![]() |
1 | Abrahams, A.M. and Evans, C.R., “Gauge-invariant treatment of gravitational radiation near
the source: Analysis and numerical simulations”, Phys. Rev. D, 42, 2585–2594, (1990). [![]() ![]() |
![]() |
2 | Abrahams, A.M. and Price, R.H., “Applying black hole perturbation theory to numerically
generated spacetimes”, Phys. Rev. D, 53, 1963–1971, (1996). [![]() ![]() ![]() |
![]() |
3 | Abrahams, A.M., Shapiro, S.L. and Teukolsky, S.A., “Calculation of gravitational waveforms
from black hole collisions and disk collapse: Applying perturbation theory to numerical
spacetimes”, Phys. Rev. D, 51, 4295–4301, (1995). [![]() ![]() ![]() |
![]() |
4 | Abrahams, A.M. et al. (Binary Black Hole Grand Challenge Alliance), “Gravitational Wave
Extraction and Outer Boundary Conditions by Perturbative Matching”, Phys. Rev. Lett., 80,
1812–1815, (1998). [![]() ![]() ![]() |
![]() |
5 | Alcubierre, M. et al., “Towards standard testbeds for numerical relativity”, Class. Quantum
Grav., 21, 589–613, (2004). [![]() ![]() ![]() |
![]() |
6 | Anderson, J.L., “Gravitational radiation damping in systems with compact components”, Phys.
Rev. D, 36, 2301–2313, (1987). [![]() ![]() |
![]() |
7 | Anderson, J.L. and Hobill, D.W., “Matched analytic-numerical solutions of wave equations”,
in J.M., Centrella., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the
Workshop held at Drexel University, October 7 – 11, 1985, pp. 389–410, (Cambridge University
Press, Cambridge, New York, 1986). [![]() |
![]() |
8 | Anderson, J.L. and Hobill, D.W., “Mixed analytic-numerical solutions for a simple radiating
system”, Gen. Relativ. Gravit., 19, 563–580, (1987). [![]() ![]() |
![]() |
9 | Anderson, J.L. and Hobill, D.W., “A study of nonlinear radiation damping by matching analytic
and numerical solutions”, J. Comput. Phys., 75, 283–299, (1988). [![]() ![]() |
![]() |
10 | Anderson, J.L., Kates, R.E., Kegeles, L.S. and Madonna, R.G., “Divergent integrals of
post-Newtonian gravity: Nonanalytic terms in the near-zone expansion of a gravitationally
radiating system found by matching”, Phys. Rev. D, 25, 2038–2048, (1982). [![]() ![]() |
![]() |
11 | Anninos, P., Daues, G., Massó, J., Seidel, E. and Suen, W.-M., “Horizon boundary
conditions for black hole spacetimes”, Phys. Rev. D, 51, 5562–5578, (1995). [![]() ![]() ![]() |
![]() |
12 | Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten,
L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York;
London, 1962). [![]() ![]() ![]() |
![]() |
13 | Babiuc, M.C., Bishop, N.T., Szilágyi, B. and Winicour, J., “Strategies for the characteristic
extraction of gravitational waveforms”, Phys. Rev. D, 79, 084011, (2009). [![]() ![]() ![]() |
![]() |
14 | Babiuc, M.C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions
for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, (2007). [![]() ![]() ![]() |
![]() |
15 | Babiuc, M.C., Szilágyi, B., Hawke, I. and Zlochower, Y., “Gravitational wave extraction based
on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22,
5089–5107, (2005). [![]() ![]() ![]() |
![]() |
16 | Babiuc, M.C., Szilágyi, B., Winicour, J. and Zlochower, Y., “Characteristic extraction tool
for gravitational waveforms”, Phys. Rev. D, 84, 044057, (2011). [![]() ![]() ![]() |
![]() |
17 | Babiuc, M.C., Winicour, J. and Zlochower, Y., “Binary black hole waveform extraction at null
infinity”, Class. Quantum Grav., 28, 134006, (2011). [![]() ![]() ![]() |
![]() |
18 | Babiuc, M.C. et al., “Implementation of standard testbeds for numerical relativity”, Class.
Quantum Grav., 25, 125012, (2008). [![]() ![]() ![]() |
![]() |
19 | Baker, J., Campanelli, M., Lousto, C.O. and Takahashi, R., “Modeling gravitational radiation
from coalescing binary black holes”, Phys. Rev. D, 65, 124012, 1–23, (2002). [![]() ![]() ![]() |
![]() |
20 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Binary black
hole merger dynamics and waveforms”, Phys. Rev. D, 73, 104002, (2006). [![]() ![]() ![]() |
![]() |
21 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave
Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96,
111102, (2006). [![]() ![]() ![]() |
![]() |
22 | Balean, R., The Null-Timelike Boundary Problem, Ph.D. Thesis, (University of New England, Armidale, NSW, Australia, 1966). |
![]() |
23 | Balean, R., “The null-timelike boundary problem for the linear wave equation”, Commun. Part.
Diff. Eq., 22, 1325–1360, (1997). [![]() |
![]() |
24 | Barreto, W., Castillo, L. and Barrios, E., “Central equation of state in spherical characteristic
evolutions”, Phys. Rev. D, 80, 084007, (2009). [![]() ![]() ![]() |
![]() |
25 | Barreto, W., Castillo, L. and Barrios, E., “Bondian frames to couple matter with radiation”,
Gen. Relativ. Gravit., 42, 1845–1862, (2010). [![]() ![]() ![]() |
![]() |
26 | Barreto, W. and Da Silva, A., “Gravitational collapse of a charged and radiating fluid ball in
the diffusion limit”, Gen. Relativ. Gravit., 28, 735–747, (1996). [![]() ![]() |
![]() |
27 | Barreto, W. and Da Silva, A., “Self-similar and charged
spheres in the diffusion approximation”, Class. Quantum Grav., 16, 1783–1792, (1999). [![]() ![]() ![]() |
![]() |
28 | Barreto, W., Da Silva, A., Gómez, R., Lehner, L., Rosales, L. and Winicour, J.,
“Three-dimensional Einstein–Klein–Gordon system in characteristic numerical relativity”,
Phys. Rev. D, 71, 064028, (2005). [![]() ![]() ![]() |
![]() |
29 | Barreto, W., Gómez, R., Lehner, L. and Winicour, J., “Gravitational instability of a kink”,
Phys. Rev. D, 54, 3834–3839, (1996). [![]() ![]() ![]() |
![]() |
30 | Barreto, W., Peralta, C. and Rosales, L., “Equation of state and transport processes in
self-similar spheres”, Phys. Rev. D, 59, 024008, (1998). [![]() ![]() ![]() |
![]() |
31 | Bartnik, R., “Einstein equations in the null quasispherical gauge”, Class. Quantum Grav., 14,
2185–2194, (1997). [![]() ![]() ![]() |
![]() |
32 | Bartnik, R., “Shear-free null quasi-spherical space-times”, J. Math. Phys., 38, 5774–5791,
(1997). [![]() ![]() ![]() |
![]() |
33 | Bartnik, R., “Interaction of gravitational waves with a black hole”, in De Wit, D., Bracken, A.J., Gould, M.D. and Pearce, P.A., eds., XIIth International Congress of Mathematical Physics (ICMP ’97), The University of Queensland, Brisbane, 13 – 19 July 1997, pp. 3–14, (International Press, Somerville, 1999). |
![]() |
34 | Bartnik, R., “Assessing accuracy in a numerical Einstein solver”, in Weinstein, G. and Weikard, R., eds., Differential Equations and Mathematical Physics, Proceedings of an international conference held at the University of Alabama in Birmingham, March 16 – 20, 1999, AMS/IP Studies in Advanced Mathematics, 16, p. 11, (American Mathematical Society; International Press, Providence, RI, 2000). |
![]() |
35 | Bartnik, R. and Norton, A.H., “Numerical solution of the Einstein equations”, in Noye, B.J., Teubner, M.D. and Gill, A.W., eds., Computational Techniques and Applications: CTAC 97, The Eighth Biennial Conference, The University of Adelaide, Australia, 29 September – 1 October 1997, p. 91, (World Scientific, Singapore; River Edge, NJ, 1998). |
![]() |
36 | Bartnik, R. and Norton, A.H., “Numerical Methods for the Einstein Equations in Null
Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [![]() |
![]() |
37 | Bartnik, R. and Norton, A.H., “Numerical Experiments at Null Infinity”, in Friedrich, H. and
Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics,
Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture
Notes in Physics, 604, pp. 313–326, (Springer, Berlin; New York, 2002). [![]() ![]() |
![]() |
38 | Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equations”,
Phys. Rev. D, 59, 024007, (1998). [![]() ![]() ![]() |
![]() |
39 | Baumgarte, T.W., Shapiro, S.L. and Teukolsky, S.A., “Computing Supernova Collapse to
Neutron Stars and Black Holes”, Astrophys. J., 443, 717–734, (1995). [![]() ![]() |
![]() |
40 | Baumgarte, T.W., Shapiro, S.L. and Teukolsky, S.A., “Computing the Delayed Collapse of Hot
Neutron Stars to Black Holes”, Astrophys. J., 458, 680–691, (1996). [![]() ![]() |
![]() |
41 | Bayliss, A. and Turkel, E., “Radiation boundary conditions for wavelike equations”, Commun.
Pure Appl. Math., 33, 707–725, (1980). [![]() ![]() |
![]() |
42 | Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5,
lrr-2002-1, (2002). URL (accessed 20 July 2005): http://www.livingreviews.org/lrr-2002-1. |
![]() |
43 | Bičák, J., Reilly, P. and Winicour, J., “Boost-rotation symmetric gravitational null cone
data”, Gen. Relativ. Gravit., 20, 171–181, (1988). [![]() ![]() |
![]() |
44 | Bičák, J. and Schmidt, B.G., “Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure”, Phys. Rev. D, 40, 1827–1853, (1989). |
![]() |
45 | Bishop, N.T., “Some aspects of the characteristic initial value problem in numerical relativity”,
in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International
Workshop on Numerical Relativity, Southampton, December 1991, pp. 20–33, (Cambridge
University Press, Cambridge; New York, 1992). [![]() |
![]() |
46 | Bishop, N.T., “Numerical relativity: combining the Cauchy and characteristic initial value
problems”, Class. Quantum Grav., 10, 333–341, (1993). [![]() ![]() |
![]() |
47 | Bishop, N.T., “Linearized solutions of the Einstein equations within a Bondi–Sachs framework,
and implications for boundary conditions in numerical simulations”, Class. Quantum Grav.,
22, 2393–2406, (2005). [![]() ![]() ![]() |
![]() |
48 | Bishop, N.T. and Deshingkar, S.S., “New approach to calculating the news”, Phys. Rev. D, 68,
024031, (2003). [![]() ![]() ![]() |
![]() |
49 | Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P. and Winicour,
J., “Cauchy-Characteristic Matching: A New Approach to Radiation Boundary Conditions”,
Phys. Rev. Lett., 76, 4303–4306, (1996). [![]() ![]() |
![]() |
50 | Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P. and Winicour, J.,
“Cauchy-Characteristic Evolution and Waveforms”, J. Comput. Phys., 136, 140–167, (1997).
[![]() ![]() |
![]() |
51 | Bishop, N.T., Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Numerical relativistic model
of a massive particle in orbit near a Schwarzschild black hole”, Phys. Rev. D, 68, 084015,
(2003). [![]() ![]() ![]() |
![]() |
52 | Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B. and Winicour,
J., “Cauchy-characteristic matching”, in Bhawal, B. and Iyer, B.R., eds., Black Holes,
Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara,
Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [![]() ![]() |
![]() |
53 | Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “High-powered
gravitational news”, Phys. Rev. D, 56, 6298–6309, (1997). [![]() ![]() ![]() |
![]() |
54 | Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “The incorporation of
matter into characteristic numerical relativity”, Phys. Rev. D, 60, 024005, (1999). [![]() ![]() ![]() |
![]() |
55 | Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “Characteristic initial
data for a star orbiting a black hole”, Phys. Rev. D, 72, 024002, (2005). [![]() ![]() ![]() |
![]() |
56 | Bishop, N.T., Gómez, R., Lehner, L. and Winicour, J., “Cauchy-characteristic extraction in
numerical relativity”, Phys. Rev. D, 54, 6153–6165, (1996). [![]() ![]() ![]() |
![]() |
57 | Bishop, N.T. and Haines, P., “Observational cosmology and numerical relativity”, Quaest.
Math., 19, 259–274, (1996). [![]() |
![]() |
58 | Bishop, N.T., Pollney, D. and Reisswig, C., “Initial data transients in binary black hole
evolutions”, Class. Quantum Grav., 28, 155019, (2011). [![]() ![]() ![]() |
![]() |
59 | Bishop, N.T. and Venter, L.R., “Kerr metric in Bondi–Sachs form”, Phys. Rev. D, 73, 084023,
(2006). [![]() ![]() ![]() |
![]() |
60 | Bizoń, P., “Equivariant Self-Similar Wave Maps from Minkowski Spacetime into 3-Sphere”,
Commun. Math. Phys., 215, 45–56, (2000). [![]() ![]() ![]() |
![]() |
61 | Blaschak, J.G. and Kriegsmann, G.A., “A comparative study of absorbing boundary
conditions”, J. Comput. Phys., 77, 109–139, (1988). [![]() ![]() |
![]() |
62 | Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535, (1960). [![]() ![]() |
![]() |
63 | Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General
Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A,
269, 21–52, (1962). [![]() ![]() |
![]() |
64 | Brady, P.R., Chambers, C.M. and Gonçalves, S.M.C.V., “Phases of massive scalar field
collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [![]() ![]() ![]() |
![]() |
65 | Brady, P.R., Chambers, C.M., Krivan, W. and Laguna, P., “Telling tails in the
presence of a cosmological constant”, Phys. Rev. D, 55, 7538–7545, (1997). [![]() ![]() ![]() |
![]() |
66 | Brady, P.R. and Smith, J.D., “Black Hole Singularities: A Numerical Approach”, Phys. Rev.
Lett., 75, 1256–1259, (1995). [![]() ![]() ![]() |
![]() |
67 | Brizuela, D., Martín-García, J.M. and Tiglio, M., “A complete gauge-invariant formalism
for arbitrary second-order perturbations of a Schwarzschild black hole”, Phys. Rev. D, 80,
024021, (2009). [![]() ![]() |
![]() |
68 | Browning, G.L., Hack, J.J. and Swarztrauber, P.N., “A Comparison of Three Numerical
Methods for Solving Differential Equations on the Sphere”, Mon. Weather Rev., 117,
1058–1075, (1989). [![]() ![]() |
![]() |
69 | Buchman, L.T. and Sarbach, O., “Towards absorbing outer boundaries in general relativity”,
Class. Quantum Grav., 23, 6709–6744, (2006). [![]() ![]() |
![]() |
70 | Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using
Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). [![]() ![]() |
![]() |
71 | Burko, L.M., “Structure of the Black Hole’s Cauchy-Horizon Singularity”, Phys. Rev. Lett.,
79, 4958–4961, (1997). [![]() ![]() ![]() |
![]() |
72 | Burko, L.M. and Ori, A., “Late-time evolution of nonlinear gravitational collapse”, Phys. Rev.
D, 56, 7820–7832, (1997). [![]() ![]() ![]() |
![]() |
73 | Butler, D.S., “The Numerical Solution of Hyperbolic Systems of Partial Differential Equations
in Three Independent Variables”, Proc. R. Soc. London, Ser. A, 255, 232–252, (1960). [![]() ![]() |
![]() |
74 | Calabrese, G., Lehner, L. and Tiglio, M., “Constraint-preserving boundary conditions in
numerical relativity”, Phys. Rev. D, 65, 104031, (2002). [![]() ![]() ![]() |
![]() |
75 | Calabrese, G., Pullin, J., Reula, O., Sarbach, O. and Tiglio, M., “Well Posed
Constraint-Preserving Boundary Conditions for the Linearized Einstein Equations”, Commun.
Math. Phys., 240, 377–395, (2003). [![]() ![]() ![]() |
![]() |
76 | Calabrese, G., Pullin, J., Sarbach, O. and Tiglio, M., “Convergence and stability in numerical
relativity”, Phys. Rev. D, 66, 041501(R), (2002). [![]() ![]() |
![]() |
77 | Campanelli, M., Gómez, R., Husa, S., Winicour, J. and Zlochower, Y., “Close limit from a
null point of view: The advanced solution”, Phys. Rev. D, 63, 124013, (2001). [![]() ![]() ![]() |
![]() |
78 | Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of
Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101, (2006). [![]() ![]() ![]() |
![]() |
79 | Choptuik, M.W., “‘Critical’ behavior in massless scalar field collapse”, in d’Inverno, R.A.,
ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on
Numerical Relativity, Southampton, December 1991, pp. 202–222, (Cambridge University
Press, Cambridge; New York, 1992). [![]() |
![]() |
80 | Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”,
Phys. Rev. Lett., 70, 9–12, (1993). [![]() ![]() |
![]() |
81 | Choquet-Bruhat, Y., Chruściel, P.T. and Martín-García, J.M., “An existence theorem
for the Cauchy problem on a characteristic cone for the Einstein equations”, in Agranovsky,
M. et al., ed., Complex Analysis and Dynamical Systems IV. Part 2: General Relativity,
Geometry, and PDE, Proceedings of the conference held in Nahariya, Israel, May 18 – 22, 2009,
Contemporary Mathematics, 554, (American Mathematical Society and Bar-Ilan University,
Providence, RI; Ramat-Gan, Israel, 2011). [![]() ![]() |
![]() |
82 | Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys.,
109, 613–647, (1987). [![]() |
![]() |
83 | Christodoulou, D., “The formation of black holes and singularities in spherically symmetric
gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [![]() |
![]() |
84 | Christodoulou, D., “Bounded Variation Solutions of the Spherically Symmetric Einstein-Scalar
Field Equations”, Commun. Pure Appl. Math., 46, 1131–1220, (1993). [![]() |
![]() |
85 | Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse
of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [![]() |
![]() |
86 | Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a
scalar field”, Ann. Math. (2), 149, 183–217, (1999). [![]() |
![]() |
87 | Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class.
Quantum Grav., 16, A23–A35, (1999). [![]() |
![]() |
88 | Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, (Princeton University Press, Princeton, NJ, 1993). |
![]() |
89 | Clarke, C.J.S. and d’Inverno, R.A., “Combining Cauchy and characteristic numerical evolutions
in curved coordinates”, Class. Quantum Grav., 11, 1463–1448, (1994). [![]() ![]() |
![]() |
90 | Clarke, C.J.S., d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes.
I. The vacuum cylindrically symmetric problem”, Phys. Rev. D, 52, 6863–6867, (1995). [![]() ![]() |
![]() |
91 | Cook, G.B. et al. (Binary Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional
Black-Hole Evolutions with Singularity Excision”, Phys. Rev. Lett., 80, 2512–2516, (1998).
[![]() ![]() ![]() |
![]() |
92 | Corkill, R.W. and Stewart, J.M., “Numerical Relativity. II. Numerical Methods for the
Characteristic Initial Value Problem and the Evolution of the Vacuum Field Equations for
Space- Times with Two Killing Vectors”, Proc. R. Soc. London, Ser. A, 386, 373–391, (1983).
[![]() ![]() |
![]() |
93 | de Moerloose, J. and de Zutter, D., “Surface integral representation radiation boundary
condition for the FDTD method”, IEEE Trans. Ant. Prop., 41, 890–896, (1993). [![]() ![]() |
![]() |
94 | de Oliveira, H.P. and Rodrigues, E.L., “A Dynamical System Approach for the Bondi
Problem”, Int. J. Mod. Phys. A, 24, 1700–1704, (2009). [![]() ![]() ![]() |
![]() |
95 | Derry, L., Isaacson, R.A. and Winicour, J., “Shear-Free Gravitational Radiation”, Phys. Rev.,
185, 1647–1655, (1969). [![]() ![]() |
![]() |
96 | Diener, P., Dorband, E.N., Schnetter, E. and Tiglio, M., “Optimized High-Order Derivative and
Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional
Multi-block Evolutions”, J. Sci. Comput., 32, 109–145, (2007). [![]() ![]() |
![]() |
97 | d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, (Cambridge University Press, Cambridge; New York, 1992). |
![]() |
98 | d’Inverno, R.A., Dubal, M.R. and Sarkies, E.A., “Cauchy-characteristic matching for a family of
cylindrical solutions possessing both gravitational degrees of freedom”, Class. Quantum Grav.,
17, 3157–3170, (2000). [![]() ![]() ![]() |
![]() |
99 | d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. III. The
interface problem in axial symmetry”, Phys. Rev. D, 54, 4919–4928, (1996). [![]() ![]() |
![]() |
100 | d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. IV. The
characteristic field equations in axial symmetry”, Phys. Rev. D, 56, 772–784, (1997). [![]() ![]() |
![]() |
101 | Dorband, E.N., Berti, E., Diener, P., Schnetter, E. and Tiglio, M., “A numerical study of the
quasinormal mode excitation of Kerr black holes”, Phys. Rev. D, 74, 084028, (2006). [![]() ![]() |
![]() |
102 | Dubal, M.R., d’Inverno, R.A. and Clarke, C.J.S., “Combining Cauchy and characteristic codes.
II. The interface problem for vacuum cylindrical symmetry”, Phys. Rev. D, 52, 6868–6881,
(1995). [![]() ![]() |
![]() |
103 | Duff, G.F.D., “Mixed problems for linear systems of first order equations”, Can. J. Math., 10,
127–160, (1958). [![]() |
![]() |
104 | “Einstein Toolkit”, project homepage, Louisiana State University. URL (accessed 7 August
2011): ![]() |
![]() |
105 | Ellis, G.F.R., Nel, S.D., Stoeger, W.J., Maartens, R. and Whitman, A.P., “Ideal observational
cosmology”, Phys. Rep., 124, 315–417, (1985). [![]() ![]() |
![]() |
106 | Engquist, B. and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation
of Waves”, Math. Comput., 31(139), 629–651, (1977). [![]() ![]() |
![]() |
107 | Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole
coalescences. I. Signal to noise for inspiral, merger and ringdown”, Phys. Rev. D, 57, 4535–4565,
(1998). [![]() ![]() ![]() |
![]() |
108 | Fletcher, S.J. and Lun, A.W.C., “The Kerr spacetime in generalized Bondi–Sachs coordinates”,
Class. Quantum Grav., 20, 4153–4167, (2003). [![]() ![]() |
![]() |
109 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (accessed 3 October 2008): http://www.livingreviews.org/lrr-2008-7. |
![]() |
110 | Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL
(accessed 20 October 2005): http://www.livingreviews.org/lrr-2004-1. |
![]() |
111 | Friedlander, F.G., “On the radiation field of pulse solutions of the wave equation. III”, Proc.
R. Soc. London, Ser. A, 299, 264–278, (1967). [![]() |
![]() |
112 | Friedlander, F.G., The Wave Equation on a Curved Space-Time, Cambridge Monographs on
Mathematical Physics, 2, (Cambridge University Press, Cambridge; New York, 1975). [![]() |
![]() |
113 | Friedman, J.L., Schleich, K. and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71,
1486–1489, (1993). [![]() ![]() ![]() |
![]() |
114 | Friedrich, H., “The Asymptotic Characteristic Initial Value Problem for Einstein’s Vacuum
Field Equations as an Initial Value Problem for a First-Order Quasilinear Symmetric
Hyperbolic System”, Proc. R. Soc. London, Ser. A, 378, 401–421, (1981). [![]() ![]() |
![]() |
115 | Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). [![]() |
![]() |
116 | Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”,
Commun. Math. Phys., 91, 445–472, (1983). [![]() ![]() |
![]() |
117 | Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13,
1451–1469, (1996). [![]() ![]() |
![]() |
118 | Friedrich, H. and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field
Equation”, Commun. Math. Phys., 201, 619–655, (1999). [![]() ![]() |
![]() |
119 | Friedrich, H. and Rendall, A.D., “The Cauchy problem for the Einstein equations”, in Schmidt,
B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in
Honour of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New
York, 2000). [![]() ![]() |
![]() |
120 | Friedrich, H. and Stewart, J.M., “Characteristic Initial Data and Wavefront Singularities in
General Relativity”, Proc. R. Soc. London, Ser. A, 385, 345–371, (1983). [![]() ![]() |
![]() |
121 | Frittelli, S., “Estimates for the characteristic problem of the first-order reduction of
the wave equation”, J. Phys. A: Math. Gen., 37, 8639–8655, (2004). [![]() ![]() ![]() |
![]() |
122 | Frittelli, S. and Gómez, R., “Einstein boundary conditions for the 3+1 Einstein equations”,
Phys. Rev. D, 68, 044014, (2003). [![]() ![]() ![]() |
![]() |
123 | Frittelli, S. and Gómez, R., “Initial-boundary-value problem of the self-gravitating scalar field
in the Bondi–Sachs gauge”, Phys. Rev. D, 75, 044021, 1–15, (2007). [![]() ![]() |
![]() |
124 | Frittelli, S. and Lehner, L., “Existence and uniqueness of solutions to characteristic evolution
in Bondi–Sachs coordinates in general relativity”, Phys. Rev. D, 59, 084012, 1–9, (1999). [![]() ![]() |
![]() |
125 | Gallo, E., Lehner, L. and Moreschi, O.M., “Estimating total momentum at finite distances”,
Phys. Rev. D, 78, 084027, (2008). [![]() ![]() ![]() |
![]() |
126 | Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995).
[![]() ![]() ![]() |
![]() |
127 | Garfinkle, D., Cutler, C. and Duncan, G.C., “Choptuik scaling in six dimensions”, Phys. Rev.
D, 60, 104007, (1999). [![]() ![]() ![]() |
![]() |
128 | Geroch, R.P., “A method for generating solutions of Einstein’s equations”, J. Math. Phys., 12,
918–924, (1971). [![]() |
![]() |
129 | Givoli, D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94, 1–29, (1991). [![]() ![]() |
![]() |
130 | Gleiser, R.J., Nicasio, C.O., Price, R.H. and Pullin, J., “Gravitational radiation from
Schwarzschild black holes: the second-order perturbation formalism”, Phys. Rep., 325, 41–81,
(2000). [![]() ![]() |
![]() |
131 | Gnedin, M.L. and Gnedin, N.Y., “Destruction of the Cauchy horizon in the
Reissner–Nordström black hole”, Class. Quantum Grav., 10, 1083–1102, (1993). [![]() ![]() |
![]() |
132 | Goldwirth, D.S. and Piran, T., “Gravitational collapse of massless scalar field and cosmic
censorship”, Phys. Rev. D, 36, 3575–3581, (1987). [![]() ![]() |
![]() |
133 | Gómez, R., “Gravitational waveforms with controlled accuracy”, Phys. Rev. D, 64, 024007,
(2001). [![]() ![]() ![]() |
![]() |
134 | Gómez, R., Barreto, W. and Frittelli, S., “Framework for large-scale relativistic simulations in
the characteristic approach”, Phys. Rev. D, 76, 124029, (2007). [![]() ![]() ![]() |
![]() |
135 | Gómez, R. and Frittelli, S., “First-order quasilinear canonical representation of the
characteristic formulation of the Einstein equations”, Phys. Rev. D, 68, 084013, (2003). [![]() ![]() ![]() |
![]() |
136 | Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Gravitational waves from a fissioning
white hole”, Phys. Rev. D, 66, 064019, (2002). [![]() ![]() ![]() |
![]() |
137 | Gómez, R., Husa, S. and Winicour, J., “Complete null data for a black hole collision”, Phys.
Rev. D, 64, 024010, (2001). [![]() ![]() ![]() |
![]() |
138 | Gómez, R., Laguna, P., Papadopoulos, P. and Winicour, J., “Cauchy-characteristic evolution
of Einstein–Klein–Gordon systems”, Phys. Rev. D, 54, 4719–4727, (1996). [![]() ![]() ![]() |
![]() |
139 | Gómez, R., Lehner, L., Marsa, R.L. and Winicour, J., “Moving black holes in 3D”, Phys. Rev.
D, 57, 4778–4788, (1998). [![]() ![]() ![]() |
![]() |
140 | Gómez, R., Lehner, L., Papadopoulos, P. and Winicour, J., “The eth formalism in numerical
relativity”, Class. Quantum Grav., 14, 977–990, (1997). [![]() ![]() ![]() |
![]() |
141 | Gómez, R., Marsa, R.L. and Winicour, J., “Black hole excision with matching”, Phys. Rev.
D, 56, 6310–6319, (1997). [![]() ![]() ![]() |
![]() |
142 | Gómez, R., Papadopoulos, P. and Winicour, J., “Null cone evolution of axisymmetric vacuum
space-times”, J. Math. Phys., 35, 4184–4204, (1994). [![]() ![]() ![]() |
![]() |
143 | Gómez, R., Reilly, P., Winicour, J. and Isaacson, R.A., “Post-Newtonian behavior of the
Bondi mass”, Phys. Rev. D, 47, 3292–3302, (1993). [![]() ![]() |
![]() |
144 | Gómez, R. and Winicour, J., “Asymptotics of gravitational collapse of scalar waves”, J. Math.
Phys., 33, 1445–1457, (1992). [![]() ![]() |
![]() |
145 | Gómez, R. and Winicour, J., “Gravitational wave forms at finite distances and at null infinity”,
Phys. Rev. D, 45, 2776–2782, (1992). [![]() ![]() |
![]() |
146 | Gómez, R., Winicour, J. and Isaacson, R.A., “Evolution of scalar fields from characteristic
data”, J. Comput. Phys., 98, 11–25, (1992). [![]() ![]() |
![]() |
147 | Gómez, R., Winicour, J. and Schmidt, B.G., “Newman–Penrose constants and the tails of
self-gravitating waves”, Phys. Rev. D, 49, 2828–2836, (1994). [![]() ![]() |
![]() |
148 | Gómez, R. et al. (Binary Black Hole Grand Challenge Alliance), “Stable characteristic
evolution of generic three-dimensional single-black-hole spacetimes”, Phys. Rev. Lett., 80,
3915–3918, (1998). [![]() ![]() ![]() |
![]() |
149 | Grote, M.J. and Keller, J.B., “Nonreflecting Boundary Conditions for Maxwell’s Equations”,
J. Comput. Phys., 139, 327–342, (1998). [![]() |
![]() |
150 | Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolicity and consistent boundary
conditions for second-order Einstein equations”, Phys. Rev. D, 70, 044032, (2004). [![]() ![]() ![]() |
![]() |
151 | Gundlach, C. and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”,
Living Rev. Relativity, 10, lrr-2007-5, (2007). URL (accessed 3 October 2008): http://www.livingreviews.org/lrr-2007-5. |
![]() |
152 | Gundlach, C., Price, R.H. and Pullin, J., “Late-time behavior of stellar collapse and
explosions. I. Linearized perturbations”, Phys. Rev. D, 49, 883–889, (1994). [![]() ![]() ![]() |
![]() |
153 | Gundlach, C., Price, R.H. and Pullin, J., “Late-time behavior of stellar collapse and explosions.
II. Nonlinear evolution”, Phys. Rev. D, 49, 890–899, (1994). [![]() ![]() ![]() |
![]() |
154 | Gustafsson, B. and Kreiss, H.-O., “Boundary conditions for time dependent problems with an
artificial boundary”, J. Comput. Phys., 30, 331–351, (1979). [![]() ![]() |
![]() |
155 | Gustafsson, B., Kreiss, H.-O. and Sundström, A., “Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II”, Math. Comput., 26, 649–686, (1972). |
![]() |
156 | Hagstrom, T. and Hariharan, S.I., “Accurate Boundary Conditions for Exterior Problems in
Gas Dynamics”, Math. Comput., 51, 581–597, (1988). [![]() ![]() |
![]() |
157 | Hamadé, R.S., Horne, J.H. and Stewart, J.M., “Continuous self-similarity and S-duality”,
Class. Quantum Grav., 13, 2241–2253, (1996). [![]() ![]() ![]() |
![]() |
158 | Hamadé, R.S. and Stewart, J.M., “The spherically symmetric collapse of a massless scalar
field”, Class. Quantum Grav., 13, 497–512, (1996). [![]() ![]() ![]() |
![]() |
159 | Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790,
(1993). [![]() ![]() |
![]() |
160 | Hedstrom, G.W., “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J.
Comput. Phys., 30, 222–237, (1979). [![]() ![]() |
![]() |
161 | Higdon, R.L., “Absorbing Boundary Conditions for Difference Approximations to the
Multi-Dimensional Wave Equation”, Math. Comput., 47, 437–459, (1986). [![]() |
![]() |
162 | Hod, S., “High-order contamination in the tail gravitational collapse”, Phys. Rev. D, 60,
104053, (1999). [![]() ![]() ![]() |
![]() |
163 | Hod, S., “Wave tails in non-trivial backgrounds”, Class. Quantum Grav., 18, 1311–1318, (2001).
[![]() ![]() ![]() |
![]() |
164 | Hod, S., “Wave tails in time-dependent backgrounds”, Phys. Rev. D, 66, 024001, (2002). [![]() ![]() ![]() |
![]() |
165 | Hod, S. and Piran, T., “Critical behavior and universality in gravitational collapse of a charged
scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [![]() ![]() ![]() |
![]() |
166 | Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of
charged scalar hair. I”, Phys. Rev. D, 58, 024017, (1998). [![]() ![]() ![]() |
![]() |
167 | Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of
charged scalar hair. II”, Phys. Rev. D, 58, 024018, (1998). [![]() ![]() ![]() |
![]() |
168 | Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of
charged scalar hair. III. Nonlinear analysis”, Phys. Rev. D, 58, 024019, (1998). [![]() ![]() ![]() |
![]() |
169 | Hod, S. and Piran, T., “Late-time tails in gravitational collapse of a self-interacting (massive)
scalar-field and decay of a self-interacting scalar hair”, Phys. Rev. D, 58, 044018, (1998). [![]() ![]() ![]() |
![]() |
170 | Hod, S. and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar
Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). [![]() ![]() ![]() |
![]() |
171 | Husa, S., “Numerical relativity with the conformal field equations”, in Fernández-Jambrina,
L. and González-Romero, L.M., eds., Current Trends in Relativistic Astrophysics: Theoretical,
Numerical, Observational, Proceedings of the 24th Spanish Relativity Meeting on Relativistic
Astrophysics, Madrid, 2001, Lecture Notes in Physics, 617, pp. 159–192, (Springer, Berlin; New
York, 2003). [![]() ![]() ![]() |
![]() |
172 | Husa, S., Lechner, C., Pürrer, M., Thornburg, J. and Aichelburg, P.C., “Type II critical
collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, (2000). [![]() ![]() ![]() |
![]() |
173 | Husa, S. and Winicour, J., “Asymmetric merger of black holes”, Phys. Rev. D, 60, 084019,
(1999). [![]() ![]() ![]() |
![]() |
174 | Husa, S., Zlochower, Y., Gómez, R. and Winicour, J., “Retarded radiation from colliding black
holes in the close limit”, Phys. Rev. D, 65, 084034, (2002). [![]() ![]() ![]() |
![]() |
175 | Ipser, J.R. and Horwitz, G., “The Problem of Maximizing Functionals in Newtonian Stellar
Dynamics, and its Relation to Thermodynamic and Dynamical Stability”, Astrophys. J.,
232(3), 863–873, (1979). [![]() ![]() |
![]() |
176 | Isaacson, R.A., Welling, J.S. and Winicour, J., “Null cone computation of gravitational
radiation”, J. Math. Phys., 24, 1824–1834, (1983). [![]() ![]() |
![]() |
177 | Israeli, M. and Orszag, S.A., “Approximation of radiation boundary conditions”, J. Comput.
Phys., 41, 115–135, (1981). [![]() ![]() |
![]() |
178 | Jiang, H. and Wong, Y.S., “Absorbing boundary conditions for second-order hyperbolic
equations”, J. Comput. Phys., 88, 205–231, (1990). [![]() ![]() |
![]() |
179 | Kates, R.E. and Kegeles, L.S., “Nonanalytic terms in the slow-motion expansion of a radiating
scalar field on a Schwarzschild background”, Phys. Rev. D, 25, 2030–2037, (1982). [![]() ![]() |
![]() |
180 | Khan, K.A. and Penrose, R., “Scattering of Two Impulsive Gravitational Plane Waves”, Nature,
229, 185–186, (1971). [![]() ![]() |
![]() |
181 | Komar, A., “Asymptotic covariant conservation laws for gravitational radiation”, Phys. Rev.,
127, 1411–1418, (1962). [![]() |
![]() |
182 | Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N. and Zink, B., “Stability of
general-relativistic accretion disks”, Phys. Rev. D, 83, 043007, (2011). [![]() ![]() |
![]() |
183 | Korobkin, O., Aksoylu, B., Holst, M., Pazos, E. and Tiglio, M., “Solving the Einstein constraint
equations on multi-block triangulations using finite element methods”, Class. Quantum Grav.,
26, 145007, (2009). [![]() ![]() |
![]() |
184 | Kreiss, H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure
Appl. Math., 23, 277–298, (1970). [![]() |
![]() |
185 | Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations,
Pure and Applied Mathematics, 136, (Academic Press, Boston, 1989). [![]() |
![]() |
186 | Kreiss, H.-O. and Oliger, J., Methods for the approximate solution of time dependent problems, GARP Publications Series, 10, (World Meteorological Organization (WMO), International Council of Scientific Unions (ICSU), Geneva, 1973). |
![]() |
187 | Kreiss, H.-O. and Ortiz, O.E., “Some Mathematical and Numerical Questions Connected
with First and Second Order Time-Dependent Systems of Partial Differential Equations”, in
Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry,
Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4
April 2001, Lecture Notes in Physics, 604, pp. 359–370, (Springer, Berlin; New York, 2002).
[![]() ![]() ![]() |
![]() |
188 | Kreiss, H.-O., Ortiz, O.E. and Petersson, N.A., “Initial-boundary value problems for second
order systems of partial differential equations”, arXiv, e-print, (2010). [![]() ![]() |
![]() |
189 | Kreiss, H.-O., Reula, O., Sarbach, O. and Winicour, J., “Well-posed initial-boundary value
problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav.,
24, 5973–5984, (2007). [![]() ![]() ![]() |
![]() |
190 | Kreiss, H.-O., Reula, O., Sarbach, O. and Winicour, J., “Boundary conditions for coupled
quasilinear wave equations with application to isolated systems”, Commun. Math. Phys., 289,
1099–1129, (2009). [![]() ![]() ![]() |
![]() |
191 | Kreiss, H.-O. and Scherer, G, “Finite element and finite difference methods for hyperbolic partial differential equations”, in De Boor, C., ed., Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1 – 3, 1974, (Academica Press, New York, 1974). |
![]() |
192 | Kreiss, H.-O. and Winicour, J., “Problems which are well posed in a generalized sense with
applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [![]() ![]() ![]() |
![]() |
193 | Kreiss, H.-O. and Winicour, J., “The well-posedness of the null-timelike boundary problem for
quasilinear waves”, Class. Quantum Grav., 28, 145020, (2011). [![]() ![]() ![]() |
![]() |
194 | Kristian, J. and Sachs, R.K., “Observations in cosmology”, Astrophys. J., 143, 379–399, (1966).
[![]() ![]() |
![]() |
195 | Lehner, L., “A Dissipative Algorithm for Wave-like Equations in the Characteristic
Formulation”, J. Comput. Phys., 149, 59–74, (1999). [![]() ![]() ![]() |
![]() |
196 | Lehner, L., “Matching characteristic codes: exploiting two directions”, Int. J. Mod. Phys. D,
9(4), 459–473, (2000). [![]() ![]() ![]() |
![]() |
197 | Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B. and Winicour, J., “Exact solutions for the
intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005, (1999). [![]() ![]() ![]() |
![]() |
198 | Lehner, L., Gómez, R., Husa, S., Szilágyi, B., Bishop, N.T. and Winicour, J., “Bagels Form
When Black Holes Collide”, institutional homepage, Pittsburgh Supercomputing Center. URL
(accessed 30 July 2005): ![]() |
![]() |
199 | Lehner, L. and Moreschi, O.M., “Dealing with delicate issues in waveform calculations”, Phys.
Rev. D, 76, 124040, (2007). [![]() ![]() ![]() |
![]() |
200 | Lehner, L., Reula, O. and Tiglio, M., “Multi-block simulations in general relativity: high order
discretizations, numerical stability, and applications”, Class. Quantum Grav., 22, 5283–5322,
(2005). [![]() ![]() |
![]() |
201 | Lindblom, L., “Optimal calibration accuracy for gravitational-wave detectors”, Phys. Rev. D,
80, 042005, (2009). [![]() ![]() ![]() |
![]() |
202 | Lindblom, L., “Use and abuse of the model waveform accuracy standards”, Phys. Rev. D, 80,
064019, (2009). [![]() ![]() ![]() |
![]() |
203 | Lindblom, L., Baker, J.G. and Owen, B.J., “Improved time-domain accuracy standards
for model gravitational waveforms”, Phys. Rev. D, 82, 084020, (2010). [![]() ![]() ![]() |
![]() |
204 | Lindblom, L., Owen, B.J. and Brown, D.A., “Model waveform accuracy standards for
gravitational wave data analysis”, Phys. Rev. D, 78, 124020, (2008). [![]() ![]() ![]() |
![]() |
205 | Lindman, E.L., “‘Free-space’ boundary conditions for the time dependent wave equation”, J.
Comput. Phys., 18, 66–78, (1975). [![]() ![]() |
![]() |
206 | Linke, F., Font, J.A., Janka, H.-T., Müller, E. and Papadopoulos, P., “Spherical collapse
of supermassive stars: Neutrino emission and gamma-ray bursts”, Astron. Astrophys., 376,
568–579, (2001). [![]() ![]() ![]() |
![]() |
207 | Lousto, C.O. and Price, R.H., “Understanding initial data for black hole collisions”, Phys. Rev.
D, 56, 6439–6457, (1997). [![]() ![]() ![]() |
![]() |
208 | Marsa, R.L. and Choptuik, M.W., “Black-hole-scalar-field interactions in spherical symmetry”,
Phys. Rev. D, 54, 4929–4943, (1996). [![]() ![]() ![]() |
![]() |
209 | Matzner, R.A., Seidel, E., Shapiro, S.L., Smarr, L.L., Suen, W.-M., Teukolsky, S.A. and
Winicour, J., “Geometry of a Black Hole Collision”, Science, 270, 941–947, (1995). [![]() ![]() |
![]() |
210 | May, M.M. and White, R.H., “Hydrodynamic Calculations of General-Relativistic Collapse”,
Phys. Rev., 141, 1232–1241, (1966). [![]() ![]() |
![]() |
211 | Miller, J.C. and Motta, S., “Computations of spherical gravitational collapse using null slicing”,
Class. Quantum Grav., 6, 185–193, (1989). [![]() ![]() |
![]() |
212 | Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior
problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [![]() ![]() |
![]() |
213 | Müller zum Hagen, H. and Seifert, H.-J., “On Characteristic Initial-Value and Mixed
Problems”, Gen. Relativ. Gravit., 8, 259–301, (1977). [![]() ![]() |
![]() |
214 | Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of
Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005).
[![]() ![]() ![]() |
![]() |
215 | Nayfeh, A.H., Perturbation Methods, (Wiley, New York, 1973). [![]() |
![]() |
216 | Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of
Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [![]() ![]() |
![]() |
217 | Newman, E.T. and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys.,
7, 863–870, (1966). [![]() ![]() |
![]() |
218 | Newman, E.T. and Penrose, R., “New Conservation Laws for Zero Rest-Mass Fields in
Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 305, 175–204, (1968). [![]() ![]() |
![]() |
219 | Oren, Y. and Piran, T., “Collapse of charged scalar fields”, Phys. Rev. D, 68, 044013, (2003).
[![]() ![]() ![]() |
![]() |
220 | Ott, C.D. et al., “Dynamics and gravitational wave signature of collapsar formation”, Phys.
Rev. Lett., 106, 161103, (2011). [![]() ![]() ![]() |
![]() |
221 | Papadopoulos, P., Algorithms for the gravitational characteristic initial value problem, Ph.D.
Thesis, (University of Pittsburgh, Pittsburgh, 1994). [![]() |
![]() |
222 | Papadopoulos, P., “Nonlinear harmonic generation in finite amplitude black hole oscillations”,
Phys. Rev. D, 65, 084016, (2002). [![]() ![]() ![]() |
![]() |
223 | Papadopoulos, P. and Font, J.A., “Relativistic hydrodynamics on spacelike and null surfaces:
Formalism and computations of spherically symmetric spacetimes”, Phys. Rev. D, 61, 024015,
(2000). [![]() ![]() ![]() |
![]() |
224 | Papadopoulos, P. and Font, J.A., “Imprints of accretion on gravitational waves from black
holes”, Phys. Rev. D, 63, 044016, (2001). [![]() ![]() ![]() |
![]() |
225 | Pazos, E., Brizuela, D., Martín-García, J.M. and Tiglio, M., “Mode coupling of
Schwarzschild perturbations: Ringdown frequencies”, Phys. Rev. D, 82, 104028, (2010). [![]() ![]() |
![]() |
226 | Pazos, E., Dorband, E.N., Nagar, A., Palenzuela, C., Schnetter, E. and Tiglio, M., “How far
away is far enough for extracting numerical waveforms, and how much do they depend on the
extraction method?”, Class. Quantum Grav., 24, S341–S368, (2007). [![]() ![]() |
![]() |
227 | Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68,
(1963). [![]() ![]() |
![]() |
228 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento,
1, 252–276, (1969). [![]() ![]() |
![]() |
229 | Phillips, N.A., “A map projection system suitable for large-scale numerical weather prediction”, in Syono, S., ed., 75th Anniversary Volume, J. Meteorol. Soc. Japan, pp. 262–267, (Meteorological Society of Japan, Tokyo, 1957). |
![]() |
230 | Piran, T., “Numerical Codes for Cylindrical General Relativistic Systems”, J. Comput. Phys.,
35, 254–283, (1980). [![]() ![]() |
![]() |
231 | Piran, T., Safier, P.N. and Katz, J., “Cylindrical gravitational waves with two degrees of
freedom: An exact solution”, Phys. Rev. D, 34(2), 331–332, (1986). [![]() ![]() |
![]() |
232 | Piran, T., Safier, P.N. and Stark, R.F., “General numerical solution of cylindrical gravitational
waves”, Phys. Rev. D, 32, 3101–3107, (1985). [![]() ![]() |
![]() |
233 | Poisson, E. and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796–1809,
(1990). [![]() ![]() |
![]() |
234 | Pollney, D., Algebraic and numerical techniques in general relativity, Ph.D. Thesis, (University of Southampton, Southampton, 2000). |
![]() |
235 | Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101,
(2005). [![]() ![]() ![]() |
![]() |
236 | Pretorius, F. and Israel, W., “Quasi-spherical light cones of the Kerr geometry”, Class.
Quantum Grav., 15, 2289–2301, (1998). [![]() ![]() ![]() |
![]() |
237 | Pretorius, F. and Lehner, L., “Adaptive mesh refinement for characteristic codes”, J. Comput.
Phys., 198, 10–34, (2004). [![]() ![]() ![]() |
![]() |
238 | Price, R.H., “Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and
Gravitational Perturbations”, Phys. Rev. D, 5, 2419–2438, (1972). [![]() ![]() |
![]() |
239 | Price, R.H. and Pullin, J., “Colliding black holes: The close limit”, Phys. Rev. Lett., 72,
3297–3300, (1994). [![]() ![]() ![]() |
![]() |
240 | Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108,
1063–1069, (1957). [![]() ![]() |
![]() |
241 | Reisswig, C., Binary Black Hole Mergers and Novel Approaches to Gravitational Wave
Extraction in Numerical Relativity, Ph.D. Thesis, (Universität Hannover, Hannover, 2010).
Online version (accessed 7 August 2011): ![]() |
![]() |
242 | Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J. and Szilágyi, B., “Characteristic
evolutions in numerical relativity using six angular patches”, Class. Quantum Grav., 24,
S237–S339, (2007). [![]() ![]() ![]() |
![]() |
243 | Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Unambiguous determination of
gravitational waveforms from binary black hole mergers”, Phys. Rev. Lett., 95, 221101, (2009).
[![]() ![]() ![]() |
![]() |
244 | Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Characteristic extraction in
numerical relativity: binary black hole merger waveforms at null infinity”, Class. Quantum
Grav., 27, 075014, (2010). [![]() ![]() ![]() |
![]() |
245 | Reisswig, C., Husa, S., Rezzolla, L., Dorband, E.N., Pollney, D. and Seiler, J.,
“Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins”, Phys.
Rev. D, 80, 124026, (2009). [![]() ![]() ![]() |
![]() |
246 | Reisswig, C., Ott, C.D., Sperhake, U. and Schnetter, E., “Gravitational wave extraction in
simulations of rotating stellar core collapse”, Phys. Rev. D, 83, 064008, (2011). [![]() ![]() ![]() |
![]() |
247 | Reisswig, C. and Pollney, D, “Gravitational memory in binary black hole mergers”, Astrophys.
J. Lett., 732, L13, (2011). [![]() ![]() ![]() |
![]() |
248 | Renaut, R.A., “Absorbing boundary conditions, difference operators, and stability”, J. Comput.
Phys., 102, 236–251, (1992). [![]() ![]() |
![]() |
249 | Rendall, A.D., “Reduction of the Characteristic Initial Value Problem to the Cauchy Problem
and Its Applications to the Einstein Equations”, Proc. R. Soc. London, Ser. A, 427, 221–239,
(1990). [![]() |
![]() |
250 | Reula, O. and Sarbach, O., “The initial-boundary value problem in general relativity”, Int. J.
Mod. Phys. D, 20, 767–783, (2011). [![]() ![]() ![]() |
![]() |
251 | Rezzolla, L., Abrahams, A.M., Matzner, R.A., Rupright, M.E. and Shapiro, S.L.,
“Cauchy-perturbative matching and outer boundary conditions: Computational studies”, Phys.
Rev. D, 59, 064001, (1999). [![]() ![]() ![]() |
![]() |
252 | Rinne, O., Lindblom, L. and Scheel, M.A., “Testing outer boundary treatments for the Einstein
equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [![]() ![]() ![]() |
![]() |
253 | Ronchi, C., Iacono, R. and Paolucci, P.S., “The ‘Cubed Sphere’: A New Method for the Solution
of Partial Differential Equations in Spherical Geometry”, J. Comput. Phys., 124, 93–114,
(1996). [![]() |
![]() |
254 | Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field
equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [![]() ![]() ![]() |
![]() |
255 | Rupright, M.E., Abrahams, A.M. and Rezzolla, L., “Cauchy-perturbative matching and outer
boundary conditions: Methods and tests”, Phys. Rev. D, 58, 044005, (1998). [![]() ![]() ![]() |
![]() |
256 | Ryaben’kii, V. and Tsynkov, S.V., “An application of the difference potentials method to solving external problems in CFD”, in Hafez, M. and Oshima, K., eds., Computational Fluid Dynamics Review 1998, 2, (World Scientific, Singapore; River Edge, 1998). |
![]() |
257 | Sachs, R.K., “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851–2864,
(1962). [![]() ![]() |
![]() |
258 | Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat
Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [![]() ![]() |
![]() |
259 | Sachs, R.K., “On the Characteristic Initial Value Problem in Gravitational Theory”, J. Math.
Phys., 3, 908–914, (1962). [![]() ![]() |
![]() |
260 | Sarbach, O., “Absorbing boundary conditions for Einstein’s field equations”, J. Phys.: Conf.
Ser., 91, 012005, (2007). [![]() ![]() ![]() |
![]() |
261 | Sarbach, O. and Tiglio, M., “Continuum and Discrete Initial-Boundary-Value Problems and
Einstein’s Field Equations”, Living Rev. Relativity, 15, (2012). URL (accessed 01 January
2012): http://www.livingreviews.org/. |
![]() |
262 | Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory.
I. Horizon boundary conditions for dynamical spacetimes”, Phys. Rev. D, 51(8), 4208–4235,
(1995). [![]() ![]() ![]() |
![]() |
263 | Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory.
II. Comparison with general relativity”, Phys. Rev. D, 51, 4236–4249, (1995). [![]() ![]() ![]() |
![]() |
264 | Schnetter, E., Diener, P., Dorband, E.N. and Tiglio, M., “A multi-block infrastructure for
three-dimensional time-dependent numerical relativity”, Class. Quantum Grav., 23, S553–S578,
(2006). [![]() ![]() |
![]() |
265 | Seidel, E. and Suen, W.-M., “Dynamical evolution of boson stars: Perturbing the ground state”,
Phys. Rev. D, 42, 384–403, (1990). [![]() ![]() |
![]() |
266 | Seiler, J., Szilágyi, B., Pollney, D. and Rezzolla, L., “Constraint-preserving boundary
treatment for a harmonic formulation of the Einstein equations”, Class. Quantum Grav., 25,
175020, (2008). [![]() ![]() ![]() |
![]() |
267 | Shapiro, S.L., Teukolsky, S.A. and Winicour, J., “Toroidal Black Holes and Topological
Censorship”, Phys. Rev. D, 52, 6982–6987, (1995). [![]() ![]() |
![]() |
268 | Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic
slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [![]() ![]() |
![]() |
269 | Siebel, F., Simulation of axisymmetric flows in the characteristic formulation of general
relativity, Ph.D. Thesis, (Technische Universität München, München, 2002). Online version
(accessed 14 April 2009): ![]() |
![]() |
270 | Siebel, F., Font, J.A., Müller, E. and Papadopoulos, P., “Simulating the dynamics of
relativistic stars via a light-cone approach”, Phys. Rev. D, 65, 064038, (2002). [![]() ![]() ![]() |
![]() |
271 | Siebel, F., Font, J.A., Müller, E. and Papadopoulos, P., “Axisymmetric core collapse
simulations using characteristic numerical relativity”, Phys. Rev. D, 67, 124018, (2003). [![]() ![]() ![]() |
![]() |
272 | Siebel, F., Font, J.A. and Papadopoulos, P., “Scalar field induced oscillations of relativistic
stars and gravitational collapse”, Phys. Rev. D, 65, 024021, (2001). [![]() ![]() ![]() |
![]() |
273 | Sjödin, K.R.P., Sperhake, U. and Vickers, J.A., “Dynamic cosmic strings. I”, Phys. Rev. D,
63, 024011, (2001). [![]() ![]() ![]() |
![]() |
274 | Sod, G.A., Numerical Methods in Fluid Dynamics: Initial and Initial Boundary-Value Problems, (Cambridge University Press, Cambridge; New York, 1985). |
![]() |
275 | Sorkin, E. and Piran, T., “Effects of pair creation on charged gravitational collapse”, Phys.
Rev. D, 63, 084006, (2001). [![]() ![]() ![]() |
![]() |
276 | Sorkin, R.D., “A Criterion for the Onset of Instability at a Turning Point”, Astrophys. J., 249,
254–257, (1981). [![]() ![]() |
![]() |
277 | Sperhake, U., Sjödin, K.R.P. and Vickers, J.A., “Dynamic cosmic strings. II. Numerical
evolution of excited strings”, Phys. Rev. D, 63, 024012, (2001). [![]() ![]() ![]() |
![]() |
278 | Stark, R.F. and Piran, T., “A general relativistic code for rotating axisymmetric configurations
and gravitational radiation: Numerical methods and tests”, Comput. Phys. Rep., 5, 221–264,
(1987). [![]() |
![]() |
279 | Stewart, J.M., “Numerical relativity”, in Bonnor, W.B., Islam, J.N. and MacCallum, M.A.H.,
eds., Classical General Relativity, Proceedings of the Conference on Classical (Non-Quantum)
General Relativity, City University, London, 21 – 22 December 1983, pp. 231–262, (Cambridge
University Press, Cambridge; New York, 1984). [![]() |
![]() |
280 | Stewart, J.M., “The characteristic initial value problem in general relativity”, in Winkler,
K.-H.A. and Norman, M.L., eds., Astrophysical Radiation Hydrodynamics, Proceedings of the
NATO Advanced Research Workshop, Garching, Germany, August 2 – 13, 1982, NATO ASI
Series C, 188, p. 531, (Reidel, Dordrecht; Boston, 1986). [![]() |
![]() |
281 | Stewart, J.M., “Numerical Relativity III. The Bondi Mass Revisited”, Proc. R. Soc. London,
Ser. A, 424, 211–222, (1989). [![]() ![]() |
![]() |
282 | Stewart, J.M., “The Cauchy problem and the initial boundary value problem in numerical
relativity”, Class. Quantum Grav., 15, 2865–2889, (1998). [![]() ![]() |
![]() |
283 | Stewart, J.M. and Friedrich, H., “Numerical Relativity. I. The Characteristic Initial Value
Problem”, Proc. R. Soc. London, Ser. A, 384, 427–454, (1982). [![]() ![]() |
![]() |
284 | Szilágyi, B., Cauchy-characteristic matching in general relativity, Ph.D. Thesis, (University
of Pittsburgh, Pittsburgh, 2000). [![]() ![]() |
![]() |
285 | Szilágyi, B., Gómez, R., Bishop, N.T. and Winicour, J., “Cauchy boundaries in linearized
gravitational theory”, Phys. Rev. D, 62, 104006, (2000). [![]() ![]() ![]() |
![]() |
286 | Szilágyi, B., Lindblom, L. and Scheel, M.A., “Simulations of binary black hole mergers using
spectral methods”, Phys. Rev. D, 80, 124010, (2009). [![]() ![]() |
![]() |
287 | Szilágyi, B. and Winicour, J., “Well-posed initial-boundary evolution in general relativity”,
Phys. Rev. D, 68, 041501, (2003). [![]() ![]() ![]() |
![]() |
288 | Tamburino, L.A. and Winicour, J., “Gravitational Fields in Finite and Conformal Bondi
Frames”, Phys. Rev., 150, 1039–1053, (1966). [![]() ![]() |
![]() |
289 | Temple, G., “New systems of normal co-ordinates for relativistic optics”, Proc. R. Soc. London,
Ser. A, 168, 122–148, (1938). [![]() |
![]() |
290 | Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations
for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185,
635–647, (1973). [![]() ![]() |
![]() |
291 | Teukolsky, S.A., “Linearized quadrupole waves in general relativity and the motion of test
particles”, Phys. Rev. D, 26, 745–750, (1982). [![]() ![]() |
![]() |
292 | “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL
(accessed 7 August 2011): ![]() |
![]() |
293 | Thompson, K.W., “Time dependent boundary conditions for hyperbolic systems”, J. Comput.
Phys., 68, 1–24, (1987). [![]() ![]() |
![]() |
294 | Thornburg, J., “Black-hole excision with multiple grid patches”, Class. Quantum Grav., 21,
3665–3691, (2004). [![]() ![]() ![]() |
![]() |
295 | Thornburg, J., “A fast apparent horizon finder for three-dimensional Cartesian grids
in numerical relativity”, Class. Quantum Grav., 21, 743–766, (2004). [![]() ![]() ![]() |
![]() |
296 | Ting, L. and Miksis, M.J., “Exact boundary conditions for scattering problems”, J. Acoust.
Soc. Am., 80, 1825–1827, (1986). [![]() ![]() |
![]() |
297 | Trefethen, L.N. and Halpern, L., “Well-Posedness of One-Way Wave Equations and Absorbing
Boundary Conditions”, Math. Comput., 47, 421–435, (1986). [![]() |
![]() |
298 | Tsynkov, S.V., Artificial Boundary Conditions Based on the Difference Potentials Method,
NASA Technical Memorandum, 110265, (NASA Langley Research Center, Hampton, 1996).
Online version (accessed 4 February 2009): ![]() |
![]() |
299 | van der Walt, P.J. and Bishop, N.T., “Observational cosmology using characteristic numerical
relativity”, Phys. Rev. D, 82, 084001, (2010). [![]() ![]() ![]() |
![]() |
300 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() |
![]() |
301 | Weber, J. and Wheeler, J.A., “Reality of the Cylindrical Gravitational Waves of Einstein and
Rosen”, Rev. Mod. Phys., 29, 509–515, (1957). [![]() |
![]() |
302 | Winicour, J., “Newtonian gravity on the null cone”, J. Math. Phys., 24, 1193–1198, (1983).
[![]() ![]() |
![]() |
303 | Winicour, J., “Null infinity from a quasi-Newtonian view”, J. Math. Phys., 25, 2506–2514,
(1984). [![]() ![]() |
![]() |
304 | Winicour, J., “The quadrupole radiation formula”, Gen. Relativ. Gravit., 19, 281–287, (1987).
[![]() ![]() |
![]() |
305 | Winicour, J., “The Characteristic Treatment of Black Holes”, Prog. Theor. Phys. Suppl., 136,
57–71, (1999). [![]() ![]() ![]() |
![]() |
306 | Winicour, J., “Worldtube conservation laws for the null-timelike evolution problem”, Gen.
Relativ. Gravit., 43, 3269–3288, (2011). [![]() ![]() ![]() |
![]() |
307 | Xanthopoulos, B.C., “Cylindrical waves and cosmic strings of Petrov type D”, Phys. Rev. D,
34(12), 3608–3616, (1986). [![]() ![]() |
![]() |
308 | York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources
of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4,
1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [![]() |
![]() |
309 | Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in
tensor harmonics”, Phys. Rev. D, 2, 2141–2160, (1970). [![]() ![]() |
![]() |
310 | Zink, B., Schnetter, E. and Tiglio, M., “Multi-patch methods in general relativistic astrophysics:
Hydrodynamical flows on fixed backgrounds”, Phys. Rev. D, 77, 103015, (2008). [![]() ![]() |
![]() |
311 | Zlochower, Y., Waveforms from colliding black holes, Ph.D. Thesis, (University of Pittsburgh,
Pittsburgh, 2002). [![]() |
![]() |
312 | Zlochower, Y., Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Mode coupling in
the nonlinear response of black holes”, Phys. Rev. D, 68, 084014, (2003). [![]() ![]() ![]() |
http://www.livingreviews.org/lrr-2012-2 |
Living Rev. Relativity 15, (2012), 2
![]() This work is licensed under a Creative Commons License. E-mail us: |