The most important application of CCM is anticipated to be the waveform and momentum recoil in the
binary black-hole inspiral and merger. The 3D Cauchy codes being applied to simulate this problem employ
a single Cartesian coordinate patch. In principle, the application of CCM to this problem might seem
routine, tantamount to translating into finite-difference form the textbook construction of an atlas
consisting of overlapping coordinate patches. In practice, it is a complicated project. The computational
strategy has been outlined in [52]. The underlying algorithm consists of the following main submodules:
The above strategy provides a model of how Cauchy and characteristic codes can be pieced together as modules to form a global evolution code.
The full advantage of CCM lies in the numerical treatment of nonlinear systems, where its error
converges to zero in the continuum limit for any size outer boundary and extraction radius [45, 46, 89
]. For
high accuracy, CCM is also very efficient. For small target error
, it has been shown on the assumption of
unigrid codes that the relative amount of computation required for CCM (
) compared to that
required for a pure Cauchy calculation (
) goes to zero,
as
[56
, 52
]. An
important factor here is the use of a compactified characteristic evolution, so that the whole spacetime is
represented on a finite grid. From a numerical point of view this means that the only error made
in a calculation of the radiation waveform at infinity is the controlled error due to the finite
discretization.
The accuracy of a Cauchy algorithm, which uses an ABC, requires a large grid domain in order to avoid error from nonlinear effects in its exterior. Improved numerical techniques, such as the design of Cauchy grids whose resolution decreases with radius, has improved the efficiency of this approach. Nevertheless, the computational demands of CCM are small since the interface problem involves one less dimension than the evolution problem and characteristic evolution algorithms are more efficient than Cauchy algorithms. CCM also offers the possibility of using a small matching radius, consistent with the requirement that it lie in the region exterior to any caustics. This is advantageous in simulations of stellar collapse, in which the star extends over the entire computational grid, although it is then necessary to include the matter in the characteristic treatment.
At present, the computational strategy of CCM is mainly the tool of numerical relativists, who are used
to dealing with dynamical coordinate systems. The first discussion of its potential was given in [45] and its
feasibility has been more fully explored in [89, 90
, 102
, 49
, 287
]. Recent work has been stimulated
by the requirements of the binary black-hole problem, where CCM is one of the strategies to
provide boundary conditions and determine the radiation waveform. However, it also has inherent
advantages in dealing with other hyperbolic systems in computational physics, particularly nonlinear
three-dimensional problems. A detailed study of the stability and accuracy of CCM for linear and
nonlinear wave equations has been presented in [50
], illustrating its potential for a wide range of
problems.
http://www.livingreviews.org/lrr-2012-2 |
Living Rev. Relativity 15, (2012), 2
![]() This work is licensed under a Creative Commons License. E-mail us: |