Thus, we assume that the data contains the gravitational-wave signal
defined in Eq. (32
),
so
. The parameters
of the signal consist of extrinsic parameters
and intrinsic parameters
. The data
will be correlated with the filters
(
)
parameterized by the values
of the intrinsic parameters. The
-statistic can thus be written in the
form [see Eq. (62
)]
As in the calculation of the number of cells in order to estimate the number of templates we perform a
Taylor expansion of up to second order terms around the true values of the parameters, and we obtain
an equation analogous to Eq. (95
),
For the case of the signal given by Eq. (34) our formula for the number of templates is equivalent to the
original formula derived by Owen [102
]. Owen [102] has also introduced a geometric approach to the
problem of template placement involving the identification of the Fisher matrix with a metric on the
parameter space. An early study of the template placement for the case of coalescing binaries can be found
in [121, 45, 26
]. Applications of the geometric approach of Owen to the case of spinning neutron stars and
supernova bursts are given in [33, 16].
The problem of how to cover the parameter space with the smallest possible number of templates, such that
no point in the parameter space lies further away from a grid point than a certain distance, is
known in mathematical literature as the covering problem [38]. This was first studied in the
context of gravitational-wave data analysis by Prix [111]. The maximum distance of any point
to the next grid point is called the covering radius . An important class of coverings are
lattice coverings. We define a lattice in
-dimensional Euclidean space
to be the set of
points including 0 such that if
and
are lattice points, then also
and
are
lattice points. The basic building block of a lattice is called the fundamental region. A lattice
covering is a covering of
by spheres of covering radius
, where the centers of the
spheres form a lattice. The most important quantity of a covering is its thickness
defined as
For the case of gravitational-wave signals from spinning neutron stars a 3-dimensional grid was
constructed [18]. It consists of prisms with hexagonal bases. Its thickness is around 1.84, which is much
better than the cubic grid with a thickness of approximately 2.72. It is worse than the best 3-dimensional
lattice covering, which has a thickness of around 1.46.
In [19] a grid was constructed in the 4-dimensional parameter space spanned by frequency, frequency
derivative, and sky position of the source, for the case of an almost monochromatic gravitational-wave
signal originating from a spinning neutron star. The starting point of the construction was an lattice
of thickness
. The grid was then constrained so that the nodes of the grid coincide with Fourier
frequencies. This allowed the use of a fast Fourier transform (FFT) to evaluate the maximum-likelihood
-statistic efficiently (see Section 4.6.2). The resulting lattice is only 20% thicker than the optimal
lattice.
Efficient 2-dimensional banks of templates suitable for directed searches (in which one assumes that the
position of the gravitational-wave source in the sky is known, but one does not assume that the wave’s
frequency and its derivative are a priori known) were constructed in [104]. All grids found in [104] enable
usage of the FFT algorithm in the computation of the
-statistic; they have thicknesses 0.1 – 16% larger
than the thickness of the optimal 2-dimensional hexagonal covering. In the construction of grids the
dependence on the choice of the position of the observational interval with respect to the origin of time axis
was employed. Also the usage of the FFT algorithms with nonstandard frequency resolutions achieved by
zero padding or folding the data was discussed.
The above template placement constructions are based on a Fisher matrix with constant coefficients, i.e., they assume that the parameter manifold is flat. The generalization to curved Riemannian parameter manifolds is difficult. An interesting idea to overcome this problem is to use stochastic template banks where a grid in the parameter space is randomly generated by some algorithm [89, 57, 86, 119].
http://www.livingreviews.org/lrr-2012-4 |
Living Rev. Relativity 15, (2012), 4
![]() This work is licensed under a Creative Commons License. E-mail us: |