![]() |
1 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Beating the
spin-down limit on gravitational wave emission from the Vela pulsar”, Astrophys. J., 737, 93,
(2011). [![]() ![]() |
![]() |
2 | Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of LIGO data for gravitational
waves from binary neutron stars”, Phys. Rev. D, 69, 122001, (2004). [![]() ![]() |
![]() |
3 | Abbott, B. et al. (LIGO Scientific Collaboration), “First upper limits from LIGO on
gravitational wave bursts”, Phys. Rev. D, 69, 102001, (2004). [![]() ![]() |
![]() |
4 | Abbott, B. et al. (LIGO Scientific Collaboration), “Setting upper limits on the strength of
periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO
600 and LIGO detectors”, Phys. Rev. D, 69, 082004, (2004). [![]() ![]() |
![]() |
5 | Adler, R.J., The Geometry of Random Fields, (Wiley, Chichester; New York, 1981). |
![]() |
6 | Adler, R.J. and Taylor, J.E, Random Fields and Geometry, Monographs in Mathematics,
(Springer, New York, 2007). [![]() |
![]() |
7 | Ajith, P. and Bose, S., “Estimating the parameters of nonspinning binary black holes using
ground-based gravitational-wave detectors: Statistical errors”, Phys. Rev. D, 79, 084032,
(2009). [![]() |
![]() |
8 | Allen, B., “The Stochastic Gravity-Wave Background: Sources and Detection”, in Marck, J.-A.
and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of
the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6
October, 1995, Cambridge Contemporary Astrophysics, pp. 373–418, (Cambridge University
Press, Cambridge, 1997). [![]() |
![]() |
9 | Allen, B., “χ2 time-frequency discriminator for gravitational wave detection”, Phys. Rev. D,
71, 062001, (2005). [![]() ![]() |
![]() |
10 | Allen, B., Creighton, D.E., Flanagan, É.É. and Romano, J.D., “Robust statistics for
deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses”,
Phys. Rev. D, 65, 122002, (2002). [![]() ![]() |
![]() |
11 | Allen, B., Creighton, D.E., Flanagan, É.É. and Romano, J.D., “Robust statistics for
deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses”,
Phys. Rev. D, 67, 122002, (2003). [![]() ![]() |
![]() |
12 | Allen, B. et al., “Observational Limit on Gravitational Waves from Binary Neutron Stars in
the Galaxy”, Phys. Rev. Lett., 83, 1498–1501, (1999). [![]() ![]() |
![]() |
13 | Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling
binaries”, Phys. Rev. D, 52, 605–620, (1995). [![]() |
![]() |
14 | Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler
Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2006-1. |
![]() |
15 | Armstrong, J.W., Estabrook, F.B. and Tinto, M., “Time-Delay Interferometry for Space-Based
Gravitational Wave Searches”, Astrophys. J., 527, 814–826, (1999). [![]() ![]() |
![]() |
16 | Arnaud, N. et al., “Coincidence and coherent data analysis methods for gravitational wave
bursts in a network of interferometric detectors”, Phys. Rev. D, 68, 102001, (2003). [![]() ![]() |
![]() |
17 | Arun, K.G., Iyer, B.R., Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation
of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The
nonspinning case”, Phys. Rev. D, 71, 084008, (2005). [![]() ![]() |
![]() |
18 | Astone, P., Borkowski, K.M., Jaranowski, P. and Królak, A., “Data analysis of
gravitational-wave signals from spinning neutron stars. IV. An all-sky search”, Phys. Rev. D,
65, 042003, (2002). [![]() |
![]() |
19 | Astone, P., Borkowski, K.M., Jaranowski, P., Królak, A. and Pietka, M., “Data analysis of
gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search”, Phys.
Rev. D, 82, 022005, (2010). [![]() |
![]() |
20 | Astone, P., D’Antonio, S., Frasca, S. and Palomba, C., “A method for detection of known
sources of continuous gravitational wave signals in non-stationary data”, Class. Quantum Grav.,
27, 194016, (2010). [![]() |
![]() |
21 | Astone, P., Lobo, A. and Schutz, B.F., “Coincidence experiments between interferometric and
resonant bar detectors of gravitational waves”, Class. Quantum Grav., 11, 2093–2112, (1994).
[![]() |
![]() |
22 | Astone, P. et al., “Long-term operation of the Rome ‘Explorer’ cryogenic gravitational wave
detector”, Phys. Rev. D, 47, 362–375, (1993). [![]() |
![]() |
23 | Astone, P. et al., “All-sky upper limit for gravitational radiation from spinning neutron stars”,
Class. Quantum Grav., 20, S665–S676, (2003). [![]() |
![]() |
24 | Astone, P. et al. (International Gravitational Event Collaboration), “Methods and results of
the IGEC search for burst gravitational waves in the years 1997–2000”, Phys. Rev. D, 68,
022001, (2003). [![]() ![]() |
![]() |
25 | Balasubramanian, R. and Dhurandhar, S.V., “Estimation of parameters of gravitational waves
from coalescing binaries”, Phys. Rev. D, 57, 3408–3422, (1998). [![]() |
![]() |
26 | Balasubramanian, R., Sathyaprakash, B.S. and Dhurandhar, S.V., “Gravitational waves from
coalescing binaries: Detection strategies and Monte Carlo estimation of parameters”, Phys.
Rev. D, 53, 3033–3055, (1996). [![]() |
![]() |
27 | Baskaran, D. and Grishchuk, L.P., “Components of the gravitational force in the field of a
gravitational wave”, Class. Quantum Grav., 21, 4041–4061, (2004). [![]() |
![]() |
28 | Bayes, T., “An essay towards solving a problem in doctrine of chances”, Philos. Trans. R. Soc. London, 53, 293–315, (1763). |
![]() |
29 | Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and
testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025, (2005). [![]() ![]() |
![]() |
30 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [![]() http://www.livingreviews.org/lrr-2006-4. |
![]() |
31 | Bonazzola, S. and Gourgoulhon, E., “Gravitational waves from pulsars: emission by
the magnetic-field-induced distortion”, Astron. Astrophys., 312, 675–690, (1996). [![]() ![]() |
![]() |
32 | Bose, S., Dayanga, T., Ghosh, S. and Talukder, D., “A blind hierarchical coherent search for
gravitational-wave signals from coalescing compact binaries in a network of interferometric
detectors”, Class. Quantum Grav., 28, 134009, (2011). [![]() ![]() |
![]() |
33 | Brady, P.R., Creighton, T., Cutler, C. and Schutz, B.F., “Searching for periodic sources with
LIGO”, Phys. Rev. D, 57, 2101–2116, (1998). [![]() ![]() |
![]() |
34 | Brooks, C., Introductory Econometrics for Finance, (Cambridge University Press, Cambridge;
New York, 2002). [![]() |
![]() |
35 | Buonanno, A., Chen, Y. and Vallisneri, M., “Detection template families for gravitational
waves from the final stages of binary-black-hole inspirals: Nonspinning case”, Phys. Rev. D,
67, 024016, (2003). [![]() ![]() |
![]() |
36 | Cokelaer, T., “Parameter estimation of inspiralling compact binaries in ground-based detectors:
comparison between Monte Carlo simulations and the Fisher information matrix”, Class.
Quantum Grav., 25, 184007, (2008). [![]() |
![]() |
37 | Conover, W.J., Practical Nonparametric Statistics, (Wiley, New York, 1998), 3rd edition. |
![]() |
38 | Conway, J.H. and Sloane, N.J.A., Sphere Packings, Lattices and Groups, Grundlehren der
mathematischen Wissenschaften, 290, (Springer, New York, 1999), 3rd edition. [![]() |
![]() |
39 | Croce, R.P., Demma, T., Longo, M., Marano, S., Matta, V., Pierro, V. and Pinto, I.M.,
“Correlator bank detection of gravitational wave chirps – False-alarm probability, template
density, and thresholds: Behind and beyond the minimal-match issue”, Phys. Rev. D, 70,
122001, (2004). [![]() ![]() |
![]() |
40 | Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57,
7089–7102, (1998). [![]() ![]() |
![]() |
41 | Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev.
D, 49, 2658–2697, (1994). [![]() ![]() |
![]() |
42 | Cutler, C. and Schutz, B.F., “Generalized â±-statistic: Multiple detectors and multiple
gravitational wave pulsars”, Phys. Rev. D, 72, 063006, (2005). [![]() ![]() |
![]() |
43 | Cutler, C. et al., “The Last Three Minutes: Issues in Gravitational-Wave Measurements
of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993). [![]() ![]() |
![]() |
44 | Davis, M.H.A., “A Review of Statistical Theory of Signal Detection”, in Schutz, B.F., ed., Gravitational Wave Data Analysis, Proceedings of the NATO Advanced Research Workshop, held at Dyffryn House, St. Nichols, Cardiff, Wales, 6 – 9 July 1987, NATO ASI Series C, 253, pp. 73–94, (Kluwer, Dordrecht; Boston, 1989). |
![]() |
45 | Dhurandhar, S.V. and Sathyaprakash, B.S., “Choice of filters for the detection of gravitational
waves from coalescing binaries. II. Detection in colored noise”, Phys. Rev. D, 49, 1707–1722,
(1994). [![]() |
![]() |
46 | Dhurandhar, S.V. and Schutz, B.F., “Filtering coalescing binary signals: Issues concerning
narrow banding, thresholds, and optimal sampling”, Phys. Rev. D, 50, 2390–2405, (1994).
[![]() |
![]() |
47 | Estabrook, F.B. and Wahlquist, H.D., “Response of Doppler spacecraft tracking to gravitational
radiation”, Gen. Relativ. Gravit., 6, 439–447, (1975). [![]() ![]() |
![]() |
48 | Finn, L.S., “Detection, measurement and gravitational radiation”, Phys. Rev. D, 46, 5236–5249,
(1992). [![]() ![]() |
![]() |
49 | Finn, L.S., “Aperture synthesis for gravitational-wave data analysis: Deterministic sources”,
Phys. Rev. D, 63, 102001, (2001). [![]() ![]() |
![]() |
50 | Finn, L.S. and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One
interferometer”, Phys. Rev. D, 47, 2198–2219, (1993). [![]() ![]() |
![]() |
51 | Fisz, M., Probability Theory and Mathematical Statistics, (Wiley, New York, 1967), 3rd edition. |
![]() |
52 | Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole
coalescences. II. The waves’ information and its extraction, with and without templates”, Phys.
Rev. D, 57, 4566–4587, (1998). [![]() ![]() |
![]() |
53 | Freise, A. and Strain, K.A., “Interferometer Techniques for Gravitational-Wave Detection”,
Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2010-1. |
![]() |
54 | Giampieri, G., “On the antenna pattern of an orbiting interferometer”, Mon. Not. R. Astron. Soc., 289, 185–195, (1997). |
![]() |
55 | Grubbs, F.E., “Procedures for Detecting Outlying Observations in Samples”, Technometrics,
11, 1–21, (1969). [![]() |
![]() |
56 | Gürsel, Y. and Tinto, M., “Near optimal solution to the inverse problem for gravitational-wave bursts”, Phys. Rev. D, 40, 3884–3938, (1989). |
![]() |
57 | Harry, I.W., Allen, B. and Sathyaprakash, B.S., “Stochastic template placement algorithm for
gravitational wave data analysis”, Phys. Rev. D, 80, 104014, (2009). [![]() |
![]() |
58 | Helstrom, C.W., Statistical Theory of Signal Detection, International Series of Monographs in Electronics and Instrumentation, 9, (Pergamon Press, Oxford; New York, 1968), 2nd edition. |
![]() |
59 | Hinich, M.J., “Testing for Gaussianity and linearity of a stationary time series”, J. Time Series
Anal., 3, 169–176, (1982). [![]() |
![]() |
60 | Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not.
R. Astron. Soc., 331, 805–816, (2002). [![]() ![]() ![]() |
![]() |
61 | Hughes, S.A. and Menou, K., “Golden binary gravitational-wave sources: Robust probes of
strong-field gravity”, Astrophys. J., 623, 689–699, (2005). [![]() ![]() |
![]() |
62 | Jaranowski, P., Kokkotas, K.D., Królak, A. and Tsegas, G., “On the estimation of parameters
of the gravitational-wave signal from a coalescing binary by a network of detectors”, Class.
Quantum Grav., 13, 1279–1307, (1996). [![]() |
![]() |
63 | Jaranowski, P. and Królak, A., “Optimal solution to the inverse problem for the gravitational
wave signal of a coalescing compact binary”, Phys. Rev. D, 49, 1723–1739, (1994). [![]() |
![]() |
64 | Jaranowski, P. and Królak, A., “Data analysis of gravitational-wave signals from spinning
neutron stars. II. Accuracy of estimation of parameters”, Phys. Rev. D, 59, 063003, (1999).
[![]() |
![]() |
65 | Jaranowski, P. and Królak, A., “Data analysis of gravitational-wave signals from spinning
neutron stars. III. Detection statistics and computational requirements”, Phys. Rev. D, 61,
062001, (2000). [![]() |
![]() |
66 | Jaranowski, P. and Królak, A., Analysis of Gravitational-Wave Data, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, 29, (Cambridge University Press, Cambridge; New York, 2009). |
![]() |
67 | Jaranowski, P. and Królak, A., “Searching for gravitational waves from known pulsars using
the â± and đą statistics”, Class. Quantum Grav., 27, 194015, (2010). [![]() |
![]() |
68 | Jaranowski, P., Królak, A. and Schutz, B.F., “Data analysis of gravitational-wave signals from
spinning neutron stars: The signal and its detection”, Phys. Rev. D, 58, 063001, (1998). [![]() ![]() |
![]() |
69 | Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H. and Lee, T.-C., The Theory and Practice of Econometrics, (Wiley, New York, 1980). |
![]() |
70 | Kafka, P., “Optimal Detection of Signals through Linear Devices with Thermal Noise Sources and Application to the Munich-Frascati Weber-Type Gravitational Wave Detectors”, in De Sabbata, V. and Weber, J., eds., Topics in Theoretical and Experimental Gravitation Physics, Proceedings of the International School of Cosmology and Gravitation held in Erice, Trapani, Sicily, March 13 – 25, 1975, NATO ASI Series B, 27, p. 161, (Plenum Press, New York, 1977). |
![]() |
71 | Kassam, S.A., Signal Detection in Non-Gaussian Noise, (Springer, New York, 1988). |
![]() |
72 | Kendall, M. and Stuart, A., The Advanced Theory of Statistics. Vol. 2: Inference and Relationship, (C. Griffin, London, 1979). |
![]() |
73 | Kokkotas, K.D., Królak, A. and Tsegas, G., “Statistical analysis of the estimators of the
parameters of the gravitational-wave signal from a coalescing binary”, Class. Quantum Grav.,
11, 1901–1918, (1994). [![]() |
![]() |
74 | Kotelnikov, V.A., The Theory of Optimum Noise Immunity, (McGraw-Hill, New York, 1959). |
![]() |
75 | Królak, A., Kokkotas, K.D. and Schäfer, G., “Estimation of the post-Newtonian parameters
in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089–2111, (1995).
[![]() |
![]() |
76 | Królak, A., Lobo, J.A. and Meers, B.J., “Estimation of the parameters of the gravitational-wave signal of a coalescing binary system”, Phys. Rev. D, 48, 3451–3462, (1993). |
![]() |
77 | Królak, A. and Schutz, B.F., “Coalescing binaries – Probe of the universe”, Gen. Relativ.
Gravit., 19, 1163–1171, (1987). [![]() |
![]() |
78 | Królak, A., Tinto, M. and Vallisneri, M., “Optimal filtering of the LISA data”, Phys. Rev. D,
70, 022003, (2004). [![]() |
![]() |
79 | Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., “Convergence properties of the
Nelder–Mead simplex method in low dimensions”, SIAM J. Optimiz., 9, 112–147, (1998). [![]() |
![]() |
80 | Lehmann, E.L., Testing Statistical Hypotheses, (Wiley, New York, 1959). |
![]() |
81 | Lehmann, E.L., Theory of Point Estimation, (Wiley, New York, 1983). |
![]() |
82 | Lehmann, E.L. and Casella, G., Theory of Point Estimation, (Springer, New York, 1998), 2nd edition. |
![]() |
83 | Lehmann, E.L. and Romano, J.P., Testing Statistical Hypotheses, (Springer, New York, 2005), 3rd edition. |
![]() |
84 | Liptser, R.S. and Shiryaev, A.N., Statistics of Random Processes, 2 vols., Applications of Mathematics, (Springer, New York, 1977). |
![]() |
85 | LISA Study Team, LISA: Pre-Phase A Report, Second Edition, MPQ 233, (Max-Planck-Institut
für Quantenoptik, Garching, 1998). Online version (accessed 3 January 2012): ![]() |
![]() |
86 | Manca, G.M. and Vallisneri, M., “Cover art: Issues in the metric-guided and metric-less
placement of random and stochastic template banks”, Phys. Rev. D, 81, 024004, (2010). [![]() |
![]() |
87 | McDonough, R.N. and Whalen, A.D., Detection of Signals in Noise, (Academic Press, San
Diego, 1995), 2nd edition. [![]() |
![]() |
88 | McNabb, J.W.C. et al., “Overview of the BlockNormal event trigger generator”, Class.
Quantum Grav., 21, S1705–S1710, (2004). [![]() ![]() |
![]() |
89 | Messenger, C., Prix, R. and Papa, M.A., “Random template banks and relaxed lattice
coverings”, Phys. Rev. D, 79, 104017, (2009). [![]() |
![]() |
90 | Meyer, C., Matrix Analysis and Applied Linear Algebra, (SIAM, Philadelphia, 2000). [![]() |
![]() |
91 | Misner, C.W, Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). |
![]() |
92 | Mohanty, S.D., “Hierarchical search strategy for the detection of gravitational waves from
coalescing binaries: Extension to post-Newtonian waveforms”, Phys. Rev. D, 57, 630–658,
(1998). [![]() ![]() |
![]() |
93 | Mohanty, S.D., “A robust test for detecting non-stationarity in data from gravitational wave
detectors”, Phys. Rev. D, 61, 122002, (2000). [![]() ![]() |
![]() |
94 | Mohanty, S.D. and Dhurandhar, S.V., “Hierarchical search strategy for the detection of
gravitational waves from coalescing binaries”, Phys. Rev. D, 54, 7108–7128, (1996). [![]() |
![]() |
95 | Mohanty, S.D., Márka, S., Rahkola, R., Mukherjee, S., Leonor, I., Frey, R., Cannizzo, J. and
Camp, J., “Search algorithm for a gravitational wave signal in association with gamma ray
burst GRB030329 using the LIGO detectors”, Class. Quantum Grav., 21, S1831–S1837, (2004).
[![]() |
![]() |
96 | Mukhopadhyay, H., Sago, N., Tagoshi, H., Dhurandhar, S.V., Takahashi, H. and Kanda, N.,
“Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent
versus coincident strategies”, Phys. Rev. D, 74, 083005, (2006). [![]() |
![]() |
97 | Mukhopadhyay, H., Tagoshi, H., Dhurandhar, S.V. and Kanda, N., “Detecting gravitational
waves from inspiraling binaries with a network of geographically separated detectors: Coherent
versus coincident strategies”, Phys. Rev. D, 80, 123019, (2009). [![]() |
![]() |
98 | Nicholson, D. and Vecchio, A., “Bayesian bounds on parameter estimation accuracy for compact
coalescing binary gravitational wave signals”, Phys. Rev. D, 57, 4588–4599, (1998). [![]() ![]() |
![]() |
99 | Nicholson, D. et al., “Results of the first coincident observations by two laser-interferometric
gravitational wave detectors”, Phys. Lett. A, 218, 175–180, (1996). [![]() ![]() |
![]() |
100 | Niebauer, T.M., Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W. and Danzmann, K.,
“Pulsar search using data compression with the Garching gravitational wave detector”, Phys.
Rev. D, 47, 3106–3123, (1993). [![]() |
![]() |
101 | O’Hagan, A. and Forster, J., Kendall’s Advanced Theory of Statistics. Vol. IIB: Bayesian Inference, (E. Arnold, London, 2004), 2nd edition. |
![]() |
102 | Owen, B.J., “Search templates for gravitational waves from inspiraling binaries: Choice of
template spacing”, Phys. Rev. D, 53, 6749–6761, (1996). [![]() ![]() |
![]() |
103 | Pai, A., Dhurandhar, S. and Bose, S., “A data-analysis strategy for detecting gravitational-wave
signals from inspiraling compact binaries with a network of laser-interferometric detectors”,
Phys. Rev. D, 64, 042004, (2001). [![]() ![]() |
![]() |
104 | Pisarski, A., Jaranowski, P. and Pietka, M., “Banks of templates for directed searches of
gravitational waves from spinning neutron stars”, Phys. Rev. D, 83, 043001, (2011). [![]() ![]() |
![]() |
105 | Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry
(Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5, (2011). URL (accessed 18 July
2011): http://www.livingreviews.org/lrr-2011-5. |
![]() |
106 | Poisson, E. and Will, C.M., “Gravitational waves from inspiraling compact binaries: Parameter
estimation using second-post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855, (1995). [![]() ![]() |
![]() |
107 | Poor, H.V., An Introduction to Signal Detection and Estimation, (Springer, New York, 1994),
2nd edition. [![]() |
![]() |
108 | Prince, T.A., Tinto, M., Larson, S.L. and Armstrong, J.W., “LISA optimal sensitivity”, Phys.
Rev. D, 66, 122002, (2002). [![]() ![]() |
![]() |
109 | Prix, P. and Krishnan, B., “Targeted search for continuous gravitational waves: Bayesian versus
maximum-likelihood statistics”, Class. Quantum Grav., 26, 204013, (2009). [![]() |
![]() |
110 | Prix, R., “The search for continuous gravitational waves: Metric of the multi-detector
â±-statistic”, Phys. Rev. D, 75, 023004, (2007). [![]() |
![]() |
111 | Prix, R., “Template-based searches for gravitational waves: efficient lattice covering of flat
parameter spaces”, Class. Quantum Grav., 24, S481–S490, (2007). [![]() |
![]() |
112 | Rajesh Nayak, K., Pai, A., Dhurandhar, S.V. and Vinet, J.-Y., “Improving the sensitivity of LISA”, Class. Quantum Grav., 20, 1217–1231, (2003). |
![]() |
113 | Rakhmanov, M., “Response of test masses to gravitational waves in the local Lorentz gauge”,
Phys. Rev. D, 71, 084003, (2005). [![]() |
![]() |
114 | Rakhmanov, M., “On the round-trip time for a photon propagating in the field of a plane
gravitational wave”, Class. Quantum Grav., 26, 155010, (2009). [![]() |
![]() |
115 | Rakhmanov, M., Romano, J.D. and Whelan, J.T., “High-frequency corrections to the detector
response and their effect on searches for gravitational waves”, Class. Quantum Grav., 25,
184017, (2008). [![]() ![]() |
![]() |
116 | Rife, D.C. and Boorstyn, R.R., “Single tone parameter estimation from discrete-time
observations”, IEEE Trans. Inform. Theory, 20, 591–598, (1974). [![]() |
![]() |
117 | Robinson, C.A.K., Sathyaprakash, B.S. and Sengupta, A.S., “Geometric algorithm for efficient
coincident detection of gravitational waves”, Phys. Rev. D, 78, 062002, (2008). [![]() |
![]() |
118 | Rogan, A. and Bose, S., “Optimal statistic for detecting gravitational wave signals from binary
inspirals with LISA”, Class. Quantum Grav., 21, S1607–S1624, (2004). [![]() ![]() |
![]() |
119 | Röver, C., “Random template placement and prior information”, J. Phys.: Conf. Ser., 228, 012008, (2010). |
![]() |
120 | Rubbo, L.J., Cornish, N.J. and Poujade, O., “Forward modeling of space-borne gravitational
wave detectors”, Phys. Rev. D, 69, 082003, (2004). [![]() ![]() |
![]() |
121 | Sathyaprakash, B.S. and Dhurandhar, S.V., “Choice of filters for the detection of gravitational
waves from coalescing binaries”, Phys. Rev. D, 44, 3819–3834, (1991). [![]() |
![]() |
122 | Schutz, B.F., “Determining the nature of the Hubble constant”, Nature, 323, 310–311, (1986).
[![]() |
![]() |
123 | Schutz, B.F., ed., Gravitational Wave Data Analysis, Proceedings of the NATO Advanced Research Workshop held at Dyffryn House, St. Nichols, Cardiff, Wales, 6 – 9 July 1987, NATO ASI Series C, 253, (Kluwer, Dordrecht; Boston, 1989). |
![]() |
124 | Schutz, B.F., “Data Processing, Analysis and Storage for Interferometric Antennas”, in Blair,
D.G., ed., The Detection of Gravitational Waves, pp. 406–452, (Cambridge University Press,
Cambridge; New York, 1991). [![]() |
![]() |
125 | Schutz, B.F., “Networks of gravitational wave detectors and three figures of merit”, Class.
Quantum Grav., 28, 125023, (2011). [![]() ![]() |
![]() |
126 | Schutz, B.F. and Tinto, M., “Antenna patterns of interferometric detectors of gravitational waves – I. Linearly polarized waves”, Mon. Not. R. Astron. Soc., 224, 131–154, (1987). |
![]() |
127 | Sengupta, S.A., Dhurandhar, S.V. and Lazzarini, A., “Faster implementation of the hierarchical
search algorithm for detection of gravitational waves from inspiraling compact binaries”, Phys.
Rev. D, 67, 082004, (2003). [![]() |
![]() |
128 | Seto, N., “Effects of finite armlength of LISA on analysis of gravitational waves from
massive-black-holes binaries”, Phys. Rev. D, 66, 122001, (2002). [![]() ![]() |
![]() |
129 | Seto, N., “Gravitational wave astrometry for rapidly rotating neutron stars and estimation of
their distances”, Phys. Rev. D, 71, 123002, (2005). [![]() ![]() |
![]() |
130 | Stuart, A. and Ord, J.K., Kendall’s Advanced Theory of Statistics. Vol. I: Distribution Theory, (E. Arnold, London, 1994), 6th edition. |
![]() |
131 | Stuart, A., Ord, J.K. and Arnold, S., Kendall’s Advanced Theory of Statistics. Vol. IIA: Classical Inference and the Linear Model, (E. Arnold, London, 1999), 6th edition. |
![]() |
132 | Table of Q Functions, RAND Research Memorandum, M-339, (U.S. Air Force, Rand Corporation, Santa Monica, 1950). |
![]() |
133 | Tagoshi, H. et al. (TAMA Collaboration), “First search for gravitational waves from
inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001, (2001). [![]() ![]() |
![]() |
134 | Tanaka, T. and Tagoshi, H., “Use of new coordinates for the template space in hierarchical
search for gravitational waves from inspiraling binaries”, Phys. Rev. D, 62, 082001, (2000).
[![]() ![]() |
![]() |
135 | Thorne, K.S., “Gravitational radiation”, in Hawking, S.W. and Israel, W., eds., Three Hundred
Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987).
[![]() |
![]() |
136 | Tinto, M. and Armstrong, J.W., “Cancellation of laser noise in an unequal-arm interferometer
detector of gravitational radiation”, Phys. Rev. D, 59, 102003, (1999). [![]() |
![]() |
137 | Tinto, M. and Dhurandhar, S.V., “Time-Delay Interferometry”, Living Rev. Relativity, 8,
lrr-2005-4, (2005). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2005-4. |
![]() |
138 | Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of
gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001, (2008). [![]() ![]() |
![]() |
139 | Van Trees, H.L., Detection, Estimation and Modulation Theory. Part 1: Detection, Estimation, and Linear Modulation Theory, (Wiley, New York, 1968). |
![]() |
140 | Vecchio, A., “LISA observations of rapidly spinning massive black hole binary systems”, Phys.
Rev. D, 70, 042001, (2004). [![]() ![]() |
![]() |
141 | Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave
Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 30
June 2011): http://www.livingreviews.org/lrr-2009-5. |
![]() |
142 | Vitale, S. and Zanolin, M., “Parameter estimation from gravitational waves generated by
nonspinning binary black holes with laser interferometers: Beyond the Fisher information”,
Phys. Rev. D, 82, 124065, (2010). [![]() |
![]() |
143 | Wainstein, L.A. and Zubakov, V.D., Extraction of Signals from Noise, (Prentice-Hall, Englewood Cliffs, 1962). |
![]() |
144 | Weber, J., “Evidence for Discovery of Gravitational Radiation”, Phys. Rev. Lett., 22,
1320–1324, (1969). [![]() |
![]() |
145 | Wong, E., Introduction to Random Processes, (Springer, New York, 1983). |
![]() |
146 | Wong, E. and Hajek, B., Stochastic Processes in Engineering Systems, (Springer, New York, 1985). |
![]() |
147 | Woodward, P.M., Probability and Information Theory with Applications to Radar, (Pergamon Press, London, 1953). |
![]() |
148 | Zanolin, M., Vitale, S. and Makris, N., “Application of asymptotic expansions for
maximum likelihood estimators errors to gravitational waves from binary mergers: The single
interferometer case”, Phys. Rev. D, 81, 124048, (2010). [![]() |
![]() |
149 | ZieliĆski, R., “Theory of parameter estimation”, in Królak, A., ed., Mathematics of Gravitation. Part II: Gravitational Wave Detection, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 – March 30, 1996, Banach Center Publications, 41, pp. 209–220, (Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland, 1997). |
http://www.livingreviews.org/lrr-2012-4 |
Living Rev. Relativity 15, (2012), 4
![]() This work is licensed under a Creative Commons License. E-mail us: |