The development of grids smoothly covering the sphere has had a long history in computational
meteorology that has led to two distinct approaches: (i) the stereographic approach in which the sphere is
covered by two overlapping patches obtained by stereographic projection about the North and South
poles [68]; and (ii) the cubed-sphere approach in which the sphere is covered by the 6 patches obtained by a
projection of the faces of a circumscribed cube [253
]. A discussion of the advantages of each of these
methods and a comparison of their performance in a standard fluid testbed are given in [68
].
In numerical relativity, the stereographic method has been reinvented in the context of the
characteristic evolution problem [217
]; and the cubed-sphere method has been reinvented in
building an apparent horizon finder [295
]. The cubed-sphere module, including the interpatch
transformations, has been integrated into the Cactus toolkit [292
] and applied to black-hole excision and
numerous other problems in numerical relativity [294
, 200, 264, 101, 96, 226, 310, 183, 286, 182].
Perhaps the most ingenious treatment of the sphere, based upon a toroidal map, was devised by
the Canberra group in building their characteristic code [36
]. These methods are described
below.
Motivated by problems in meteorology, Browning, Hack, and Swartztrauber [68] developed the first
finite-difference scheme based upon a composite mesh with two overlapping stereographic coordinate
patches, each having a circular boundary centered about the North or South poles. Values for quantities
required at ghost points beyond the boundary of one of the patches were interpolated from values in the
other patch. Because a circular boundary does not fit regularly on a stereographic grid, dissipation was
found necessary to remove the short wavelength error resulting from the inter-patch interpolations. They
used the shallow water equations as a testbed to compare their approach to existing spectral
approaches in terms of computer time, execution rate and accuracy. Such comparisons of different
numerical methods can be difficult. Both the finite-difference and spectral approaches gave good
results and were competitive in terms of overall operation count and memory requirements.
For the particular initial data sets tested, the spectral approach had an advantage but not
enough to give clear indication of the suitability of one method over another. The spectral
method with M modes requires
operations per time step compared with
for a finite-difference method on an
grid. However, assuming that the solution is
analytic, the accuracy of the spectral method is
compared to, say,
for a
sixth-order finite-difference method. Hence, for comparable accuracy,
, which implies
that the operation count for the spectral and finite-difference methods would be
and
, respectively. Thus, for sufficiently high accuracy, i.e., large
, the spectral
method requires fewer operations. Thus, the issue of spectral vs finite-difference methods depends
on the nature of the smoothness of the physical problem being addressed and the accuracy
desired. For smooth
solutions the spectral convergence rate is still faster than any power
law.
The Pitt null code was first developed using two stereographic patches with square boundaries, each overlapping the equator. This has recently been modified based upon the approach advocated in [68], which retains the original stereographic coordinates but shrinks the overlap region by masking a circular boundary near the equator. The original square boundaries aligned with the grid and did not require numerical dissipation. However, the corners of the square boundary, besides being a significant waste of economy, were a prime source of inaccuracy. The resolution at the corners is only 1/9th that at the poles due to the stretching of the stereographic map. Near the equator, the resolution is approximately 1/2 that at the poles. The use of a circular boundary requires an angular version of numerical dissipation to control the resulting high frequency error (see Section 4.2.2).
A crucial ingredient of the PITT code is the -module [140], which incorporates a computational
version of the Newman–Penrose eth-formalism [217]. The underlying method can be applied to any smooth
coordinatization
of the sphere based upon several patches. The unit-sphere metric
, defined
by these coordinates, is decomposed in each patch in terms of a complex basis vector
,
Ronchi, Iacono, and Paolucci [253] developed the “cubed-sphere” approach as a new gridding method for
solving global meteorological problems. The method decomposes the sphere into the six identical regions
obtained by projection of a cube circumscribed on its surface. This gives a variation of the composite mesh
method in which the six domains butt up against each other along shared grid boundaries. As a result,
depending upon the implementation, either no inter-grid interpolations or only one-dimensional
interpolations are necessary (as opposed to the two-dimensional interpolations necessary for a stereographic
grid), which results in enhanced accuracy. See [261] for a review of abutting grid techniques
in numerical relativity. The symmetry of the scheme, in which the six patches have the same
geometric structure and grid, also allows efficient use of parallel computer architectures. Their tests
of the cubed-sphere method based upon the simulation of shallow water waves in spherical
geometry show that the numerical solutions are as accurate as those with spectral methods,
with substantial saving in execution time. Recently, the cubed-sphere method has also been
developed for application to characteristic evolution in numerical relativity [242
, 134
]. The
eth-calculus is used to treat tensor fields on the sphere in the same way as in the stereographic
method except the interpatch transformations now involve six, rather than two, sets of basis
vectors.
The Canberra group treats fields on the sphere by taking advantage of the existence of a smooth map from
the torus to the sphere [36]. The pullback of this map allows functions on the sphere to be expressed in
terms of toroidal coordinates. The intrinsic topology of these toroidal coordinates allow them to take
advantage of of fast-Fourier transforms to implement a highly efficient pseudo-spectral treatment. This
ingenious method has apparently not yet been adopted in other fields.
http://www.livingreviews.org/lrr-2012-2 |
Living Rev. Relativity 15, (2012), 2
![]() This work is licensed under a Creative Commons License. E-mail us: |