantum Grav., 23,
497–509, (2006). [![]() ![]() |
![]() |
60 | Newman, E.T. and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 1–36, (Plenum Press, New York, 1980). |
![]() |
61 | Newman, E.T. and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math.
Phys., 3, 891–901, (1962). [![]() ![]() |
![]() |
62 | Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68,
(1963). [![]() ![]() |
![]() |
63 | Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R.
Soc. London, Ser. A, 284, 159–203, (1965). [![]() ![]() |
![]() |
64 | Penrose, R., “Twistor Algebra”, J. Math. Phys., 8, 345–366, (1967). [![]() |
![]() |
65 | Penrose, R., “Relativistic symmetry groups”, in Barut, A.O., ed., Group Theory in Non-Linear Problems, Proceedings of the NATO Advanced Study Institute, held in Istanbul, Turkey, August 7 – 18, 1972, NATO ASI Series C, 7, pp. 1–58, (Reidel, Dordrecht; Boston, 1974). |
![]() |
66 | Penrose, R. and Rindler, W., Spinors and space-time, Vol. 1: Two-spinor calculus and
relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge; New York, 1984). [![]() |
![]() |
67 | Penrose, R. and Rindler, W., Spinors and space-time, Vol. 2: Spinor and twistor methods in
space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge; New York, 1986). [![]() |
![]() |
68 | Petrov, A.Z., “The Classification of Spaces Defining Gravitational Fields”, Gen. Relativ. Gravit.,
32, 1665–1685, (2000). [![]() |
![]() |
69 | Pirani, F.A.E., “Invariant Formulation of Gravitational Radiation Theory”, Phys. Rev., 105(3),
1089–1099, (1957). [![]() |
![]() |
70 | Robinson, I., “Null Electromagnetic Fields”, J. Math. Phys., 2, 290–291, (1961). [![]() |
![]() |
71 | Robinson, I. and Trautman, A., “Some spherical gravitational waves in general relativity”, Proc.
R. Soc. London, Ser. A, 265, 463–473, (1962). [![]() |
![]() |
72 | Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat
Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [![]() ![]() |
![]() |
73 | Sachs, R.K., “Gravitational radiation”, in DeWitt, C.M. and DeWitt, B., eds., Relativity, Groups and Topology, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 523–562, (Gordon and Breach, New York, 1964). |
![]() |
74 | Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19,
549–554, (1978). [![]() ![]() |
![]() |
75 | Szabados, L.B., “Quasi-Local Energy-Momentum and Angular Momentum in General
Relativity”, Living Rev. Relativity, 12, lrr-2009-4, (2009). URL (accessed 31 July 2009): http://www.livingreviews.org/lrr-2009-4. |
![]() |
76 | ’t Hooft, G., “A Planar Diagram Theory for Strong Interactions”, Nucl. Phys. B, 72, 461,
(1974). [![]() |
![]() |
77 | ’t Hooft, G., “Dimensional reduction in quantum gravity”, in Ali, A., Ellis, J. and
Randjbar-Daemi, S., eds., Salamfestschrift, A Collection of Talks from the Conference on
Highlights of Particle and Condensed Matter Physics, ICTP, Trieste, Italy, 8 – 12 March 1993,
World Scientific Series in 20th Century Physics, 4, (World Scientific, Singapore; River Edge,
NJ, 1994). [![]() |
![]() |
78 | Witten, E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253–291, (1998).
[![]() |
http://www.livingreviews.org/lrr-2012-1 |
Living Rev. Relativity 15, (2012), 1
![]() This work is licensed under a Creative Commons License. E-mail us: |